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ABSTRACT

For view-dependent visualization, adaptively refined volumetric meshes are used to adapt resolution to given error constraints.

A mesh hierarchy based on the 3
√

2-subdivision scheme produces structured grids with highest adaptivity. Downsampling filters

reduce aliasing effects and lead to higher-quality data representation (in terms of lower approximation error) at coarser levels of

resolution. We present a method for applying wavelet-based downsampling filters to adaptively refined meshes. We use a linear

B-spline wavelet lifting scheme to derive narrow filter masks. Using these narrow masks, the wavelet filters are applicable to

adaptively refined meshes without imposing any restrictions on the adaptivity of the meshes, i. e., all wavelet filtering opera-

tions can be performed without further subdivision steps. We define rules for vertex dependencies in wavelet-based adaptive

refinement and resolve them in an unambiguous manner. We use the wavelet filters for view-dependent visualization in order to

demonstrate the functionality and the benefits of our approach. When using wavelet filters the approximation quality is higher

at each resolution level. Thus, less polyhedra need to be traversed by a visualization method to meet certain error bounds /

quality measures.

KEY WORDS

View-dependent visualization, multiresolution modeling, B-spline wavelets, lifting, downsampling filter, data approximation.

∗linsen@uni-greifswald.de
†{hamann,joy}@cs.ucdavis.edu

1



1 Introduction

Due to substantial improvements in computing power and imaging and sensor technologies in recent years, today’s data-

intensive applications are generating huge amounts of data in shorter and shorter time frames. Simulating three-dimensional

phenomena, measuring scalar fields in a three-dimensional environment, or scanning with three-dimensional devices lead to

large-scale volume data, possibly varying over time. In-core data exploration and visualization tools cannot be applied to such

data sets at highest resolution. Using multiresolution approaches, downsampling can be used to reduce data sets to manageable

sizes, and a multiresolution hierarchy is employed to represent data at various levels of resolution.

Applying in-core visualization tools to an appropriate level of resolution can lead to rather low-quality images. A well-

known concept in computer graphics and visualization used to improve image quality in a hierarchical setting is view-dependent

refinement: Instead of visualizing an entire data set at the same level of resolution, resolution is adapted to viewing parameters

in the three-dimensional scene. Regions close to the viewpoint and the line of sight should be given higher priority. In such

regions, data should be available at “sufficiently” high resolution, whereas other regions can remain at lower resolutions.

What is considered to be sufficient, depends on the application, the user, the resolution of the output device, and frame-rate

requirements.

To obtain better approximations of a data set at coarse levels of resolution, downsampling filters can be applied when

generating a multiresolution hierarchy. In [15, 16], we showed that filters based on linear B-spline wavelets significantly

improve approximation quality. However, downsampling filters based on non-constant B-spline wavelets can only be applied

efficiently when defined over structured (rectilinear, tensor-product type) grids permitting the use of a regular downsampling /

refinement scheme. On the other hand, view-dependent visualization can be performed more successfully when the refinement

scheme supports high adaptivity. Thus, we use the 3
√

2-subdivision scheme, a regular refinement scheme with finest granularity

supporting high adaptivity. The splitting steps of the 3
√

2-subdivision scheme are equivalent to longest-edge bisection applied

to a tetrahedral mesh. We describe multiresolution hierarchy construction based on 3
√

2 subdivision in Section 3.

Non-constant B-spline wavelets have the property that the computation of the wavelet coefficient at a vertex p is not only

based on the neighbors of p but also on vertices farther away. Larger filters reduce adaptivity of a multiresolution representation.

Lifting schemes with narrow filters can be used to overcome this problem. In Section 4, we describe a lifting scheme for linear

B-spline wavelets.

The application of the lifting scheme to an adaptive setting is not straightforward. In an adaptive setting, vertices are

represented at different levels of resolution, whereas the lifting scheme requires all of them to belong to the same level. In

Section 5, we discuss how the wavelet downsampling filters can be applied to an adaptive setting using the lifting scheme. In

Section 6, we show how this wavelet-based adaptive setting is used for view-dependent visualization.

