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Abstract—Computer-aided cell nuclei segmentation in histol-
ogy images is essential for image analysis. There is a demand for
methods that accurately detect cell nuclei in large images. We in-
troduce the FECS method for automatic cell nuclei segmentation
in Hematoxylin and Eosin (H&E) stained histology images. Our
method accurately segments cell nuclei, even in large images,
efficiently. We use bimodal-like histograms to perform image
binarization via the fast Otsu algorithm. We introduce a super-
pixel based filter for cell nuclei boundary detection. A Gaussian
blur filter allows us to identify cell nuclei centers, which are
understood as local minima in the individual cell nuclei regions.
We have evaluated our method for two publicly available datasets.
Out tests have produced average Jaccard index values of 0.963
and 0.914, respectively, supporting a high degree of segmentation
accuracy. We have compared our method against a state-of-the-
art method; our method produced better results for both datasets.
The average processing time of FECS was approximately just one
second for images of 1k x 1k pixel resolution and about three
minutes for larger images of 15k x 15k pixel resolution.

Index Terms—Cell nuclei, Histopathology, Segmentation,
Super-pixels

I. INTRODUCTION

Histology is an area of surgical pathology in which biopsies
are examined using a microscope. In everyday medical prac-
tice, examining histologic sections provides crucial informa-
tion during the process of diagnosing a disease [1]. The goal is
to analyze cells and tissue looking for structural and functional
changes so that identifying abnormal cells, the morphology of
tissue, and irregular cells organization [2]. Most diseases cause
typical cell and/or tissue changes, the so-called histologic
findings or patterns. To find such patterns, a pathologist usually
spends hours analyzing a single biopsy sample. Commonly,
this task is performed using a digitized version of the biopsy
sample. When a biopsy is digitized, it may produce a very
high-resolution image. For example, a digitized biopsy with
20x microscope magnification may produce a digital image
of size about (110k x 110k) pixels, which generates a file
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of approximately 2.0 GB [3]. Usually, a pathologist analyzes
a biopsy using a lower microscope power, e.g., 5x, at this
level, where it is possible to observe changes (patterns) in the
tissue. However, those findings should be analyzed at a higher
microscope power, e.g., 20 x looking for more specific patterns
at a cellular level.

In many cases, it is not necessary to segment individual
cells, since usually, pathologists are more interested in analyz-
ing cell organization patterns instead of analyzing individual
ones. Despite several methods for analyzing histopathology
images have been proposed [4], [5], most of the time, this
task is performed manually, i.e., pathologists do not use
specialized software to aid them in finding histology patterns.
The main reason is that it is extremely difficult to develop
a generic method capable of identifying patterns for different
diseases. For example, Interstitial Lung deceases (ILD) present
characteristic patterns at a cellular level, which are found
observing cell patterns and tissue changes, e.g., bronchiolitis,
muscularization, and lymphoid aggregates.

In this scenario, segmenting cells in histopathological im-
ages becomes an essential first step towards disease pattern
recognition. In the last years, many cell-segmentation methods
have been introduced. Most of them focused on an individual
cell segmentation as best as possible, i.e., segmenting the
boundaries and the interior part of each cell. Even though
those methods report good segmentation accuracy, they present
significant limitations, such as: high processing time, are
able to manage only small images, are very sophisticated
approaches, which may be hard/costly to implement.

Many of these segmentation methods take advantage of the
relatively well defined circular-elliptical cell shape. They apply
strategies based on Laplacian of Gaussian (LoG) operators,
edge detection algorithms, Hough transforms, or determinant
hessian matrix, which are traditional algorithms well-known
to detect circular shapes. The main limitations are excessive
computation cost, high sensitivity to gray-intensity variation,
and limited to detecting nearly circular cells. In this context,
several related work present strategies based on an improved
version of such methods. For example, Yousef Al-Kofahi et
al. [6] introduced a method based on graph-cuts, the LoG



filter, and a-expansion strategy. This method first performs an
automatic image binarization using a hybrid approach based on
the graph-cuts algorithm and histogram image normalization.
Since the graph-cuts algorithm extract connected cells, the
LoG filter is applied to identify local maximum peaks, this
operation is applied at multiple scales of the sigma parameter.
Finally, the a-expansion and graph coloring algorithms are
applied to enhance the contours between touching cells. This
method presents a good accuracy in segmenting cell nuclei.
Nevertheless, the main limitation of this method is its scala-
bility. The method performs an adequate processing time only
in tiny images, about 5 seconds on average.

