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Segmenting Cellular Retinal Images by Optimizing
Super-pixels, Multi-level Modularity, and Cell

Boundary Representation
Oscar Cuadros Linares*, Bernd Hamann, and João Batista Neto

Abstract—We introduce an interactive method for retina layer
segmentation in gray-level and RGB images based on super-
pixels, multi-level optimization of modularity, and boundary
erosion. Our method produces highly accurate segmentation
results and can segment very large images. We have evaluated
our method with two datasets of 2D confocal microscopy (CM)
images of a mammalian retina. We have obtained average Jaccard
index values of 0.948 and 0.942 respectively, confirming the high-
quality segmentation performance of our method relative to a
known ground truth segmentation. Average processing time was
two seconds.

Index Terms—Image segmentation, Modularity optimization,
Super-pixels, Confocal microscopy, Retina

I. INTRODUCTION

.

SEgmentation is one of the most important tasks in image
processing and aims to identify objects of interest in

images. In general, objects of interest are defined by some
criteria of the underlying application. For example, in medical
analysis, objects of interest are usually bones, organs, tissue,
cellular structures, or retina layers [1].

High-quality image segmentation still is a challenge prob-
lem. Graph clustering methods developed for image segmen-
tation have become increasingly important in recent years
as they can be used to obtain high-accuracy segmentation
results. However, graph- and network-based segmentation
methods can be computationally expensive due to the data
sizes involved. Community detection algorithms represent one
approach to address the computational complexity issue.

There are many strategies to address the problem of image
segmentation, and the choice also depends on the application.
For instance, there exist methods for segmenting images au-
tomatically where no human intervention nor labeled data are
necessary. Such strategies are usually applied on natural-scene
image segmentation [2]. Some other methods rely on labeled
datasets to guide the segmentation process and normally
exhibit good accuracy. Nevertheless, reliable labeled datasets
may be hard to obtain [3]. A third group of methods, semi-
supervised, employs user interaction to label pixels during
execution time to guide the segmentation process, bringing
user knowledge into it [4].
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More recently, graph clustering algorithms have successfully
been used for segmenting images [5]. Nevertheless, the time
complexity of such methods are highly related to the graph
cardinality [6], which turns them suitable for segmenting short
to medium size images only. However, along with the complex
networks theory, a number of new graph clustering (so-called
community detection algorithms) have been proposed. The
main advantage of these methods is their ability to handle
huge graphs (million of vertices) in shorter processing time
[7].

Segmentation of complex structures, more specifically,
retina layer segmentation, is often done via a combination of
different methods. Nhat Vu et al. (2007) [8] proposed a method
based on the parametric active contour model of Lobregt and
Viergever [9]. Due to the complexity of retina layer contours,
this method is based on a modified external force formulation
to make the algorithm more insensitive to initialization. Prior
knowledge, when available, can also be used to segment
complex shapes. Bertelli et al. (2007) [10] introduced a method
that uses prior knowledge and a dissimilarity function for
pixels to separate objects (retina layers) and background. This
method uses labeled reference image as prior information.
Another work for retina segmentation based on non-rigid
registration using Thin Plate Splines was also proposed by
Bertelli et al. [11]. This method uses prior information as
atlases of retina layers and then a non-rigid registration is
applied to segment a retina layer.

A reliable segmentation of retina layers is the first step to
understanding structural and cellular changes in the retina.
However, visual irregularities introduced by staining, consid-
erable variation of layer shape, and statistically heterogeneous
image characteristics make the segmentation process a chal-
lenging task [10]. Due to that, is important to include prior
information in the process to produce accurate results. Our
proposal uses “prior” information as user-labels, which allow
specialist not only include their knowledge but also guide the
entire segmentation process.

We introduce an interactive and highly efficient retina layer
segmentation method that allows a specialist to guide the
segmentation process through manual placement of seeds on
the object of interest. Segmentation of very large images can
be done in short processing times. Our approach consists of
three steps:

1) Super-pixels to reduce not only redundancy in the image,
but also processing time.
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2) Interactive segmentation based-on optimization of mod-
ularity in graphs.

