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Abstract
Cone beam computed tomography (CBCT) is a medical imaging technique employed for diagnosis and treatment of patients
with cranio-maxillofacial deformities. CBCT 3D reconstruction and segmentation of bones such as mandible or maxilla are
essential procedures in surgical and orthodontic treatments. However, CBCT image processing may be impaired by features
such as low contrast, inhomogeneity, noise and artifacts. Besides, values assigned to voxels are relative Hounsfield units unlike
traditional computed tomography (CT). Such drawbacks render CBCT segmentation a difficult and time-consuming task,
usually performed manually with tools designed for medical image processing. We present an interactive two-stage method
for the segmentation of CBCT: (i) we first perform an automatic segmentation of bone structures with super-voxels, allowing
a compact graph representation of the 3D data; (ii) next, a user-placed seed process guides a graph partitioning algorithm,
splitting the extracted bones into mandible and skull. We have evaluated our segmentation method in three different scenarios
and compared the results with ground truth data of the mandible and the skull. Results show that our method produces accurate
segmentation and is robust to changes in parameters. We also compared our method with two similar segmentation strategy
and showed that it produces more accurate segmentation. Finally, we evaluated our method for CT data of patients with
deformed or missing bones and the segmentation was accurate for all data. The segmentation of a typical CBCT takes in
average 5 min, which is faster than most techniques currently available.
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1 Introduction

Cone beam computed tomography (CBCT) is a dento-
maxillofacial imaging technique developed by Mozzo et
al. [23]. In the last years, it has become popular among
dentists and researchers in dental sciences [22]. CBCT is
employed in the diagnosis and treatment planning of bones
such as dental and maxillofacial structures [23]. Differently
from the traditional computed tomography (CT), which uses
a helical fan-beam technique, CBCT uses a cone beam
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instead and produces images whose quality is adequate
for diagnostic purposes. Besides, its radiation is approxi-
mately 98% lower and also the scanning time is shorter
when compared with fan-beam CT systems [23,29]. How-
ever, CBCT has some drawbacks such as artifacts caused by
beam hardening, scattered radiation, low-contrast resolution,
inhomogeneity, limited range of the X-ray area detectors and
high resolution. Moreover, values assigned to voxels are rel-
ative Hounsfield units (HUs) [28] and cannot be precisely
used as a threshold value to identify bone areas, as usually
done in traditional CT [22]. These drawbacks have an impact
not only on image quality but also on the outcome of image
processing tasks [20].

CBCT is routinely used to study skull bones changes that
occur over time, following orthodontic treatments. For exam-
ple, the study of location andmagnitude of facial asymmetry,
congenital deformities, face deformities of mandibular joins,
cranio-maxillofacial deformities and plan surgical correction
[6,31,35]. Due to the complex nature of human skull, such
treatments require extensive planning [6]. Hence, CT 3D
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reconstruction techniques and segmentation of skull bones,
such as mandible or maxilla, are essential procedures for
planning, performing and following-up orthodontic treat-
ments [31].

Commonly, the segmentation of a CBCT data is “manu-
ally” performed and combines several computer tools specif-
ically designed for medical image processing (i.e., ITK-Snap
[37], 3D Slicer [12], Dolphin Imaging [30]). Attaining
accurate 3D segmentation requires extensive training as it
demands both knowledge about the complex anatomy of
human skull and skills to properly operate medical image
processing tools. Usually, such tools provide thresholding,
level set and region-growing approacheswhich require inten-
sive user interaction. Moreover, they are also very sensitive
to artifacts, noise, low contrast and inhomogeneity (typi-
cal problems of CBCTs [33]). Nevertheless, these tools are
popular among orthodontists despite the painstaking process
involved: need to manually guide the entire segmentation
process and the excessive time spent to generate acceptable
results.

Other approaches to CT bone segmentation can be found
in the literature, ranging from thresholding, region growing,
deformable models, level set, graph cut, random forest clas-
sifiers, statistical shape models [32] and statistical atlases
[33,34,39]. Most of them are ad hoc applications which han-
dle one type of bone only: segmentation of either mandible
or maxilla [4,6,11,20,31].

Atlas-based methods aim to segment one category of
object and can generate precise segmentation. However, they
are very sensitive to anatomical variations, bone growth, for
instance. Although such limitations may be circumvented
by multiple atlases, the computational efficiency is sacri-
ficed, especially when non-rigid registration is needed [39].
Besides, building atlases requires multiple training volumes,
which can be hard to obtain [7,33,34].

Graph-based methods are also widely used in medical
image segmentation. In general, thesemethods build a graph,
in which each pixel represents a vertex in the graph. The
graph is then divided into clusters of vertices, which corre-
spond to objects of interest in the input image [26]. Finding
the best partition of a graph is an NP-hard problem, although
optimal approximations may be obtained. Usually, such
approximations divide a graph into clusters by minimizing
an energy function [16]. Even though graph-based meth-
ods generate accurate segmentation, their major limitation is
related to graph cardinality (number of vertices and number
of edges): an image with N pixels generates a graph whose
adjacency matrix has N 2 elements, whereas a 3D image can
easily yield a graph with millions of vertices and an even
larger number of edges. Generally, graph cut approaches seg-
ment images automatically, i.e., no user interaction is needed
during the process. There are, however, other graph-based
methods in which users can interactively guide the segmen-

tation process bymanually placing seeds (labels) over objects
of interest [36].