In addition to the numerous methods available in the liter-
ature, there are some widely used by histopathologists. The
reason is that those methods are implemented on available
software tools for bioimage analysis [7]. For example, the
method available in the QuPath software [8] applies a method
based on the watershed algorithm. The method first smooths
the input image using the LoG transform, and then the image
background is extracted by applying a simple threshold filter.
Possible cell nuclei are detected using a watershed transform.
This method produces robust quality segmentation. However,
it presents various limitations, e.g., parameter sensitiveness,
cell size limited (different cell sizes in the same input), as
well as contrast and luminance sensitiveness. Despite that,
the method implemented in QuPath is a generic strategy
adopted by several other methods; authors, in general, propose
improvements based on this strategy [7], [9].

In this manuscript, we introduce a Fast and Efficient Cell
Nuclei Segmentation (FECS) Approach for histopathological
Images, focused on separating cells from tissue (foreground-
background segmentation), capable of handling very large
images in short processing time. The main goal of our method
is to segment the entire set of cells nuclei found in histology
images stained with Hematoxylin—Eosin (H&E). Besides, we
label individual cell nuclei centroids, which facilitates apply-
ing posterior tasks, such as detecting cell clusters, computing
cell clusters shape, and counting cells; measurements that
are useful to find various disease patterns. Our method takes
advantage of the bimodal-like histograms to apply a fast bina-
rization using the Otsu algorithm and a super-pixels algorithm
to detect cell nuclei boundaries. Finally, we identify cell nuclei
centroids by applying a Gaussian blur filter integrated into the
proper pixel value of the CIELAB color model, considering
the type of images. Besides the high segmentation accuracy
of FECS, we highlight that we do not apply any post-process,
e.g., filling holes, smoothing boundaries, or disjointing com-
bined cells in one region. FECS presents linear-complexity,
which makes it suitable for segmenting cells in large images.

II. METHOD

The diagram of Fig. 1 illustrates the method FECS proposed
in this paper.
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Fig. 1: Proposed FECS method diagram. We convert the RGB
input image into a CIELAB version of it, and then we extract
the b-channel. The Otsu algorithm is then computed using
the b-channel as input. Meanwhile, we apply the super-pixels
algorithm on the input image. Next, we apply our super-pixels
filter to extract the cell nuclei from the Otsu output.

A. Hematoxylin—FEosin stain and the CIELAB color model

The Hematoxylin-Eosin (H&E) is a stain capable of high-
lighting the fine structures of cells and tissues. It has become
the standard stain for histologic examination of human tissues.
In our application, the main advantage of H&E stain is that the
primary colors of cell nuclei are within a scale of blue or dark-
purple, whereas other tissues such as collagen or extracellular
matrix are stained in a scale of pink [1]. From an image
analysis point of view, this feature allows that locally the cell
nuclei are always darker than surrounding tissue.

Most computer analysis methods perform using the RGB
color model or a gray-scale version computed from it. The
main limitation of using RGB is that it is susceptible to
illumination or contrast irregularities, and it is tough to deal
with that. Besides, RGB is an additive color model, where the
primaries red, green, and blue are added together to reproduce
other colors. The problem with this model is that it is not
intuitive to compute the difference among them, e.g., using
the Euclidean distance with RGB triplets does not allow to
clearly define color differences [2].