3) Morphological sharpening operator to improve the seg-
mentation accuracy in complex contours.

We validate our approach on two datasets of Confocal
Microscopy (CM) images [12]. The first is composed of gray-
scale images of a vertical section of mammalian retina, which
contains many layers with different structures (Figure 1.a). The
second dataset is composed of retinal color-channel images of
the cellular nuclei (Figure 1.b).

In the image processing context, cell layers in both datasets
poses challenging issues [8], [10]:

• Heterogeneous illumination.
• Variation in object shape, size, and orientation.
• Very irregular contours.
• Cell-like texture.
Each image of both datasets has a corresponding segmen-

tation ground truth (GT) data.

(a) Cellular nuclei (b) Cat retina

(c) Segmentation (d) Segmentation

Fig. 1. Example images of the Confocal microscopy of the mammalian retina.
In (a) a cellular nuclei, and in (b) vertical section through of the cat retina.
Respective segmentation using our proposal, red region in (c) and (d).

The rest of the paper is organized as follows: Section
II details important concepts that underpin our proposal. In
Section III we preset the method proposed in this paper.
Experimental results and validation are discussed in Section
IV. Finally the conclusion is presented in Section V.

II. RELATED CONCEPTS

We define an image ⌦ as an image consisting of n pixels,
and we define the value (gray-scale or color channels) of the
ith pixel as ⌦

i

. The spatial location of pixel i is x

i

, where
x is the vector of coordinates. The graph G = (V,E,W

E

)

is an undirected and weighted graph, where V is the set of
vertices, and E the set of edges with associated weights W

E

.
The weight assigned to edge (i, j) is w

ij

2W
E

.

A. Super-pixels

Super-pixels (called super-voxels in 3D image processing)
is a region-based technique that segments an image into
groups of pixels that share a similar color and neighboring
position [6]. The goal is to capture image redundancy and
reduce the number of pixels in the image, thereby reducing
the complexity of subsequent processing tasks [13]. Several
approaches for super-pixels have been proposed [14], but not
all of them can be adapted easily to the 3D super-voxel
scenario. We use a color-based version [6] of the super-pixel
algorithm, called speeded-up turbo pixels (SUTP) [15], which
is efficient and simple, producing high-quality super-pixels.
After applying this algorithm to an image, it is possible to
eliminate up to 90% of the pixels [6].

The SUTP method is based on the k-means clustering
algorithm. First, a given image is divided into N regular
super-pixels ⌦

I

(I 2 N ), with edge length l. Initially, all
super-pixels have the same area and equidistant centers. For
simplicity, we assume that the minimal bounding box of
the entire image is itself a square. Pixels along a certain
super-pixel boundary are iteratively analyzed and possibly
shifted across the border between neighboring super-pixels.
This pixel-swapping process is based on this cost function to
be minimized:

C
i,I

= p1k⌦i

� ⌦

I

k2 + p2kxi

� x

I

k2, (1)

where ⌦

I

is the mean intensity (RGB vector for multichannel
images) value of the Ith super-pixel, and x

I

is the spatial
center of the Ith super-pixel. The parameters p1 and p2 are
weights for color similarity and super-pixel border rigidity,
respectively. “More convex” super-pixels are generated for
high values of p2, although super-pixels may not accurately
fit to object boundaries. Determining near-optimal values for
p1 and p2 depends on the application. In our method, super-
pixels adjusted well to boundaries are preferable to convex
ones. Hence, we use the values p1 = 1, p2 = 0.5, and the
number of iterations is chosen as it = 5, as suggested in
[2]. Defining the initial size of the super-pixels l also depends
on the application, in Section IV-A, we provide an intensive
evaluation of this parameter. Figure 2 shows the super-pixels
after convergence.