In this paper, we propose an interactive method to aid
specialists in segmenting CBCT (Fig. 1). This includes the
mandible and the skull altogether. It consists of a fully auto-
matic pre-segmentation of the bony structure, followed by
an interactive, user-driven segmentation, in which the afore-
mentioned bones are accurately segmented. Given CBCT
high resolution, its ability to exhibit very complex anatomi-
cal structures and the inherent existence of artifacts and low
contrast, we highlight four features of our proposal:

1. Bone enhancement based on sheetness score [11] to
enhance intensity of thin bones, such as maxilla.

2. Threshold-based bony structure pre-segmentation to sep-
arate bones from soft tissue, air and image background.

3. Super-voxels to reduce the excessive number of voxels
of CBCT 3D data, leading to shorter processing time.

4. Interactive bone segmentation based on graph clustering.

The major contribution of this paper is the interactive seg-
mentation of themandible and the skull in a unified approach.
Other important contributions are:

– Selection of bone of interest with simple brush strokes
performed on any plane (sagittal, coronal and axial
plane), tolerant to inaccuracies in positioning.

– Efficient segmentation method requiring about 5 min
processing time to segment a typical CBCT image of
resolution 400 × 400 × 554.

This manuscript is organized as follows. Section 2 intro-
duces themain concepts that underpin ourmethod. In Sect. 3,
we present our methodology. Section 4 describes the experi-
ments and results. Conclusions and future work are given in
Sect. 5.

2 Related concepts

Our framework combines algorithms for bone enhancement
in CT data, a super-voxel method and a seed-based graph
cut approach to segment the bones of interest. We provide
an overview of these concepts that are the foundation of our
integrative method. Let Ω be a CBCT image and Ωi the HU
value of voxel i ∈ n, with n being the number of voxels inΩ .

2.1 Sheetness score

Lowcontrast inCBCTdata is one of themajor problems to be
tackled for generating acceptable skull models from the data.
In general, significant user input and steering are required to
extract bone structure accurately [6]. Bone regions mostly
affected by these problems are those containing thin bones,
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Fig. 1 Examples of our input
CBCT datasets. Typical CBCT
datasets have a resolution of
400 × 400 × 554 (male and
female patients), with an
isotropic voxel size of 0.4 mm,
acquired with an i-Cat scanner.
Upper row: dataset 1; lower row:
dataset 2. From left to right: 3D
rendering, sagittal, coronal and
axial slices, respectively.
Low-contrast and sheetlike
bones are difficult to segment
and are pointed out by a yellow
arrow. a 3D view. b Condyle:
low contrast. cMandible ramus.
d Mandible. e 3D view. f
Palatine and maxilla. g Posterior
view of Mandible and maxilla. h
Sinus anterior wall

(a) (b) (c) (d)

(e) (f) (g) (h)

(a) (b) (c)

Fig. 2 Thin bones in CBTC data are hard to extract due to contrast
problem. Results obtained with the sheetness score are shown in (c),
successfully enhancing bones in the data, especially thin ones. a Sagittal
slice with region of interest (yellow). b Close-up view of region of
interest shown in (a). cRendering of sheetness score of region of interest

e.g., sinus, palatine and maxilla (Fig. 2a). Traditional thresh-
olding and region-growingmethods fail to extract such bones
accurately, leading to results withmissing parts and “broken”
contours, or even “leaks” into surrounding soft tissues [17].

The sheetness score enhances bony structures by an eigen-
value decomposition of the Hessian matrix. The information
extracted from the Hessianmatrix is commonly used to high-
light curvilinear structures, e.g., vessels or bronchi in 3D
medical images [15]. Because the eigenvalue decomposition
measures the maximal change of the gradient vector of inten-
sity in a local neighborhood, it can also be used as a means
to identify tubelike, sheetlike and blob-like structures. Given
a CBCT image Ω , for each voxel Ωi the sheetness score Si
is defined by the eigenvalues |λ1| ≤ |λ2| ≤ |λ3| of the local
Hessian matrix as follows:

Si (σ ) = max
σ∈Σ

{
exp

[
−R2

sheet

2α2

]

×
(
1 − exp

[
−R2

tube

2β2

]) (
1−exp

[
−R2

noise

2γ 2

])}
,

(1)

where Rsheet = |λ2|/|λ3|, Rtube = |(2|λ3|−|λ2|−|λ1|)|/|λ3|
and Rnoise =

√
λ21 + λ22 + λ23. The values of α, β and γ are

set to 0.5, 0.5 and half the maximal value of the Frobenius
norm (Rnoise), respectively. And Σ is a set with values in the
range 0.5 ≤ σ ≤ 3.0 [11] used as parameters to compute the
local Hessianmatrix btmeans of convolutionwith the second
and cross-derivatives of a recursive Gaussian filter [21].

