
Wavelets for adaptively refined
�� �

-subdivision meshes
Lars Linsen � Bernd Hamann � Kenneth I. Joy �

Center for Image Processing and Integrated Computing (CIPIC) �
Department of Computer Science

University of California, Davis
One Shields Avenue, Davis, CA 95616-8562, U.S.A.

ABSTRACT
For view-dependent visualization, adaptively refined vol-
umetric meshes are used to adapt resolution to given error
constraints. A mesh hierarchy based on the �� �

-subdivision
scheme produces structured grids with highest adaptivity.
Downsampling filters reduce aliasing effects and lead to
higher-quality data representation (in terms of lower ap-
proximation error) at coarser levels of resolution. We
present a method for applying wavelet-based downsam-
pling filters to adaptively refined meshes. We use a lin-
ear B-spline wavelet lifting scheme to derive narrow filter
masks. These masks are applicable to adaptively refined
meshes without imposing any restrictions on the adaptiv-
ity of the meshes, i. e., all wavelet filtering operations can
be performed without further subdivision steps. We define
rules for vertex dependencies in wavelet-based adaptive re-
finement and resolve them in an unambiguous manner. We
use the wavelet filters for view-dependent visualization in
order to demonstrate the functionality and the benefits of
our approach. When using wavelet filters, less polyhedra
need to be traversed by a visualization method and less tri-
angles need to be drawn to satisfy a certain error bound.
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1 Introduction

Due to substantial improvements in computing power and
imaging and sensor technologies in recent years, today’s
data-intensive applications are generating huge amounts
of data in shorter and shorter time frames. Simulating
three-dimensional phenomena, measuring scalar fields in
a three-dimensional environment, or scanning with three-
dimensional devices lead to large-scale volume data, possi-
bly varying over time. In-core data exploration and visual-
ization tools cannot be applied to such data sets at highest
resolution. Using multiresolution approaches, downsam-
pling can be used to reduce data sets to manageable sizes,
and a multiresolution hierarchy is employed to represent
data at various levels of resolution.
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Applying in-core visualization tools to an appropri-
ate level of resolution can lead to rather low-quality im-
ages. A well-known concept in computer graphics and vi-
sualization used to improve image quality in a hierarchi-
cal setting is view-dependent refinement: Instead of visu-
alizing an entire data set at the same level of resolution,
resolution is adapted to viewing parameters in the three-
dimensional scene. Regions close to the viewpoint and the
line of sight should be given higher priority. In such re-
gions, data should be available at “sufficiently” high resolu-
tion, whereas other regions can remain at lower resolutions.
What is considered to be sufficient, depends on the appli-
cation, the user, the resolution of the output device, and
frame-rate requirements. Recent techniques use multires-
olution volume representation and extract view-dependent
isosurfaces from adaptively refined volume data [1, 4, 5, 7].

To obtain better approximations of a data set at coarse
levels of resolution, downsampling filters can be applied
when generating a multiresolution hierarchy. In [2], we
showed that filters based on linear B-spline wavelets sig-
nificantly improve approximation quality. However, down-
sampling filters based on non-constant B-spline wavelets
can only be applied efficiently when defined over structured
(rectilinear, tensor-product type) grids permitting the use of
a regular downsampling / refinement scheme. On the other
hand, view-dependent visualization can be performed more
successfully when the refinement scheme supports high
adaptivity. Thus, we use the �� �

-subdivision scheme, a reg-
ular refinement scheme with finest granularity supporting
high adaptivity. The splitting steps of the �� �

-subdivision
scheme are equivalent to longest-edge bisection applied to
a tetrahedral mesh. We describe multiresolution hierarchy
construction based on �� �

subdivision in Section 2.
Non-constant B-spline wavelets have the property that

the computation of the wavelet coefficient at a vertex � is
not only based on the neighbors of � but also on vertices
farther away. Larger filters reduce adaptivity of a multires-
olution representation. Lifting schemes with narrow filters
can be used to overcome this problem. In Section 3, we
describe a lifting scheme for linear B-spline wavelets.

The application of the lifting scheme to an adap-
tive setting is not straightforward. In an adaptive setting,
vertices are represented at different levels of resolution,
whereas the lifting scheme requires all of them to belong
to the same level. In Section 4, we discuss how the wavelet



downsampling filters can be applied to an adaptive setting
using the lifting scheme. In Section 5, we show how this
wavelet-based adaptive setting is used for view-dependent
visualization.