B. Community Detection in Graphs

The “community detection” approach has its origin in
complex network theory and is closely related to the well-
known problem of graph clustering [7]. The goal of graph
clustering methods is to find the “best” division of a graph
into clusters of vertices. Finding such a division is an NP-hard
problem. Nevertheless, there exist methods to approximate
the optimal solution, including Laplacian partitioning, Max-
flow, and community detection [7]. Unfortunately, Laplacian
partitioning and max-flow methods are highly dependent on
the graph cardinality (number of vertices and edges), and their
application may be restricted to small graphs [7]. Community
detection algorithms can deal with much larger graphs (mil-
lions of vertices). Most strategies employed are greedy, based
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(a) Input (b) Super-pixels

(c) Close-up view of yellow frame
in (b)

Fig. 2. Super-pixel convergence after five iterations.

on optimization of modularity, e.g., the Newman algorithm, the
fast greedy method, and multi-level optimization [16]–[18].

Modularity: Newman et al. (2004) [16] proposed a metric
aimed at measuring the clustering “quality” inherent in graphs.
Basically, the modularity evaluates the trade-off between the
number of edges within clusters (internal edges) and the ex-
pected number of edges. This idea is mathematically described
as follows:

Q =

1

2m

X

i,j

[A
ij

� P
ij

] �(C
i

, C
j

), (2)

where A
ij

is an element of the adjacency matrix A of the
graph G, C

i

is the cluster that vertex i belongs to, and the
function �(C

i

, C
j

) returns 1 if C
i

= C
j

and zero otherwise.
The term P

ij

defines the probability of an edge to exist
between vertices i and j, defined as:

P
ij

=

k
i

k
j

2m
, (3)

where k
i

is the sum of weights of edges linked to vertex i, and
m 2 E is the sum of all edge weights. Notice, for unweighted
graphs m is the number of edges in E (edge cardinality), and
k
i

is the number of edges linked to i (vertex degree).
According to the modularity criterion, a good division of a

graph into clusters is one where the number of internal edges
is higher than the number of external ones (edges connecting
clusters). In that case, the value of Q is greater than zero,
which indicates deviation from randomness. In practice, a
value of Q � 0.3 is a good indicator of a strong clustering
structure [17].

C. Multi-level Optimization of Modularity

Since the maximization of modularity is an NP-Hard prob-
lem [18], several algorithms have been proposed to approxi-

mate the optimal solution [7]. A fast and popular method is the
fast greedy (FG) algorithm [17], which can achieve high values
of Q. Nevertheless, the method proposed by Blondel et al.
(2008), called multi-level optimization of modularity (MOM)
[18], yields higher values of Q than the FG algorithm. The,
MOM is also a greedy approach and consists of two steps:

1) Modularity Optimization: Every vertex i 2 V is labeled
as a cluster of one element only. For each neighbor j of
i, the gain of modularity is evaluated (Equation 4) by
assigning the cluster of j to i. The vertex i is placed in
the cluster for which the gain of modularity is maximal,
but only when the gain is positive. This process is
repeated for all vertices until no more improvement
occurs.

2) Cluster Aggregation: Construct a new weighted graph,
where vertices are the clusters resulting from the first
step. The edge weights are given by the sum of external
edges (edges connecting vertices that belong to different
clusters), and internal edges lead to a self-loop (an edge
that connects a vertex to itself), with the weight given
by the sum of its respective internal weights.

The gain in modularity is computed by moving vertex i into
a neighboring cluster C, defined as:
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where
P

in

is the sum of internal edges of cluster C,
P

tot

is the sum of weights of edges incident to vertices in C, k
i

is the degree of vertex i, k
i,in

is the sum of weights of edges
from i to vertices in C, and m is the sum of the weights of
all edges.

D. Seed-based Multi-level Optimization of Modularity

The original MOM algorithm automatically determines both
the number of clusters and their sizes. This can be a useful
feature in applications in which prior information is not
available. Nevertheless, in our application, it is important to
include information about the object of interest (cellular layer)
in order to limit the number of clusters up to two and guide the
clustering process using manually labeled vertices as “seeds”.