To overcome such limitations, we transform the input RGB
channels into CIELAB triplets. The CIELAB color model
represents colors as three values: L for the lightness from



black (0) to white (100), a from green (-) to red (+), and b
from blue (-) to yellow (+). The main advantage of this model
is that it is possible to adjust the lightness contrast using the
L component or compute color distances using the a and/or b
components.

Besides, we noticed most cell nuclei information are con-
tained in the b component (blue to yellow), contrasts within
cells are more regular (compared with RGB gray-scale), and
cell nuclei boundaries are well preserved. Thus, we extract the
b channel to perform our cell nuclei segmentation method on
it. In Fig. 2c, we show a comparison between the b channel
and the RGB gray-scale.
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Fig. 2: Comparison between RGB gray-scale and CIELAB
b-channel. Since in the b-channel, there is no luminance infor-
mation, possible irregularities on it are eliminated. Besides, the
contrast between cell nuclei and surrounding tissue are well
preserved. Notice in this example we have rescaled (0-255)
the b-channel pixel values for visualization purposes.

B. Image binarization

Background and foreground segmentation are the first steps
in many cell nuclei segmentation methods [10]. The goal of
this step is to coarsely segment all cells (foreground) from
other materials, such as: tissue and image background. Several
methods could be applied, e.g., thresholding and graph-cuts.
In our application, we conjecture that histopathological images
present bimodal histograms since cell nuclei appear darker
than the surrounding areas. Therefore, a suitable strategy to
binarize this type of image is applying the Otsu algorithm.
Otsu finds a global threshold that minimizes the weighted
intra-class variance, and it is analogous to a globally optimal
k-means [11]. The intra-class variance relation is given by:

au(t) = a1 ()i (t) + a2(t) 73 (1), ey

in which ¢; and g5 are the probabilities of two classes being
separated by the threshold ¢, and o2 and o3 are the respective
class variance. The class probability is computed as:
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where L are the bins of the image histogram, the class means
1 and variance weights are defined as:
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where b are b-channel pixels values. After computing the
threshold ¢, it is used to generate a binary image B by applying
a simple thresholding filter on the b-channel.

Since H&E-stained cells are darker than surrounding tissue,
Otsu becomes a suitable algorithm to binarize such images. In
addition, since we use the b-channel, problems with contrast
are significantly reduced, which minimizes the amount of
wrongly labeled pixels. In spite of that, Otsu’s output may
present some imperfections, i.e., pixels wrongly labeled as
foreground (cells). We address this problem by applying a
super-pixel filter described in the next section. In Fig. 4b,
we show an example of the Otsu algorithm applied to a
histopathological image.

C. Super-pixels

Super-pixels is a region-based technique that segments an
image into groups of pixels that share a similar color and are in
a neighboring position. One of the main advantages of super-
pixels is that they identify image boundaries very accurately,
which is desirable in our application. Several approaches for
super-pixels have been proposed [12]. We implemented a
CIELAB-based version of the super-pixel algorithm, called
Speeded-up turbo pixels (SUTP) [13], which is efficient and
straightforward, and produces super-pixels well fitted to image
boundaries.

The SUTP method is based on the k-means clustering
algorithm. The first step consists of dividing the image ()
into N regular super-pixels 2y (I € N), with edge length
l. Initially, all super-pixels have the same area and equidistant
centroids. Without loss of generality, we assume that the input
image has a square shape. During the second step, pixels along
a specific super-pixel boundary (x;) are analyzed and possibly
shifted across the border between neighboring super-pixels.
This pixel-swapping is applied iteratively, and it is based on
this cost function to be minimized:

Cir = p1l% — Q|” + pollxi — /%, 4)

where 27 is the CIELAB mean (a vector of three components,
lab) of the I'" super-pixel, and x; is the spatial centroid of
the I*" super-pixel. The parameters p; and p, are weights for
color similarity and super-pixel border rigidity, respectively.
“More convex” super-pixels are generated for high values
of po, although super-pixels may not accurately fit to object
boundaries. Determining near-optimal values for p; and ps de-
pends on the application. In our method, super-pixels adjusted
well to boundaries are preferable to convex ones. Hence, we
use the values p; = 1, po = 0.5, and the number of iterations
is chosen as it = b, as suggested in [14]. Defining the initial



size of the super-pixels ! also depends on the application, in
Section III we give all parameter setup. Fig. 3 shows the super-
pixels after convergence.