2 Multiresolution with �� � subdivision
A multiresolution hierarchy based on �� �

subdivision is
constructed by starting with the coarsest resolution of a
given mesh and iteratively applying �� �

-subdivision steps.
The subdivision steps can be performed simultaneously for
all mesh elements.

The �� �
-subdivision scheme for arbitrary dimension� was described in [2, 6]. Its splitting step of the �� �

subdivision is executed by inserting the centroid of the � -
dimensional geometrical shapes and adjusting vertex con-
nectivity. The averaging step applies to every old vertex �
the linear update rule
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where � is the centroid of the adjacent new vertices and
����� ������ .

Figure 1 shows three �� �
-subdivision splitting steps

( ���!� ) for structured rectilinear volume data. Three kinds
of polyhedral shapes arise, shown in Figure 2.

With respect to the start configuration (first picture of
Figure 1), the three subdivision steps can be described in
the following way: The first step inserts the centroid of the
cuboid (second picture of Figure 1); the second step inserts
the centers of the faces of the original cuboid (third picture
of Figure 1); and the third step inserts the midpoints of the
edges of the original cuboid (fourth picture of Figure 1).

Thus, three �� �
-subdivision steps produce the same

result as one octree refinement step. The two steps in be-
tween lead to finer granularity and thus higher adaptivity.

3 Wavelet lifting scheme
When downsampling volume data in a regular fashion, data
is not “grouped” due to variation in the data. Thus, alias-
ing artifacts occur and important details may be missing
at coarse levels of resolution. We overcome this prob-
lem by using downsampling filters. In image processing,
such downsampling filters are commonly employed with
wavelets.

A family of filters can be derived by using B-splines
of various degrees for wavelet generation. However, when
using non-constant B-splines, the size of the wavelet fil-
ters is not limited to adjacent vertices. Localization is de-
sirable when we want to apply wavelet filters to adaptive
refinement and out-of-core visualization techniques. Lift-
ing schemes, as introduced by Sweldens [8], decompose
wavelet computations into several steps, but they assert nar-
row filters. We review the idea of lifting, and lifting of B-
spline wavelets for �� �

subdivision in particular.
The idea of a lifting scheme is shown in Figure 3, us-

ing the example of linear B-spline wavelets. For downsam-
pling, the vertices of a level of resolution "$# are split into

two groups: the ones that belong to the next coarser level
of resolution "%#'&)( (often referred to as even vertices) and
the ones that belong to " #+* " #,&-( (often referred to as odd
vertices). Instead of applying a large downsampling filter
to the vertices in " #,&-( , the lifting scheme decomposes the
large filter into two narrow ones and executes two steps.
First, one narrow filter (w-lift) is applied to the vertices in
".# * ".#,&-( . Second, the other narrow filter (s-lift) is applied
to the vertices in "%#,&-( . This process is usually referred to
as encoding, and the values at the vertices in "$# * ".#,&-(
are called wavelet coefficients. The decoding step inverts
the two encoding steps and reconstructs level "$# from level
".#'&)( using the wavelet coefficients.
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Figure 3. One-dimensional linear B-spline wavelet lifting.

The lifting filters can be described by masks. For ex-
ample, the one-dimensional B-spline wavelet lifting filters
are given by

s-lift 
0/1�32�� : 4 / 2 / 5 and (1)

w-lift 
0/1�32�� : 4 / 2 /6587 (2)

Using the s-lift and w-lift masks, a linear B-spline
wavelet encoding step is defined by sequentially executing
the two operations

w-lift 
9� (: �;�<� and
s-lift 
 (= ���>� 7

A linear B-spline wavelet decoding step is defined by exe-
cuting the inverse operations in reverse order. They are

s-lift 
�� (= �;�<� and
w-lift 
 (: ���>� 7

The 1D filters in Equations (1) and (2) can be gener-
alized to 3D filters for hexahedral meshes in an octree-like
setting by convolution of the 1D masks in the three coordi-
nate directions. We use the 3D masks for �� �

-subdivision
developed in [2].