Let F be the set of foreground and B the set of background
vertices with labels x

F

and x
B

, respectively. As in the original
MOM algorithm, the graph is initially divided into as many
clusters as there are vertices. During modularity optimization,
vertex labels are stored in a membership vector x of size n that
defines the current cluster of each vertex i 2 V . Originally, x
is defined by

x
i

= i. (5)

Labels change at each modularity optimization step.
To include the seed vertices in the process, we define a seed

vector b of size n:
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b
i

=

8
><

>:

1, if i 2 x
F

,

2, if i 2 x
B

0, otherwise
, (6)

and we re-define the initial configuration of the membership
vector x as

x
i

=

(
b
i

, if b
i

> 0,

i+ 2, otherwise
(7)

From the re-definition of the membership vector, vertices
seeded as either foreground or background remain unchanged
throughout the entire process. Our goal is to divide the
graph into two sets of vertices. However, the original MOM
algorithm automatically defines the number of clusters. We
force the algorithm to aggregate vertices until only two clusters
remain, even when the gain in modularity is not positive. Once
the process has terminated, the membership vector contains
only two labels (1 and 2).

E. Morphological Sharpening

Super-pixels normally converge with high precision to
boundaries of distinct objects in an image, e.g., bones, organ
or metal implants. However, cellular boundaries are highly
irregular, and super-pixels may not fit their boundaries pre-
cisely in some regions, as illustrated in Figure 3.a. To improve
boundary handling, we apply a morphological sharpening op-
erator in a post-processing step, as described by Schavemaker
et al. (2000) [19]. This operator is defined by the following
transformation:

"[⌦](x, ⇢) =
8
><

>:

F

�
(x, ⇢), F

�
(x, ⇢)� F(x, 0) < F(x, 0)� F

 
(x, ⇢),

F

 
(x, ⇢), F

�
(x, ⇢)� F(x, 0) > F(x, 0)� F

 
(x, ⇢),

F(x, 0), otherwise
(8)

where ⌦ is the input image and x is the pixel position, ⇢
is a scale parameter of the morphological scale space, and
F

�
(x, ⇢) and F

 
(x, ⇢) are operators for gray-scale dilation

and erosion operations defined by:

F

�
(x, ⇢) = (f � g⇢)(x), (9)

F

 
(x, ⇢) = (f  g⇢)(x), (10)

performed with a parabolic structuring function given as

g⇢(x) = � 1

2⇢
x

T
x. (11)

The dilation and erosion operators replace the gray-scale
value of a pixel by the maximum or minimum of the gray-
scale values in its neighborhood. The function F(x, 0) is equal
to the input image ⌦. Figure 3 shows an example of a result
obtained with the sharpening operator.

(a) Before (b) After

(c) Before (d) After

Fig. 3. Sharpening operator. (a) Before application of operator and (b) after
application of operator. A close-up view of the erosion result is shown in (c)
and (d), yellow frames in (a) and (b) respectively.

III. METHOD

The diagram of Figure 4 illustrates the method proposed in
this paper.

1) Super-pixel generation: we apply the super-pixels algo-
rithm, described in Section II-A, to reduce the quantity
of redundant information.

2) Graph building: a weighted graph, in which vertices are
super-pixels instead of single pixels, is created. More
details about our graph creation strategy are given in
Section III-A.

3) Seeding process: a user selects the region of interest by
placing seeds on it using brush strokes as showed in
Figure 4.4.

4) Graph clustering: the segmentation of the regions of
interest is performed by our seed-based algorithm intro-
duced in this paper. It divides the graph into two clusters
of vertices (foreground and background in the image).
Seeds are used to guide the vertex agglomeration process
so that vertices belonging to the cluster associated with
foreground seeds correspond to the region of interest.

5) Morphological sharpening: inaccuracies in the super-
pixel fitting process are corrected with the morphological
sharpening operator described in Section II-E.

6) User interaction: steps 3 to 5 can be performed itera-
tively to improve segmentation.