Equation 1 computes the Hessian matrix for all values of
Σ (a multi-scale process) and selects the maximum value in
order to find structures of distinct thicknesses (vessels, for
instance). In practice, this operation becomes computation-
ally expensive as it is performed at every voxel in Ω , for
each element in Σ . Since our goal is to enhance thin struc-
tures only, we can drop the multi-scale process and compute
the sheetness score for a single σ value. The simplified Eq. 1
is given as follows:

Si (σ ) = exp

[
−R2

sheet

2α2

]

×
(
1 − exp

[
−R2

tube

2β2

])(
1 − exp

[
−R2

noise

2γ 2

])
.

(2)
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(a) (b)

Fig. 3 Entire bone structure, including thin bones, extracted with the
proposed threshold-based filter. a Input: sagittal CBCT slice. b Bone
structure

However, parameterσ must be given. In Sect. 4,we givemore
details about parameter optimization and propose parameter
values which guarantee optimal results. The sheetness score
can be interpreted as the probability Si of a voxel belonging
to a bone. This bone enhancement process is illustrated in
Fig. 2.

The modified sheetness score successfully identifies and
enhances thin structures. Unfortunately, it also enhances
noise and artifacts and its use alone will not produce correct
results. In the following section,we present a threshold-based
strategy that allows the extraction of the entire bony structure,
while eliminating most of the enhanced noise.

2.2 Bony structure segmentation

Most voxels of a typical CBCT human skull dataset are either
background, air or soft tissue. Therefore, it is desirable that
such unnecessary data be filtered out prior to segmentation.
We use the sheetness score and a threshold approach to filter
all bony structures, reducing the amount of unnecessary data
as much as possible. This filter is defined as follows:

Ω ′
i =

{
−1000, if Ωi × Si ≤ T

Ωi × Si otherwise
, (3)

where Ω ′
i is a new HU value computed for each voxel, T

is a threshold parameter and Ωi and Si are the original HU
and sheetness score, respectively. The value Ωi = − 1000
is assigned to voxels that do not belong to a bone, since
it is the shortest HU value in our CBCT data in the range
[− 1000, 5669]. This bony structure extraction is illustrated
in Fig. 3.

2.3 Super-voxels

The aforementioned filter substantially reduces the number
of pixels to be processed. However, further reduction can

and should be performed to accelerate segmentation. Super-
voxel (called super-pixels in 2D image processing) is the
outcome of a region-based segmentation technique which
groups a set of voxels that share a common image prop-
erty [9]. They capture redundancy in images and reduce the
complexity of subsequent processing tasks [1]. There exist
different approaches for super-pixels [2], but not all of them
can be easily adapted to the 3D super-voxel scenario. We
build on the idea of a 2D super-pixels strategy called speeded-
up turbo pixels (SUTP) [8] that is efficient and simple. It
produces high-quality super-pixels, reducing resolution by
around 90% [9].

The 3D version of SUTP, called speeded-up turbo voxels
(SUTV), is based on the k-means clustering algorithm. First,
the image is divided into N regular super-voxels Ω ′

I (I ∈
N ), or cubes, with edge length l. Initially, all super-voxels,
which contain a subset of the original voxels, have the same
volume and equidistant centroids. For simplicity, we assume
that theminimal bounding box of the entire 3D image dataset
is itself a cube. In subsequent processing steps, voxels along
a certain super-voxel boundary are analyzed and possibly
shifted across the border between neighboring super-voxels,
based on the minimization of the following cost function:

Ci = p1|Ω ′
i −Ω ′

I |+ p2|(xi −xI )
2+(yi − yI )

2+(zi −zI )
2|,
(4)

where Ω ′
i is the HU value of the voxel under consideration,

Ω ′
I is the mean HU value of the I th super-voxel, {x, y, z}i is

the location of the tested voxel, and {x, y, z}I is the centroid
of the I th super-voxel. The parameters p1 and p2 are weights
for HU similarity and super-voxel border rigidity, respec-
tively. Figure 4 shows a CBCT slice and the super-voxels
after convergence. Notice how well- adjusted super-voxels
are to the bone contours.

Parameters p1, p2 and the number of iterations were
extensively analyzed in [10] in a 2D scenario, following the
original equation proposed in [8]. The authors suggest the
values p1 = 1 and p2 = 0.5, with i t = 5 (it being the
number of iterations) for super-pixels with size l in the range
[10 − 15]. Given the similarity between super-voxel Eq. 4
and the original one, we set the super-voxel parameters p1,
p2 and i t as suggested in [10]. A thorough analysis of optimal
values for parameter l is provided in Sect. 4.1.