In a �� �
-subdivision hierarchy, three different kinds

of polygonal shapes appear. They are shown in Figure 2.
Therefore, three different kinds of masks must be defined
for the lifting filters:

1. We start with the situation shown in the second picture
of Figure 1. The masks w-lift 
0/1�32?� are of the form

a
b

.

The masks s-lift 
0/1�32?� are of the form
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Figure 1. �� �
subdivision.

��
�� ��

Figure 2. Polyhedral shapes created by �� �
subdivision: octahedron, octahedron with split faces, and cuboid.

b
a

.
The masks are derived from the masks for octree-
based hierarchies by linearly interpolating the values
at the non-existing vertices. For a detailed derivation
and the exact values for / and 2 we refer to [2].

2. In the situation shown in the third picture of Figure
1, the masks reduce to 2D masks when ensuring that
we do not violate the linear-interpolation assumptions
made in the above case. The masks w-lift 
0/1�32�� are of
the form

b
a

.

The masks s-lift 
0/1�32?� are of the form

a
b

.

3. In the situation shown in the fourth picture of Figure
1, the masks reduce to 1D masks when ensuring that
we do not violate the linear-interpolation assumptions.
The masks w-lift 
0/1� 2?� and s-lift 
 /1�32?� of Equations (1)
and (2) can be applied.

All masks are as narrow as they can be and thus ap-
propriate for adaptive refinement. Moreover, the scheme
naturally covers boundary faces and boundary edges of a
mesh.

4 Wavelet lifting in adaptive setting
In an adaptive setting, the vertices of a mesh should not all
belong to the same level of resolution. Thus, if a vertex is
inserted, we cannot simply apply the update rules described
in the previous section, but we have to make sure that the

neighbor vertices (the ones belonging to the support of the
update masks) are at the right levels of resolution. We may
have to “raise” neighbor vertices to the appropriate level of
resolution first.

Moreover, when applying a local subdivision step to a
polyhedron

�
, we cannot simply apply one mask to update

the vertices of
�

, but we must apply the update rules for
all adjacent polyhedra that share an updated vertex with

�
.

When inserting a new vertex, we must update the values
according to the lifting scheme, i.e., we first must execute
s-lift operations for the neighbors of the new vertex and
then w-lift operations for the new vertex. Again, we have
to distinguish three cases, depending on the kind of vertex
being inserted:

1. When inserting a vertex � we must apply the follow-
ing w-lift mask:

a
b

.

For linear B-spline wavelets, we obtain / � ( and
28� � . Let !#" be the set of neighbor vertices of a
vertex p, which belong to the support of the update
mask applied to p. For example, if p is the vertex � ,
!#" is the set of vertices $ . According to the lifting
scheme, we first update the vertices $ before updating
� . We apply the following s-lift mask:

b
a

.

For linear B-spline wavelets, we obtain / � � (% = and
2�� � .

2. When inserting a vertex & we must apply the two-
dimensional w-lift masks from the previous section to
all possible directions. These masks can be combined
into a single w-lift mask, given as



b’
a’

.
For linear B-spline wavelets, we obtain /�� � �� � (( :
and 2��
� 2 � � . Again, we first update the vertices $
before updating & . We combine the two-dimensional
s-lift masks from the previous section in a single s-lift
mask:

a’
b’

.
For linear B-spline wavelets, we obtain /�� � �� �
� (=  and 2�� � 2%� � .

3. When inserting a vertex � we must apply the one-
dimensional w-lift masks from the previous section to
all directions. We combine them into a single w-lift
mask, given as

b’
a’��	


.
For linear B-spline wavelets, we obtain /�� � � � � (%
and 2�� � 2 � � . We update the vertices $ be-
fore updating � . We combine the one-dimensional s-
lift masks from the previous section in a single s-lift
mask:

a’
b’��
� ����

��
�� ��

.
For linear B-spline wavelets, we obtain /�� � �� �
� (=  and 2 � � 2%� � .

When removing a vertex we apply the inverse masks in in-
verse order. The inverse masks have the same structure, but
different values / and 2 .

The dependencies between vertices can be defined
and resolved as follows: Initially, we assign a uniquely
defined index � to every vertex in the multiresolution hi-
erarchy, indicating to which level " # a vertex belongs (see
Section 3). The indexing starts with zero for the vertices
belonging to the coarsest resolution level "�� .