A. Graph Building Strategy

Let G = (V,E,W
E

) define a weighted graph in which V
is the set of vertices defining super-pixels ⌦

I

, E is the set of
edges defining connected super-pixels, and w

IJ

2 W
E

is the
weight assigned to an edge (I, J). A vertex J is connected to
the vertex I if J is inside a squared region of edge length r
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1) Input

2) Super-pixels

4) Seeding

3) Graph

5) Graph clustering

6) Result

Fig. 4. An illustrative diagram of the proposed retinal layer segmentation
method: first, similar and adjacent pixels are grouped into super-pixels; then
a graph, whose vertices are super-pixels (steps 2 and 3), is created. The graph
is then divided into two clusters using user-placed seeds to guide the clustering
process (steps 4 and 5). These clusters give the corresponding segmentation
of the input image. The morphological operator is finally applied (step 6).
Users may iteratively improve the segmentation by placing and/or removing
seeds.

(in pixels) and whose center is aligned with the ⌦

I

’s spacial
center. As shown in Figure 5, the set of super-pixels within
this squared region is defined as the neighborhood V

I

.
Edge weights are computed using an adapted version of the

Laplace distribution function defined as:

w
IJ

=

1

2b
I

exp

✓
�p(k ⌦

I

� ⌦

J

k2 + k x
I

� x

J

k2)
b
I

◆
,

(12)
where ⌦

I

is the mean color (intensity, for gray-scale images)
of the Ith super-pixel, x

I

is the spatial center of the super-
pixel I , p is a parameter that penalizes small differences
(intensity and position) among super-pixels. Parameter b

I

can
be estimated by the following maximum likelihood:

Fig. 5. Illustration of neighboring super-pixels. An edge between vertices I

(super-pixel blue) and J (yellow) is created if their respective spacial centers
are within a squared region of side length r.

b
I

=

1

n

X

J2VI

k ⌦
J

� ⌦

I

k2, (13)

where V
I

is the super-pixel neighborhood of I and n is the
size of V

I

. Recall that the modularity measure (Equation
2) evaluate the quality of a certain division of a graph by
looking at the edge-weights. Ideally, “different”, but connected
vertices, should have as low as possible edge-weights so that
modularity value is not significantly incremented. On the other
hand, similar vertices should have higher edge-weights in
order to increase modularity. With the Laplace-based function,
this behavior is attained as the function decays exponentially to
zero when a variable is slightly far off the Location parameter
[20] (super-pixel I in our application).

IV. RESULTS AND VALIDATION

Our experiments were performed with two retinal image
datasets with their respective best-expected segmentation, the
so-called ground truth (GT), manually created by experts [12].
The datasets are collections of confocal microscopy images of
an animal retina, taken at cellular resolution. For simplicity, we
refer to the datasets as A and B. Dataset A is composed of 50
gray-level images, with their respective GTs, of size 512⇥512

and 768⇥ 512, with 0.3528 micrometer x 0.3528 micrometer
pixel size. Dataset B is composed of 92 RGB color images
of size 990 ⇥ 660 and 1226 ⇥ 817, with 0.3572 micrometer
x 0.3704 micrometer pixel size. The datasets have differently
sized images, and there are no duplicates.

To quantitatively evaluate the accuracy of our method we
compare our segmentations with their respective GT data.
We measure the similarity between them using two metrics
commonly used in medical image segmentation, the Jaccard
index and the Dice coefficient, defined as follows:

J(A,B) =

|A \B|
|A [B| , (14)

D(A,B) =

2|A \B|
|A|+ |B| , (15)

where A and B are images, and |A| and |B| are their respective
numbers of pixels. The Jaccard index and Dice coefficient are
in the interval [0, 1]. If A and B are empty, then {J |D} = 1.
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In addition, we use the Hausdorff distance [21] to compute
the difference before and after applying the morphological
sharpening operator. The Hausdorff distance is defined as

H(A,B) = max(h(A,B), h(B,A)), (16)

where A and B are images and h is defined as

h(A,B) = max

a2A
min

b2B
k a� b k,

with a and b being pixels in A and B, respectively [22].
We have performed our experiments on a Linux workstation

(Intel Core i7-2600 CPU 3.40GHz x 4 with 16GB mem-
ory). The C++ source code included the National Library of
Medicine Insight Segmentation and Registration Toolkit (ITK)
[22] and the C++ template library of the linear algebra package
Eigen [23]. We have used a painting tool, available in ITK-
snap, to place the seeds.