2.4 Seed-based graph cut segmentation

Three-dimensional segmentation can be considered a voxel
labeling problem. In general, the labels of the voxels defining
an object of interest are set to 1 (foreground), while all other
voxels’ labels are set to 0 (background). Final segmentation
is generated by minimizing an energy function [36].
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Fig. 4 Super-voxel convergence
after five iterations. a Bone
structure. b Super-voxels and
the palatine bone in a yellow
box frame. c Close-up view of
(b). d 3D view

(a) (b) (c) (d)

Usually, a graph is constructed so that each voxel corre-
sponds to a vertex, using edge weights based on a weight
function applied to edge-connected vertices [26]. Although
graph cut algorithms are efficient and can produce a global
optimum for the energy function, they are limited in prac-
tice due to the complexity of the graph [36]. A typical
graph representing a 3D image dataset consists of several
million vertices, with unacceptable graph processing times
and memory requirements. By using super-voxels during
segmentation, we can reduce the number of vertices up to
90%.

Let G = (V , E,WE ) denote a weighted graph, where
V is the set of vertices defining super-voxel ΩI , E is the
set of edges defining pairs of connected super-voxels and
wI J ∈ WE is the weight assigned to an edge (ΩI ,ΩJ ).
Ideally, edge weights represent best possible similarity val-
ues between two connected vertices. Commonly, weights
are computed according to some image feature, e.g., color,
intensity, gradient magnitude or contours [26]. Nonetheless,
voxels belonging to the same bone can have different inten-
sity values. On the other hand, regions of different bones
may share similar textures. Thus, weights considering both
features could lead to a graph with low edge weights for vox-
els of the same bone. We compute edge weights based on a
Laplacian function and the spatial location of super-voxels’
centroids as follows:

wI J = exp

(
−
√

(xI−xJ )2+(yI − yJ )2 + (zI − z J )2

δ

)
,

(5)

where {x, y, z}I is the centroid of the I th super-voxel, J ∈
VI , withVI being the set of adjacent super-voxels. TheLapla-
cian function leads to low weights for adjacent super-voxels
with centroids that are spatially distant from each other. We
compute the parameter δ as follows:

δ = max
J∈VI

√
(xI − xJ )2 + (yI − yJ )2 + (zI − z J )2. (6)

Notice that intensity is not considered inEq. 5, as all super-
voxels under investigation belong to a bone. Thus, intensity
would not contribute to a better data discrimination.

Once the graph has been constructed, we employ a binary
labeling strategy by computing the global minimum of an
energy function E(x) [5]. Let B and F be the sets of back-
ground and foreground voxels, respectively. Let qB and qF be
the seed labels of background and foreground super-voxels
assigned during the energy optimization process, defined as
follows:

E(x) = xt(I + L2)x − 2xtb + c, (7)

where I is the identity matrix; L is the Laplacian matrix of
the graph; c is a constant; and b is a vector in which

bI =

⎧⎪⎨
⎪⎩
qB, if I ∈ B

qF , if I ∈ F

0, otherwise

. (8)

Since I + L2 is a symmetric and positive definite matrix,
minimization of the energy E(x) can be achieved by solving
a linear system of equations, given as

(I + L2)x = b, (9)

with x being the solution. This system can be efficiently
solved with Cholesky factorization. As a result, the fore-
ground and background labels rI ∈ {qB, qF }, I ∈ V , are
assigned as follows [5]:

rI =
{
qB, if qi ≥ qB+qF

2

qF , otherwise
. (10)

3 Method

The diagram of Fig. 5 illustrates the interactive graph-based
segmentation method of CBCT of human skull proposed in
this paper.
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(1)

CBCT

Input

(2)

sheetness

score

(3) Bony

Structure

(4)

Super-

voxels

(5)

Graph

(a)

(1)

Seeding

(2)

Result
(3) In-

teraction

(4) Final

Result

(b)

Fig. 5 Interactive two-stage segmentation of CBCT: a preprocessing.
Automatic segmentation of bony structures, followed by grouping of
similar voxels into super-voxels and graph representation where each
vertex is a super-voxel; b interactive segmentation. User selects the
bone of interest by placing seeds on it (brush strokes). Segmentation
can be improved by either adding or removing seeds interactively. a
Automatic pre-segmentation of bony structures. b Interactive Segmen-
tation: bone of interest marked with a red brush stroke; the green stroke
is the undesired region. The red region in (2), (3) and (4) is the resulting
segmentation

The first stage of our approach consists in automatically
building a graph from the bony structure. We first extract
the entire bony structure with the bone enhancement algo-
rithm (sheetness score) introduced in Sect. 2.1. This allows
the accurate identification of thin bones such as the maxilla.
Following the bone enhancement, we apply a threshold strat-
egy to separate bones from tissue, air and image background
(Sect. 2.2). From the bony structure, we finally build a graph
whose vertices represent super-voxels (Sects. 2.3, 2.4).

The second stage is an interactive seed-based segmenta-
tion process. By applying brush strokes on any of the three
image planes (axial, sagittal and coronal), a user can select
bones of interest (red strokes for foreground) and undesired
structures (green strokes for background).

The super-voxels comprised in the brush strokes form the
input vectors b of the linear system given in Equation 9.
The graph is then segmented into two sets (foreground and
background) using the Cholesky decomposition (Eq. 10).