(a) Input image (b) Super-pixels

Fig. 3: Super-pixels convergence. Notice super-pixels are well
fitted to the cell nuclei boundaries.

D. Foreground and super-pixels based filter

Dividing the input image into background and foreground
(cells), allows extracting the entire set of cell nuclei. However,
many pixels may wrongly be labeled, as shown in Fig. 4b. We
address this problem by applying a threshold-based filter in
which we match both the super-pixels and the Otsu outputs,
and if the number of pixels in Otsu is greater than a threshold,
we label that super-pixel as being cell nuclei. By applying this
filter, not only wrongly labeled pixels are corrected, but also
super-pixels containing cell nuclei are segmented. This filter
is defined as follows:

1,0(1,B
Il:{a(s(a )>t7

0, otherwise

o)

where I, is the label of the I*" super-pixel, [ € {0, 1}, function
0 returns the percentage of pixels in B within the super-pixel I,
and t is a threshold value that, empirically, should be greater
than 50%. After applying this filter, all super-pixels whose
label is equal to 1 are defined as cell nuclei super-pixels. In
Fig 4, we show an output example of this filter.

E. Cell nuclei local minimum

An additional step of our method consists of identifying
cell nuclei local minimum, defined as flat zones surrounded
by pixels of higher value. The goal of this process is to
detect individual cell nuclei centers. This allows to computing
measurements, such as the number of cells, distance among
cells, finding clusters, and others. To detect peaks within cells,
we apply a Gaussian blur filter on the set of segmented cells
using the corresponding pixel value in the b-channel, as shown
in Fig. 5.

IIT. RESULTS AND VALIDATION

We have evaluated our FECS method for two publicly
available and representative datasets of H&E stained images
with available ground truth (GT) data. The first dataset, called
TNBC, is a collection of 50 annotated histology images of
resolution 512 x 512, scanned at 40x microscope magnifica-
tion. Each image was taken from a cohort of 11 triple-negative

(c) Super-pixels filter, binary out- (d) Ground truth

put.

Fig. 4: Image filtering using super-pixels. Wrongly labeled
pixels, (green arrows) are eliminated by applying the filter.
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(c) Gaussian smooth
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Fig. 5: Cell nuclei centers are identified by finding local
minimum points. We apply a Gaussian smoothing on the
super-pixels filter output using the b-channel pixel values.

cancer patients [15]. The second dataset, called MoNuSeg, is
a collection of 44 images of resolution 1000 x 1000, scanned
at 40x microscope power. This dataset provides images for
these organs: breast, liver, kidney, prostate, bladder, colon, and
stomach; including benign and diseased tissue [16].

We carried out our experiments on a Linux workstation
(Intel Core 17-2600 CPU 3.40GHz x 4, with 16GB memory).
We implemented our method in C++ and used the National
Library of Medicine Insight Segmentation and Registration
Toolkit (ITK) [17].

Table I presents the parameters used in our experiments.



The super-pixels algorithm requires a user to define four pa-
rameters, see Section II-C; optimal parameter values depends
on the application. In [14] value settings for these parameters
were evaluated. We used values for the parameters p; and po
as suggested in that publication. Initial super-pixel size [ and
number of iterations ¢t are correlated: it = %

TABLE I: Parameters values for Otsu, Super-pixels (SP),
Super-pixel filter (SPF), and Gaussian blur (GB).