A. Parameter optimization

Establishing parameter values is a time-consuming task.
Our method uses several parameters during the segmentation
process. Most of them were studied, and optimal range values
for them are known. We use the parameter values for super-
pixels and the sharpening operator as discussed in [2], [6],
[24]. Table I shows the parameters employed.

TABLE I
PARAMETER VALUES FOR SUPER-PIXELS (SP) AND MORPHOLOGICAL

SHARPENING (MS).

Method Parameter Value

SP p1 1
SP p2 0.5
SP l 10
SP it 5
MS ⇢ 1
MS it 1

To construct a graph from super-pixels involves the usage of
two parameters: the squared neighborhood side length r and
the penalty p, see Section III-A. To evaluate which parameter
setup yields the best segmentation quality, an empirically
defined range of values is considered:

r = [20� 200], step size 1, range size 181

p = [0.5� 5.0], step size 0.1, range size 46.

We have evaluated datasets A and B for an extensive
set of possible combinations of parameter values for r and
p. The number of segmented images for datasets A and B
are 249, 780 and 457, 930, respectively. For each dataset we
randomly selected 60% for training. We used the Jaccard index
to compute accuracy of results. Figure 6 shows a heat-map
with the average accuracy result for the training sets.

In general, most parameter combinations resulted in high
accuracy values (J > 0.9), implying that our approach is quite
insensitive to changes in parameter values. Best segmentation

(a) Dataset A

(b) Dataset B

Fig. 6. Heat-map for results obtained by using different values of parameters
r and p for the training sets A and B. Variable r is the neighborhood’s side
length, p is the Laplace penalty, and J is the resulting average Jaccard index
value. The majority of the segmentation results have Jaccard index values
above 9.0, which indicates high accuracy. Jaccard index values closer to 1.0
(dark red regions) can be produced for a wide range of combinations of r and
p values. In this example, Jaccard index values (lowest ones shown in dark
blue) are not below 0.5.

accuracy (J ' 1.0) can also be obtained with a wide range of
parameter values. For all other experiments we have chosen
the parameter values listed in Table II:

TABLE II
PARAMETER SETUP FOR THE GRAPH BUILDING PROCESS

Parameter Value

r 60

p 2

In addition, we have evaluated the entire datasets A and
B using the parameter setup defined by Tables I and II.
Figure 7 shows the similarity curves for the Jaccard index
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and Dice coefficient. In all cases, the segmentation accuracy
is greater than 0.9. Table III provides the corresponding mean
and standard deviation values.

TABLE III
MEAN µ AND STANDARD DEVIATION � USING THE PARAMETER VALUE

SETUP DEFINED IN TABLES I AND II.

Dataset Jaccard Dice
µ � µ �

A 0.948 0.016 0.973 0.008
B 0.942 0.011 0.970 0.006
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(a) Dataset A
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(b) Dataset B

Fig. 7. Similarity curves, Jaccard index (J) and Dice coefficient (D), obtained
using the parameter values provided in Tables I and II. For best plotting, values
are sorted by increasing order of similarity range, from left to right. All results
are greater than 0.9. Axis x is the image label (an image’s index).

Figures 8 and 9 show three representative segmentation
examples considering the similarity curves shown in Figure
7. For both datasets we provide the results for the lowest,
middle and highest similarity values.

B. Morphological Sharpening

We have evaluated the influence of the morphological
sharpening (MS) operator on segmentation quality as well.

(a) Seeds (b) J = 0.92, D = 0.96 (c) GT

(d) Seeds (e) J = 0.95, D = 0.97 (f) GT

(g) Seeds (h) J = 0.98, D = 0.99 (i) GT

Fig. 8. Dataset A: Lowest, middle and highest similarity values (from top to
bottom), obtained with the parameter values defined in Tables I and II.