Segmentation can be further improved by continuous inter-
action with the addition or removal of seeds. This seeding
strategy allows seeds to be placed on thin internal bones,
which is important for the identification of small details. Bare
in mind that the first stage of our approach is executed only
once, whereas the second interactive process can be applied
until the desired segmentation is attained.

Selecting internal thin bones with brush strokes on 2D
planes can be a delicate task. This may cause undesired
regions (adjacent tissue) to be seeded accidentally. However,
the pre-segmentation process allows the accurate extraction
of all bony structures, including thin bones. As a result, seeds
can be placed on either adjacent tissue, air or image back-
groundwithout compromising the segmentation quality. That
is, there is no need for an accurate placement of strokes as
long as undesired bones are not seeded. This renders a fast,
robust and accurate interactive segmentation process. Nev-
ertheless, to guide the selection of a bone of interest, we
recommend seeding at least one slice per plane (sagittal, coro-
nal and axial plane). Seeds should be placed over areas such
as low-contrast regions of the maxilla, or bones close to each
other, the condyle, for example.

Graph-based segmentation strategies directly applied on
unprocessed CBCT data will certainly have to deal with
a huge number of vertex. Graph cut algorithm, for exam-
ple, would not only take far too long to process, but also
demand large memory resources. Reducing processing time
and memory requirements is mandatory for any feasible
interactive segmentation approach. Therefore, we reduce the
graph cardinality by minimizing the quantity of redundant
similar voxels, grouping them into super-voxels. This clus-
tering task contributes to reduce redundant information up
to 90%, making the interactive segmentation friendly and
computationally feasible.

4 Results and validation

We employed an empirical discrepancy approach to validate
the results generated by ourmethod.We compared our results
with the best expected segmentation produced (ground truth,
GT) [38]. Our GTs were manually created by experienced
orthodontists using the ITK-Snap tool whose output is a
mesh model. To compare with our voxel-based segmenta-
tion method, we had to compute a similar representation.
We chose the marching cubes algorithm [19] to generate
a similar mesh model, the same as used in ITK-Snap. We
measured the similarity between two meshes using the Jac-
card index and Dice coefficient [18]. Our CBCT data have a
400 × 400 × 554 resolution with an isotropic voxel size of
0.4 mm of 17-year-old patients (male and female), acquired
with an i-Cat scanner.
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Although automatic, the pre-segmentation stage of our
proposed framework requires three parameters: (i) a Gaus-
sian standard deviation σ used for the sheetness score; (ii) a
threshold t , for bony structure extraction; and (iii) an initial
side length l of each super-voxel. In general, setting up these
parameters is a time-consuming task imposed on users. In
Sect. 4.1, we present an analysis where parameter settings
were evaluated in order to define an appropriate setup.

We also compared our seed-based interactive segmenta-
tion method with a related segmentation approach described
by [40]. Results are provided in Sect. 4.2. Finally, we
tested our approach for ordinary CT data, publicly available.
Results are presented in Sect. 4.3.

4.1 Parameter optimization

We segmented the mandible and skull of sixteen datasets, for
which GT data were also available (eight mandible GTs and
eight skull GTs). Again, the pre-segmentation stage demands
three parameters: σ , t and l. We evaluated the parameters
in the following ranges: σ from 0.5 to 1.0 (step size 0.1);
threshold t from 100 to 300 (step size 50); and super-voxel
edge length l from 10 to 15 (step size 1) and 5 iterations.
As a result, 180 segmented meshes were produced for each
bone.We compared all results with their corresponding GTs.
Regarding the parameter value ranges mentioned above, best
segmentation accuracy, for both skull and mandible, can be
obtained with the parameter values shown in Table 1.

Figure 6 shows an example of the seed placement process
and the resulting 3D segmentation for two datasets. In the
following subsections, we provide more details about the
segmentation of the skull and the mandible.

4.1.1 Skull segmentation

The plots shown in Fig. 7 represent segmentation accuracy
(Jaccard curves) for different values of the three parame-
ters. Best segmentation was observed for threshold (t) values
within the range 150 ≤ t ≤ 300. However, in the presence of
thin bones, which are the most challenging structures to seg-
ment, the sheetness score (σ ) plays a crucial role. Figures 8
and 9 show how different values of σ and t affect the segmen-
tation of sheetlike bones. Regarding initial super-voxel side
length l, best resultswere obtainedwith 10 ≤ l ≤ 12. For this
range of l values, super-voxels are well adjusted to borders
after only 5 iterations. Larger super-voxel sizes demandmore
iterations for convergence. The mean and standard deviation
values for all datasets are listed in Table 2.

4.1.2 Mandible segmentation

Unlike the skull, the mandible does not comprise several thin
bones, albeit it has some structures, such as coronoid process

Table 1 Parameter values for
most accurate segmentation

Parameter intervals

0.7 ≤ σ ≤ 1.0

150 ≤ t ≤ 300

10 ≤ l ≤ 12

and condyle, with prevailing low contrast causing diffuse
borders in images. Segmentation of such bone parts is dif-
ficult. Nonetheless, the sheetness score enhances sheetlike
structures as well as low-contrast borders, leading to correct
segmentation of such bone regions. Plots (Jaccard curves) of
segmentation accuracy for different values of t , σ and l are
shown in Fig. 10. Figures 11 and 12 illustrate the segmenta-
tion of coronoid process and condyle for different parameter
configurations. The mean and standard deviation values for
all datasets are listed in Table 3.