2 Related work

Adaptive refinement of meshes and view-dependent visualization techniques were developed when intensive research on ter-

rain rendering started, about a decade ago. To date, many view-dependent approaches exist for heightfield-like surfaces

[4, 2, 9, 12, 36] and also for more general polygonal surfaces [8, 13, 14, 21, 3]. For scalar-valued volume data, one can

extract multiresolution hierarchies of isosurfaces [5, 35]. However, these approaches are not suitable for large-scale volume

visualization, since storing all hierarchies of all possibly important isosurfaces would require too much storage.
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Recent techniques use multiresolution volume representation and extract view-dependent isosurfaces from adaptively

refined volume data [7, 19, 20, 28]. These approaches are typically based on structured grids and regular refinement schemes

[18, 22, 24, 26, 30, 34, 37] for establishing a multiresolution hierarchy, since vertex positions and mesh connectivity are

implicitly defined for structured grids, leading to faster data access and loading, which is crucial for interactivity.

One major drawback of approaches based on structured grids is low adaptivity, which is of high importance for view-

dependent visualization. The multiresolution hierarchy with highest adaptivity is a tetrahedral mesh hierarchy based on longest-

edge bisection [6, 7, 24, 37]. The splitting step of the 3
√

2-subdivision scheme is equivalent to longest-edge bisection for

tetrahedral meshes. In fact, for implementation purposes we have used tetrahedral meshes, since they can be supported by

existing visualization tools. The derivations and descriptions of the techniques are more easily explained when using the (more

general) 3
√

2-subdivision scheme for (initially) hexahedral meshes.

3 Multiresolution with 3
√

2 subdivision

A multiresolution hierarchy based on 3
√

2 subdivision is constructed by starting with the coarsest resolution of a given mesh

and iteratively applying 3
√

2-subdivision steps. The subdivision steps can be performed simultaneously for all mesh elements.

The splitting step of the n

√
2-subdivision scheme was described by Cohen and Daubechies [1] for dimension n = 2 and

Maubach [23] for arbitrary dimension n. Figure 1 illustrates four splitting steps of a
√

2 subdivision (n = 2). To split the

quadrilateral Q, we compute its centroid c and connect c to the four vertices of Q. The “old” edges of the mesh are removed

(except for the edges determining the mesh/domain boundary). Velho and Zorin [33] completed the
√

2-subdivision scheme

by adding an averaging step to the splitting step. They showed that the produced surfaces are C4-continuous at regular and

C1-continuous at extraordinary vertices.

cQ

Figure 1. Four steps of
√

2 subdivision applied to quadrilateral Q.

This subdivision scheme can be generalized to arbitrary dimension [15, 16, 25]. The splitting step of the n

√
2 subdivision

is executed by inserting the centroid of the n-dimensional geometrical shapes and adjusting vertex connectivity. The averaging

step applies to every old vertex v the linear update rule

v = αv + (1 − α)w ,

where w is the centroid of the adjacent new vertices and α ∈ [0, 1].

Figure 2 shows three 3
√

2-subdivision splitting steps (α = 1) for structured rectilinear volume data. Three kinds of

polyhedral shapes arise, shown in Figure 3.

With respect to the start configuration (first picture of Figure 2), the three subdivision steps can be described in the

following way: The first step inserts the centroid of the cuboid (second picture of Figure 2); the second step inserts the centers

of the faces of the original cuboid (third picture of Figure 2); and the third step inserts the midpoints of the edges of the original

cuboid (fourth picture of Figure 2).
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Figure 2. Three steps of 3
√

2 subdivision applied to a cube.
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Figure 3. Polyhedral shapes created by 3
√

2 subdivision: octahedron, octahedron with split faces, and cuboid.

Thus, three 3
√

2-subdivision steps produce the same result as one octree refinement step. The two steps in between lead to

finer granularity and thus higher adaptivity.

4 Wavelet lifting scheme

When downsampling volume data in a regular fashion, data is not “grouped” due to variation in the data. Thus, aliasing artifacts

occur and important details may be missing at coarse levels of resolution. We overcome this problem by using downsampling

filters. In image processing, such downsampling filters are commonly employed with wavelets.

A family of filters can be derived by using B-splines of various degrees for wavelet generation. (For an introduction

to B-spline techniques, we refer to [27].) However, when using non-constant B-splines, the size of the wavelet filters is not

limited to adjacent vertices. Localization is desirable when we want to apply wavelet filters to adaptive refinement and out-of-

core visualization techniques. Lifting schemes, as introduced by Sweldens [31], decompose wavelet computations into several

steps, but they assert narrow filters. We review the idea of lifting, and lifting of B-spline wavelets for 3
√

2 subdivision in

particular.