(a) Seeds (b) J = 0.91, D = 0.95 (c) GT

(d) Seeds (e) J = 0.94, D = 0.97 (f) GT

(g) Seeds (h) J = 0.97, D = 0.98 (i) GT

Fig. 9. Dataset B: Lowest, middle and highest similarity values (from top
to bottom), obtained with the parameter values defined in Tables I and II.
Segmented layer in semi-transparent red. This dataset consists of RGB color
images.

Since the MS operator erodes only boundaries in a resulting
segmentation, we have used the Hausdorff distance (H) to
measure the difference between “before operator application”
and “after operator application.” Figure 10 shows the resulting
Hausdorff curves for datasets A and B.

After applying the MS operator, imperfections in boundary
regions are corrected, and segmentation accuracy is signifi-
cantly improved, which is reflected in the Hausdorff curves.
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(a) Dataset A
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(b) Dataset B

Fig. 10. Morphological sharpening via erosion: Before-operator-application
and after-operator-application comparison using Hausdorff distance.

C. Comparison with Related Methods

We have compared our method with two related methods
also based on user-placed seeds and graph clustering. The first
one, called One-cut, was proposed by Tang et al. (2013) [25]
and extends the min-cut method introduced by Boykov et al.
(2001) [5]. The second one, called Laplacian coordinates, was
described by Casaca et al. (2014) [26] and uses an energy
functional based on the Laplace matrix and a minimization
approach using Cholesky decomposition.

We have selected these methods as they use a strategy
very similar to ours. The literature essentially covers three
basic methods to segment the retina layer, see Section I, and
these methods were evaluated with at least one dataset that
we also used to evaluate our method. We have not compared
our method to these methods as our approach is based on a
user-guided strategy. We believe that it would not be a fair or
meaningful to compare our approach with entirely automatic
methods and/or methods based on deep learning.

To perform a fair comparison, we optimized the parameter
values required by both related methods instead of directly
using the parameter values as suggested by the authors. We
performed optimization with the training set and seeds of

dataset A as described in Section IV-A. The One-cut method
uses two parameters: number of bins and color separation; the
Laplacian Coordinates method uses only the parameter beta.
We evaluated the parameter value choices for the following
intervals: One-cut parameter values were chosen from the
ranges bins = {16�255} and color = {0.1�1.0}; Laplacian
coordinates parameter values were chosen from the range
beta = {300 � 600}. These ranges are based on the original
parameter values suggested by the authors. Best results were
obtained for these parameter values: One-cut: bins = 50,
color = 0.5; Laplacian Coordinates: beta = 600.

To compare our method with the other methods work, we
segmented all images of dataset A with all methods, using
the Jaccard index as similarity (quality) metric. For the entire
dataset A we used the same seed set-up – as much as possible
– and the parameter values resulting from the optimization.
Figure 11 shows the resulting Jaccard index curves.
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Fig. 11. Results for Laplacian coordinates, One-cut and our segmentation
method. Variable J (y-axis) is the Jaccard index, and the numbers on the
x-axis are the image IDs.

We could not perform a similar experiment with dataset
B. This dataset consists of larger images (> 990,> 660)
that cannot be handled by Laplacian coordinates or one-cut
segmentation methods. In contrast, our method can segment
very large images.

Our method outperforms the considered related methods not
only because we use a morphological sharpening operator, but
also because it is less dependent on the seeds. In general,
we do not need to place as many seeds as other methods
require, and our method does not require a user to place many
seeds trying to comprise the entire object of interest, as other
methods commonly do. This fact explains the relatively low
segmentation accuracy of the two considered related methods.
If one wanted the two considered related methods to achieve
performance comparable to ours, one would have to use more
seeds and a higher-precision placement of the seeds.

D. Scalability Analysis
The super-pixels algorithm (SUTP) has linear complexity

O(n⇥ it), where n is the number of pixels in the input image
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and it is the number of iterations. The community detection
algorithm (MOM) has, on average, near-linear complexity
⇡ O(n) for sparse graphs, where n is the number of vertices
[18]. In our graph-building strategy vertices are connected
only in a local neighborhood, which invariably results in a
sparse graph. Moreover, our method uses super-pixels instead
of individual pixels, thereby drastically reducing graph cardi-
nality. The morphological sharpening operator also has linear
complexity O(n), where n is number of input image pixels.