We quantitatively analyzed the influence of the parameters
used in the first stage of our method. Results show that opti-
mal results (Jaccard ≈ 0.9) can be obtained with the settings
listed in Table 1. Besides, we observed that the most influen-
tial parameters are σ and t , for which a correct setup ensures
a good extraction of the entire bony structure, whereas l
has less impact on the segmentation quality, because super-
voxels converge quickly to object boundaries (5 iterations
for 10 ≤ l ≤ 15). Using these settings, in our experiments,
the best results were obtained with σ = 0.8, t = 200, and
l = 10.

4.2 Comparison with related work

We compared our approach with two related segmentation
methods: Zhu et al. [40] and Pauchard et al. [24]. The
former is based on a reformulated GrowCut segmentation
method with an adaptive version of the Dijkstra algorithm
which employs user-placed seeds. The latter is a version
of the Graph cut-based segmentation method by Boykov et
al. [3]. This method uses only user-placed seeds as object
background information, instead of traditional statistical
information such as histograms.1

Bothmethods are also interactive and usemanually placed
seeds for region-of-interest selection (background and fore-
ground). However, they are computationally expensive and
require a high amount of memory. Consequently, segmen-
tation must be carried out locally. Zhu et al.’s method
automatically defines an axis-aligned bounding box, encom-
passing all seeds,whereas Pauchard et al.’smethod asks users
to manually define a region of interest (usually a bounding
box).

1 We used the implementation provided by the authors, which includes
its own user interface.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6 Upper row: segmentation of skull of male patient (including
mandible). Lower row: segmentation of mandible of female patient.
From left to right: axial samples, seed placement process, 3D view of
final segmentation, and 3D view of respective ground truth. Red brush
strokes indicate the bone of interest (foreground), and green strokes
label undesired bones (background). Brush strokes do not have to be

precise and may be drawn beyond bone boundaries, as long as they
do not touch other bones. a Dataset 1 (male). b Seeds for skull seg-
mentation. c Resulting skull segmentation. d Ground truth. e Dataset
2 (female). f Seed placement for mandible segmentation. g Resulting
mandible segmentation. h Ground truth
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Fig. 7 Influence of parameters t , σ and l on skull segmentation quality.
The curves represent the mean Jaccard index of the eight datasets (1440
segmentation results). We measured the segmentation quality by eval-
uating several combinations of the parameters mentioned, for instance:

t = 100,σ = 0.5 and t = [100−300]. Themost influential parameter is
the threshold (a) where better qualities are obtained for t > 150. How-
ever, σ and l also affect, minimally, the segmentation quality, visible as
minor fluctuations in the curves (b) and (c), respectively

We used similar seeding setup conditions and same GT
data to segment the mandible of four datasets. Figure 13
shows an example of the seeds we have used to segment
the mandible with our method and the result of Zhu’s
method using the same seeds. Still in Fig. 13, we show
results for Pauchard’s method, which required more pre-
cise seeds to produce an acceptable mandible segmentation.
In all cases, our method produced better results than Zhu
and Pauchard. In general, segmentation can be improved by
placing more precise seeds, thus demanding extra user inter-
action and steps. However, there are some regions for which
Zhu’ and Pauchard’s methods do not produce accurate seg-
mentation. Zhu presents several “leaks” to adjacent tissue,

especially in low-contrast regions, whereas Pauchard does
not fit accurately to the mandible contours producing a rough
segmentation. Table 4 shows the respective Jaccard index and
Dice coefficient.

We also evaluated the methods for a thin bone scenario,
with the segmentation of the skull. In general, segmen-
tation of thin structures poses a challenge for seed-based
approaches. It is difficult to constrain the strokes to fore-
ground regions only. Voxels belonging to adjacent tissues or
background areas can be included by mistake. Thin bones
have low-intensity values, and wrong segmentation is likely
to occur, even though when seeds are correctly placed. These
are the main reasons why Zhu and Pauchard were not able
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(a) (b) (c)

(d) (e) (f)

Fig. 8 Axial view of skull segmentation of the maxilla for different
values of σ , with t = 200 and l = 10. Sheetlike bones, such as the
anterior and posterior walls of the sinus [yellow arrows in (a)], are
accurately segmented regardless of changes in σ value. J is the Jaccard
index. a σ = 0.5, J = 0.793. b σ = 0.6, J = 0.852. c σ = 0.7,
J = 0.900. d σ = 0.8, J = 0.950. e σ = 0.9, J = 0.917. f Ground
truth

(a) (b) (c)

(d) (e) (f)

Fig. 9 Axial view for skull segmentation of the maxilla for different
values of t , with σ = 0.8 and l = 10. Changes in threshold t affects
segmentation quality, unlike variations in σ (see Fig. 8). The retroantral
fat pad [yellow arrow in (e)] is not entirely segmented for t ≥ 250. a
t = 100, J = 0.809. b t = 150, J = 0.866. c t = 200, J = 0.930. d
t = 250, J = 0.950. e t = 300, J = 0.930. f Ground truth

to correctly segment the skull. Our approach, however, is not
impaired in the same way. The pre-segmentation stage guar-
antees robust algorithmic behavior even though when seeds
are not perfectly placed and bones have low-intensity values.
A skull segmentation example is shown in Fig. 14.