The idea of a lifting scheme is shown in Figure 4, using the example of linear B-spline wavelets. For downsampling, the

vertices of a level of resolution Ln are split into two groups: the ones that belong to the next coarser level of resolution Ln−1

(often referred to as even vertices) and the ones that belong to Ln\Ln−1 (often referred to as odd vertices). Instead of applying

a large downsampling filter to the vertices in Ln−1, the lifting scheme decomposes the large filter into two narrow ones and

executes two steps. First, one narrow filter (w-lift) is applied to the vertices in Ln \Ln−1. Second, the other narrow filter (s-lift)

is applied to the vertices in Ln−1. This process is usually referred to as encoding, and the values at the vertices in Ln \ Ln−1

are called wavelet coefficients. The decoding step inverts the two encoding steps and reconstructs level Ln from level Ln−1

using the wavelet coefficients.
The lifting filters can be described by masks. For example, the one-dimensional B-spline wavelet lifting filters are given

by

s-lift(a, b):
(

a b a

)

and (1)

w-lift(a, b):
(

a b a

)

. (2)
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Figure 4. One-dimensional linear B-spline wavelet lifting: By consecutively applying w-lift and s-lift operation, a coarser

resolution level Ln−1 and corresponding wavelet coefficients are computed from a finer resolution level Ln. Inverse lifting,

i. e., computing level Ln from level Ln−1 and the corresponding wavelet coefficients, is executed by applying the inverse lifting

opertaions in inverse order.

Using the s-lift and w-lift masks, a linear B-spline wavelet encoding step is defined by sequentially executing the two

operations

w-lift(− 1

2
, 1) and

s-lift( 1

4
, 1) .

A linear B-spline wavelet decoding step is defined by executing the inverse operations in reverse order. They are

s-lift(− 1

4
, 1) and

w-lift( 1

2
, 1) .

The 1D filters in Equations (1) and (2) can be generalized to 2D filters for quadrilateral meshes (representing tensor-

product surfaces) in a quadtree-like setting and to 3D filters for hexahedral meshes in an octree-like setting by convolution of

the 1D masks in the two or three coordinate directions, respectively. For example, one would get the 2D mask by

(

a b a

)

∗
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.

Wavelets for general dilation matrices were discussed by Riemenschneider and Shen [29], who used a box-spline approach.

Kovac̆ević and Vetterli [11] and, more recently, Uytterhoeven [32] and Kovac̆ević and Sweldens [10] developed lifting schemes

that can be applied to n

√
2-subdivision mesh hierarchies. Uytterhoeven’s method only addresses the two-dimensional case,

Kovac̆ević and Sweldens’ approach deals with the two- and three-dimensional cases. The filters used in [10] are not narrow

enough for our purposes. We use the 3D masks for 3
√

2-subdivision developed in [15].

In a 3
√

2-subdivision hierarchy, three different kinds of polygonal shapes appear. They are shown in Figure 3. Therefore,

three different kinds of masks must be defined for the lifting filters:

1. We start with the situation shown in the second picture of Figure 2. The masks w-lift(a, b) are of the form

a
b

.
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The masks s-lift(a, b) are of the form

b
a

.

The masks are derived from the masks for octree-based hierarchies by linearly interpolating the values at the non-existing

vertices. For a detailed derivation and the exact values for a and b we refer to [15].

2. In the situation shown in the third picture of Figure 2, the masks reduce to 2D masks when ensuring that we do not violate

the linear-interpolation assumptions made in the above case. The masks w-lift(a, b) are of the form

b
a

.

The masks s-lift(a, b) are of the form

a
b

.

3. In the situation shown in the fourth picture of Figure 2, the masks reduce to 1D masks when ensuring that we do not violate

the linear-interpolation assumptions. The masks w-lift(a, b) and s-lift(a, b) of Equations (1) and (2) can be applied.

All masks are as narrow as they can be and thus appropriate for adaptive refinement. Moreover, the scheme naturally

covers boundary faces and boundary edges of a mesh.

5 Wavelet lifting in adaptive setting

In an adaptive setting, the vertices of a mesh should not all belong to the same level of resolution. Thus, if a vertex is inserted,

we cannot simply apply the update rules described in the previous section, but we have to make sure that the neighbor vertices

(the ones belonging to the support of the update masks) are at the right levels of resolution. We may have to “raise” neighbor

vertices to the appropriate level of resolution first.