All algorithms used in our method are of linear complexity.
Further, a significant resolution reduction is achieved via the
use of super-pixels. As a consequence, our method can seg-
ment large images (1226⇥817) in a few seconds (two seconds,
on average, using the hardware configuration described in
the beginning of this section). Images of low resolution are
segmented in less than a second.

Table IV provides the number of pixels, the number of
super-pixels, and the average processing time for the two
datasets A and B.

TABLE IV
AVERAGE PROCESSING TIME (IN SECONDS) FOR DATASETS A. NOTICE

THE NUMBER OF SUPER-PIXELS CORRESPOND TO THE NUMBER OF
VERTICES IN THE GRAPH.

Dataset Input Pixels Super-pixels Time

A 262,144 2,621 1
B 1,001,642 10,016 2

The use of super-pixels and the linear complexity of our
community detection algorithm allow our method to segment
very large images efficiently, outperforming or overcoming
limitations of the considered related methods. The first stage
of our method (super-pixels generation) constitutes about 70%
of total computing time, and it is performed only once. The
second stage (graph clustering) accounts for the remaining
processing time and is performed iteratively to fine-tune seg-
mentation.

E. Usability test

Twenty different volunteers with no specific knowledge of
the application domain were selected to perform usability tests.
They were given a set of 15 random images and were told to
draw strokes on the background and foreground. We did not
provide any instructions regarding the number of strokes to be
drawn. The mean time for all users was 6.025 seconds. Figure
12 shows the results of the mean time in seconds per user. The
accuracy (Jaccard index) is shown in Figure 13. Considering
that our volunteers had no knowledge about the application
domain, we observed a slight reduction in accuracy, but quality
was still preserved.

We have studied the relationship between user time spent
and resulting Jaccard values, performing usability tests with
20 volunteers. The two users who spent about 13 seconds,
obtained Jaccard indices greater than 0.9. The other 18 users
spent between 2 to 9 seconds; 9 of these users obtained
Jaccard indices greater than 0.9, and the others obtained
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Fig. 12. Time in seconds for usability tests with 20 volunteers having
no knowledge about the application domain. Volunteers were given 15
random images and were told to draw an arbitrary number of strokes on
the background and foreground. Time refers to the mean time per user.
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Fig. 13. Jaccard values for usability tests with 20 volunteers having no
knowledge about the application domain. Volunteers were given 15 random
images and were told to draw an arbitrary number of strokes on the
background and foreground. Values refer to the mean value per user.

indices between 0.83 and 0.89. These results are good, despite
the fact that these users worked with the tool for the first time.

V. CONCLUSION

We have introduced a new interactive and highly efficient
method for retinal layer segmentation for color and gray-scale
images. Our approach consists of three main steps:

1) Pre-segmentation performed with super-pixels.
2) Graph modeling and segmentation into two clusters

using seeds.
3) Morphological erosion to correct possible imperfections

in cell boundary regions.
Users can iteratively place and/or remove seeds in order to
improve a segmentation.
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Fig. 14. Time[s] vs. Jaccard index values obtained by usability test with
20 volunteers having no knowledge about the application domain. Volunteers
were given 15 random images and were asked to draw an arbitrary number
of strokes on the background and foreground.

We have validate our approach with four experiments:
1) Evaluation of the parameter space.
2) Comparison with two related methods.
3) Evaluation of the influence of a morphological sharpen-

ing operator.
4) Usability test.

Our results show that our method produces a highly accu-
rate segmentation of the retinal layer for color and gray-
scale images. By using a morphological sharpening operator,
complex circle-like contours (cell boundaries) are accurately
segmented. A highly accurate segmentation can be produced
with a wide range of parameter values, documenting the
relative insensitivity of our method to parameter settings. In
addition, our method requires about two seconds to process a
large image, in addition to the seeding time of 6.025 seconds.
This level of efficiency makes our method useful for retina
segmentation tasks.
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