To illustrate how to resolve dependencies, we discuss
the example shown in Figure 4. The first picture shows the
start configuration with all vertices in "�� . In the second
picture, a first vertex � is inserted, which must be in " ( .
The third picture shows that the values at the vertices $ are
updated first by executing an s-lift operation (their indices
are raised by one), before the value at vertex � is updated
by executing a w-lift operation, shown in the fourth picture
(its index is being initialized).

In general, when a vertex � with index � is inserted, a
w-lift operation must be applied to update the value at that
vertex. The execution of the w-lift requires that all vertices
in ! " are active and have index � . The subdivision scheme
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Figure 4. Wavelet lifting when inserting vertex � .

already ensures that all vertices in ! " are active, before it
inserts the vertex � [1].

We must ensure that the vertices in ! " have index � .
The appropriate s-lift operations are executed. Each execu-
tion of an s-lift operation raises the index by one. For the
execution of an s-lift operation at a vertex � � ! " , the ver-
tices in !�� do not need to be active. In fact, they are never
active, since the vertex � would already have been updated,
if any vertex in !�� had been inserted earlier. Moreover, the
vertices in !�� are not updated before they are selected for
insertion and become active. At that point, the increased
index of vertex � indicates that � has already been updated
before.

We conclude that the wavelet filters do not reduce the
adaptivity of the entire system, since no additional vertices
have to be inserted for applying the wavelet lifting masks.

5 Wavelet-based view-dependent visualiza-
tion

To validate our adaptive wavelet lifting scheme, we have
applied it to view-dependent volume visualization. In a
view-dependent setting, resolution should be high next to
the viewpoint (or the focus of attention) and decrease with
increasing distance from the viewpoint.

We define an approximation error  
 � � for every
polyhedron

�
according to an error metric. Following the

approach described in [3],
�

is subdivided when its error 
 � � is beyond a threshold, where the threshold increases
with increasing distance from the viewpoint. Let ! 
 � � be
the distance from

�
to the viewpoint, !#" ��$ the maximum

distance from the viewpoint (or the range of sight), and " ��$ the maximum approximation error.
�

is subdivided
when

 .
 � �&% !1
 � �! " ��$  �" ��$ 7
The parameters !'" ��$ and  �" ��$ are application-specific
and user-controlled. For fly-through data exploration, one
can restrict subdivision steps to regions within the view
frustum, which is defined by the range of sight ! " ��$ and a
maximum deviation angle from the line of sight.

For the definition of the approximation error, we use
a simple and thus efficient error metric. Given the original
function ( at the discrete sample values, the error for a
polyhedron

�
is defined as

 
 � �.�
) �* � *,+-#.0/ 41( 
32 ���54�
32 � 5 : �

where
* � *

denotes the volume spanned by
�

and 4�
62 � the
value at 2 linearly interpolated from the values at the ver-



tices of
�

. We add the approximation errors at all vertices2 that lie in
�

.
One can define a screen-space error by projecting 
 � � onto the screen. For some applications, we have used

a more sophisticated, data-dependent error metric that also
takes a chosen isovalue into account.

When a polyhedron
�

is subdivided, the vertex in-
serted by the subdivision step is updated (using a w-lift
operation), in addition to all the vertices the inserted ver-
tex is dependent on (using an s-lift operation). The latter
are not necessarily vertices of

�
. When a subdivision step

is reversed, the same vertices are updated again using the
inverse lifting operations in reverse order. Some of the s-
lift operations must not be reversed. For example, Figure
5 shows a mesh with two adjacent cuboids, where in a first
step the first cuboid is subdivided, in a second step the sec-
ond cuboid is subdivided, and in a third step the first subdi-
vision step is reversed. To some of the vertices $ , to which
an s-lift operation has been applied in the first subdivision
step (their new index is 1), we must not apply the reverse s-
lift operation, since a new dependency has been generated
by the second subdivision step.

Following these rules, the index of a vertex in an
adaptively refined mesh is always uniquely defined and
consistent with its neighborhood.