4.3 Experiment with public CT data

We also used a publicly available CT data to evaluate our
method [27]. No GT data were available to perform a
quantitative analysis. Nevertheless, experienced specialists
empirically confirmed the high quality of our results. Fig-
ure 15 shows a skull segmentation of a patient after surgical
repair of facial deformity. The extraction of the mandible of
a patient with missing teeth is shown in Fig. 16.

Manually segmentation of broken or fractured bones usu-
ally is a more complicated task than segmenting regular
bones. Therefore, this task may demand expert knowledge
andmore user interaction time [25]. Nevertheless, our results
demonstrate the potential of our method to segment CT and
CBCT for a wide range of patients, including patients with
facial deformities, broken and missing bones.

Apart from the segmentation results discussed in Sect. 4.1,
all other results were obtainedwith the following parameters:
l = 10, σ = 0.8, t = 200. We performed our experiments
on a Linux workstation (Intel Core i7-2600 CPU 3.40 GHz
× 4 with 16 GB Memory). The C++ source code included
the National Library of Medicine Insight Segmentation and
Registration Toolkit (ITK) [14] and the C++ template library
of the linear algebra library Eigen [13]. All results were ren-
dered with ITK-Snap.

5 Conclusions

We have introduced a new interactive method for CBCT data
segmentation. Our approach consists of two stages: (i) auto-
matic bone structure extraction and (ii) interactive seed-based
bone segmentation. We validated our approach both quanti-
tatively and qualitatively with three experiments: (i) detailed
evaluation of the parameter space; (ii) comparison with a
related method; and (iii) segmentation of CT data with miss-
ing and broken bones.

Table 2 Mean (μ) and standard
deviations (σ ) of Jaccard index
and Dice coefficient for skull
segmentation of all datasets

Metric Skull datasets

1 2 3 4 5 6 7 8

Jaccard μ 0.828 0.874 0.865 0.827 0.878 0.857 0.847 0.848

Jaccard σ 0.057 0.049 0.047 0.051 0.054 0.045 0.037 0.039

Dice μ 0.905 0.932 0.921 0.904 0.903 0.922 0.915 0.917

Dice σ 0.034 0.028 0.025 0.030 0.033 0.026 0.034 0.031
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Fig. 10 Influence of parameters t , σ and l on mandible segmenta-
tion quality. We produced 180 segmentation of the mandible for eight
CBCTs (with a total of 1440 segmentations). Curves show the mean
Jaccard index for the eight datasets evaluated. We measured segmenta-
tion quality by evaluating several combinations of the parameters, for
instance t = 100, σ = 0.5 and t = [100 − 300]. The most influential
parameter is the threshold [see (a)], where better results are obtained

for 150 < t < 300. However, σ and l also affect, minimally, segmen-
tation quality, visible as fluctuations in the curves. There exist local
extrema, e.g., local extrema for t < 150 [see (a)]; these are explained
by the presence of noise in segmentation (see Fig. 12c). It is possible to
interactively eliminate it through brush strokes (see Fig. 5), improving
segmentation quality. Local extrema are the same in all curves

(a) (b) (c)

(d) (e) (f)

Fig. 11 Axial view of the mandible segmentation (condyle and coro-
noid process), using t = 200 and l = 10. Segmentations obtained with
parameter σ at different scales. Better segmentations result for σ ≥ 0.7.
Noise can appear in segmentations [yellow arrows in (e)], which could
interactively be eliminated with additional brush strokes (see Fig. 5). a
σ = 0.5, J = 0.817. b σ = 0.6, J = 0.873. c σ = 0.7, J = 0.924. d
σ = 0.8, J = 0.950. e σ = 0.9, J = 0.909. f Ground truth

Our results document that our method produces accurate
segmentations of both skull and mandible. Contours affected
by low contrast are precisely segmented (condyle or coro-
noid process), and thin bones (maxilla) were also properly
segmented. Our method exhibits low sensitivity to parameter
value settings and does not require precise seed placement.
Moreover, our method robustly handles low contrast, noisy
and inhomogeneous data. Segmentation is done in approxi-
mately 5min (both stages), on average,which is considerably
faster compared to the efficiency of similar segmentation

(a) (b) (c)

(d) (e) (f)

Fig. 12 Axial view of mandible segmentation (condyle and coronoid
process ), using σ = 0.8 and l = 10. Segmentations shown for different
values of threshold t . Higher quality is achieved for 100 < t < 300.
Higher values of t do not yield proper segmentation of thin bone regions,
e.g., the coronoid process [yellow arrow in (e)]. Noise can result in
the final segmentation [yellow arrows in (a)] for t < 100. One can
interactively eliminate it through brush strokes. a t = 100, J = 0.909.
b t = 150, J = 0.956. c t = 200, J = 0.950. d t = 250, J = 0.963. e
t = 300, J = 0.937. f Ground Truth

methods. Our method is clearly much faster than manual
segmentation.