Method  Parameter  Value
Otsu bins 100
SP p1 1

SP P2 0.5
SP l 20
SP it 10
SPF t 60%
GB o 5

To quantitatively evaluate the accuracy of our method, we
have compared our segmentation results with their correspond-
ing GT. We have measured the similarity between them by
using the Jaccard index, a metric commonly used in medical
image segmentation. We have compared our segmentation
results against those produced by the QuPath method version
0.1.2, using the eight parameters by default advised by the
authors. Fig 6 shows the Jaccard index curves of the QuPath
and FECS methods. Table II presents the average Jaccard index
values.

TABLE II: Jaccard index mean and standard deviation of
QuPath and FECS methods for TBNC and MoNuSeg datasets.

Method TBNC MoNuSeg
Mean Std Devn Mean Std Dev
FECS 0.963 0.029 0914 0.030
QuPath 0.906 0.033 0.873 0.031

We observed that, in most cases, Jaccard index values are
high, i.e., > 0.9, for both methods. This fact is indicative
of high segmentation quality. The Jaccard index curves for
both methods are very similar; nevertheless, FECS performs
better than QuPath in most cases. Our team, including a
histopathology specialist, has visually analyzed the segmen-
tations produced; the FECS results satisfied the specialist’s
segmentation quality criteria. Fig. 7 provides a visual example
of two segmentation results produced by the QuPath and FECS
methods.

In addition to using the Jaccard index and a specialist’s
visual inspection of results, we computed precision and recall
values for both methods (FECS and QuPath), using the TNBT
and MoNuSeg datasets; they are two good indices to measure
segmentation quality based on true positives (cells identified as
cells), false positives (non-cells identified as cells), and false
negatives (cells not identified as cells). Results are provided
in Table III.

Precision and recall values for the segmentations of both
datasets are significantly better for our method, FECS. The
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Fig. 6: Jaccard index curves for FECS and QuPath. Our
proposed FECS method performs better than the QuPath
method in most cases; however, both methods produce high
Jaccard index values.

TABLE III: Precision and recall means of QuPath and FECS
for TBNC and MoNuSeg datasets.

Method TBNC MoNuSeg
Precision Recall Precision Recall
FECS 0.862 0.837 0.897 0.855
QuPath 0.655 0.740 0.544 0.757

generated results confirm that our method is capable of cover-
ing most of the cells in the images, with image noise having
hardly any effect.

Finally, we evaluate the scalability of FECS on a dataset of
72 histology images scanned at 5x microscope magnification,
images of about 15k x 15k pixel resolution. The average time
processing FECS segmented those images was three minutes
with a single processor implementation. We do not provide a
comparison with QuPath since it cannot process images of this
size. Since there is no GT available for this dataset, in Fig 8,
we show an example of a segmentation result.

IV. CONCLUSIONS

We introduced a highly efficient method, FECS, for cell nu-
clei segmentation for histopathological images. We validated
our approach using two datasets, TNBC and MoNuSeg, and
three evaluation metrics: Jaccard index, precision, and recall.
Further, we compared our results with those generated by
another approach that is commonly used by pathologists. Our
results demonstrate that our method produces a more accurate



(e) Input image (f) Ground truth

(g2) QuPath, J = 0.917

(h) FECS, J = 0.970

Fig. 7: Visual comparison of QuPath and FECS methods. Both methods produce high Jaccard index (J) values, according to
. FECS detects all entire cell nuclei in nearly all cases.

a specialist. The main problem of QuPath is over-segmentation

Fig.

(a) Input image

(b) Close-up

(c) Close-up result

8: Cell nuclei segmentation example of an image of 15k x

15k pixel resolution. In (b) a close-up view of the green frame
in (a).

segmentation of cell nuclei than this alternative method. Be-
sides, our method is generating results for very large images
in short processing time. These facts make our method useful
for real-world medical image analysis and interpretation.
Concerning future work, we intend to implement a multi-
processor version of FECS and make it publicly available. We
also intend to use the FECS segmentation to identify disease
patterns at the cellular level in combination with machine
learning techniques to aid in the disease diagnosis process.
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