6 Results

Figure 6 shows a view-dependent visualization of a pri-
mate lung data set. The size of the shown CT data set is� � ��� � � ��� �����

, and the range of the values is � � � � ���  . For
visualization purposes, we have extracted an isosurface (for
isovalue 86) from an adaptively refined �� �

-subdivision hi-
erarchy, where linear B-spline wavelet filters have been
used for generating the multiresolution hierarchy. The
wavelet filters have been applied to the adaptive setting us-
ing the described lifting scheme. Figure 6(a) shows the
adaptively refined mesh, where the viewpoint is located at
the center of the “right” quadrilateral face of the bounding
box. Figure 6(b) illustrates how view-dependent visualiza-
tion works by showing the extracted isosurface from a point
that does not coincide with the viewpoint used for view-
dependent isosurface extraction. It can be seen clearly how
the resolution changes from fine to coarse in the adaptively
refined mesh.

In [2], we showed the improvement in quality when
comparing the results obtained with wavelet filters to those
obtained without wavelet filters in a non-adaptive setting.
Typically, approximation error is �;� to � ��� lower when
applying wavelet filters, and error reduction is higher when
considering coarser resolutions. For the view-dependent
setting, we have observed the same behavior. Thus, in or-
der to meet a certain error bound (as defined in the last
section), we need to process less polyhedra and, when ap-
plying isosurface extraction, need to display less triangles.
The amount of polyhedra and triangles we save is propor-
tional to (and in the same range as) the error reduction.

In Figure 7, we provide a visual comparison of view-

dependent visualization with and without wavelet filters.
The data set is a CT scan of a Bonsai tree. The size of
the data set is

� � � �
, and the range of the values is � ��� � ���  .

Figure 7(a) shows an isosurface (for isovalue 42) extracted
from an adaptively refined �� �

-subdivision hierarchy with-
out wavelet filters; Figure 7(b) shows the same isosurface
extracted from an adaptively refined �� �

-subdivision hier-
archy with wavelet filters. Both hierarchies satisfy the same
error bound. The hierarchy with wavelets filters requires
868 polyhedra less to meet the error criterion. The ex-
tracted isosurface from the hierarchy with wavelets filters
consists of 2454 fewer triangles.

Figure 7(c) illustrates the benefits of using adaptive
refinement techniques. The shown isosurface (for iso-
value 42) is “visually equal” to the one extracted from
the highest-resolution representation of the data set, but
it is based on fewer than

� � � of the original number of
polyhedra. For adaptive refinement, we have used a data-
dependent error metric, where the center of the data set has
been used as focus of attention.

7 Conclusion

We have demonstrated how wavelet filters can be applied
to adaptive refinement of 3D meshes. The used under-
lying mesh hierarchy is based on �� �

subdivision, which
is a regular refinement scheme leading to structured grids
with highest adaptivity. Since the splitting steps of the �� �

-
subdivision scheme are equivalent to longest-edge bisec-
tion steps applied to tetrahedral meshes, our techniques can
be applied to both kinds of mesh hierarchies.

We have used a linear B-spline wavelet lifting scheme
to derive narrow filter masks, which can be applied to adap-
tively refined �� �

-subdivision meshes. We have shown that
the application of the wavelet masks does not impose re-
strictions on the adaptivity of the meshes. All wavelet fil-
tering operations can be performed without further subdi-
vision steps. Moreover, when following the described rules
to define and resolve vertex dependencies, every vertex is
always represented at a uniquely defined level of resolution.

We have applied our wavelet filters to view-dependent
visualization and have shown that our methods are func-
tional and practical, that wavelet filters reduce approxima-
tion error in adaptively refined mesh hierarchies, and that
wavelet-based adaptive refinement can reduce the amount
of polyhedra to be processed for visualization purposes.
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Figure 5. Reversing subdivision steps - all vertex dependencies must be checked when applying inverse lifting operations.

(a) (b)
Figure 6. View-dependent visualization using adaptively refined �� �

-subdivision mesh. Lifting schemes have been used to
apply linear B-spline wavelet filters to the adaptive mesh hierarchy. (Data set courtesy of E. Wisner, Department of Surgical
and Radiological Sciences, University of California, Davis)

(a) (b) (c)
Figure 7. Comparing isosurface extracted from an adaptively refined �� �

-subdivision hierarchy without (a) and with (b) wavelets
filters. (c) High-quality visualization of an adaptively refined �� �

-subdivision hierarchy with wavelets filters. (Data set courtesy
of S. Roettger, Abteilung Visualisierung und Interaktive Systeme, University of Stuttgart, Germany)
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