We emphasize that the first stage, which accounts for 80%
of total computing time, is performed only once. The second
stage, although interactive, takes on average about 1–2 min.
It can also be repeated many times to fine-tune segmentation.

The processing time of 5 min is the average time needed
to segment either themandible or the skull in a CBCT sample
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Table 3 Mean (μ) and standard
deviations (σ ) of Jaccard index
and Dice coefficient of mandible
segmentation

Metric Mandible datasets

1 2 3 4 5 6 7 8

Jaccard μ 0.853 0.851 0.882 0.854 0.858 0.878 0.869 0.873

Jaccard σ 0.108 0.093 0.051 0.104 0.053 0.042 0.068 0.046

Dice μ 0.916 0.929 0.936 0.917 0.912 0.934 0.939 0.947

Dice σ 0.076 0.059 0.029 0.073 0.012 0.023 0.025 0.036

(a) (b) (c) (d)

Fig. 13 Axial view of mandible segmentation obtained by our method,
Zhu et al.’s method, and Pauchard et al.’s method. Similar seeding setup
(a), with red indicating the desired bone and green undesired regions;b–
d show corresponding segmentation results. Zhu et al.’s results (green)
exhibit “leaks” (yellow frame) in low-density areas. Several more seeds

are required to produce an “acceptable” segmentation (red region) when
using Pauchard et al.’s method. Despite the use of more seeds, the seg-
mentation does not properly fit mandible borders. a Seed placement. b
Ours. c Zhu et al. d Pauchard et al.

Table 4 Comparing our method with Zhu et al.’s and Pauchard et al.’s
in a mandible segmentation scenario

Mandible 1 Mandible 2 Mandible 3 Mandible 4

Our method 0.92 0.93 0.94 0.93

Zhu 0.88 0.87 0.88 0.89

Pauchard 0.89 0.90 0.91 0.90

Values are the Jaccard similarity with respect to ground truth

of our dataset. This processing time includes the seeding step
(one iteration) and segmentation processing. Our implemen-
tation of the super-voxel algorithm uses a data structure we
designed that allows one to access super-voxel boundaries in
constant time, i.e., there is no need for searching. Generating

super-voxels for a typical CBCT sample takes about 2–3min.
Memory usage is about 10 GiB. The short user interaction
time is due to the robustness of our method to imprecise seed
placement.

The robustness of our method with respect to imprecise
seed placement is a consequence of the pre-segmentation
step,which enhances andpre-segments bones, especially thin
ones. Once bones are separated from other tissue types and
structures, strokes drawn outside bone regions, i.e., strokes
wrongly placed in non-bone regions, have no negative effect
on segmentation quality. The use of super-voxels to group
voxels of similar bone structures drastically reduces graph
cardinality (up to 90%) and makes it possible to employ
a precise, but computationally expensive, linear system

(a) (b) (c) (d)

Fig. 14 Sagittal view of skull segmentation obtained by our approach
and by Zhu et al.’s method. The seeding setup is shown in (a), with red
indicating the desired bone and green undesired regions. Our method
properly segments thin bones, even though when brush strokes cover

adjacent tissue types [see yellow frames in (b)]. Zhu et al.’s method
produces “leaks” in soft tissue regions and air regions (cranial cavities).
Pauchard et al.’s method leaks into the image background (red region).
a Seed placement. b Ours. c Zhu et al. Pauchard et al.
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(a) (b) (c)

Fig. 15 Skull segmentation. CT of patient with facial deformities after
surgical repair. CT dataset of 512×512×361 resolution and anisotropic
voxel spacing of 0.42, 0.42 and 0.70 mm in the three directions. a Seed
placement. b Sagittal view. c Coronal View

(a) (b) (c)

Fig. 16 Segmentation of mandible. Patient with missing teeth. CT
dataset of resolution 512 × 512 × 460 and anisotropic voxel spacing
of 0.48, 0.48 and 0.70 mm in the three directions. a Seed placement.
b Coronal view of masseter. c Axial view of masseter and coronoid
process

solver using Cholesky factorization. This strategy reduces
the amount of memory required for computation, and it also
speeds up the segmentation process, making the interactive
process feasible in a clinical environment. Our results show
that our approach accurately segments themandible and skull
of various patient types, i.e., male, female, child, and of
patients with broken, anomalous or missing bones.

Separating upper and lower teeth, in a closed-mouth sit-
uation, is and remains a challenging problem. Our method
is already capable of separating them by using a few addi-
tional brush strokes (see Fig. 6c). However, visual inspection
reveals that accuracy is lower for teeth regions thanonewould
like. We intend to improve the performance of our method
to produce high-quality segmentations of teeth as part of our
future research.
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