Moreover, when applying a local subdivision step to a polyhedron P , we cannot simply apply one mask to update the

vertices of P , but we must apply the update rules for all adjacent polyhedra that share an updated vertex with P . When

inserting a new vertex, we must update the values according to the lifting scheme, i.e., we first must execute s-lift operations

for the neighbors of the new vertex and then w-lift operations for the new vertex. Again, we have to distinguish three cases,

depending on the kind of vertex being inserted:
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1. When inserting a vertex N we must apply the following w-lift mask:

a
b

.

For linear B-spline wavelets, we obtain a = 1

8
and b = 1. Let Np be the set of neighbor vertices of a vertex p, which

belong to the support of the update mask applied to p. For example, if p is the vertex N, Np is the set of vertices ◦.

According to the lifting scheme, we first update the vertices ◦ before updating N. We apply the following s-lift mask:

b
a

.

For linear B-spline wavelets, we obtain a = − 1

64
and b = 1.

2. When inserting a vertex M we must apply the two-dimensional w-lift masks from the previous section to all possible

directions. These masks can be combined into a single w-lift mask, given as

b’
a’

.

For linear B-spline wavelets, we obtain a′ = a

3
= 1

12
and b′ = b = 1. Again, we first update the vertices ◦ before

updating M. We combine the two-dimensional s-lift masks from the previous section in a single s-lift mask:

a’
b’

.

For linear B-spline wavelets, we obtain a′ = a

3
= − 1

48
and b′ = b = 1.

3. When inserting a vertex • we must apply the one-dimensional w-lift masks from the previous section to all directions.

We combine them into a single w-lift mask, given as

b’
a’

� 
!"

.

For linear B-spline wavelets, we obtain a′ = a

3
= 1

6
and b′ = b = 1. We update the vertices ◦ before updating •. We

combine the one-dimensional s-lift masks from the previous section in a single s-lift mask:
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For linear B-spline wavelets, we obtain a′ = a

3
= − 1

48
and b′ = b = 1.

When removing a vertex we apply the inverse masks in inverse order. The inverse masks have the same structure, but different

values a and b.

The dependencies between vertices can be defined and resolved as follows: Initially, we assign a uniquely defined index

n to every vertex in the multiresolution hierarchy, indicating to which level Ln a vertex belongs (see Section 4). The indexing

starts with zero for the vertices belonging to the coarsest resolution level L0.

To illustrate how to resolve dependencies, we discuss the example shown in Figure 5. The first picture shows the start

configuration with all vertices in L0. In the second picture, a first vertex N is inserted, which must be in L1. The third picture

shows that the values at the vertices ◦ are updated first by executing an s-lift operation (their indices are raised by one), before

the value at vertex N is updated by executing a w-lift operation, shown in the fourth picture (its index is being initialized).

0 0

0 0

0

0

0

0

0 0

0 0

0

0

0

0

1 1

1

1

1

1

1
1

1 1

1

1

1

1

1
1

1

Figure 5. Wavelet lifting when inserting vertex N: Before updating vertex N, surrounding vertices need to be lifted to appropri-

ate resolution level.

In general, when a vertex p with index n is inserted, a w-lift operation must be applied to update the value at that vertex.

The execution of the w-lift requires that all vertices in Np are active and have index n. The subdivision scheme already ensures

that all vertices in Np are active, before it inserts the vertex p [7].

We must ensure that the vertices in Np have index n. The appropriate s-lift operations are executed. Each execution of an

s-lift operation raises the index by one. For the execution of an s-lift operation at a vertex q ∈ Np, the vertices in Nq do not

need to be active. In fact, they are never active, since the vertex q would already have been updated, if any vertex in Nq had

been inserted earlier. Moreover, the vertices in Nq are not updated before they are selected for insertion and become active. At

that point, the increased index of vertex q indicates that q has already been updated before.

We conclude that the wavelet filters do not reduce the adaptivity of the entire system, since no additional vertices have to

be inserted for applying the wavelet lifting masks.

6 Wavelet-based view-dependent visualization

To validate our adaptive wavelet lifting scheme, we have applied it to view-dependent volume visualization. In a view-

dependent setting, resolution should be high next to the viewpoint (or the focus of attention) and decrease with increasing

distance from the viewpoint.
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Figure 6. Reversing subdivision steps: All vertex dependencies must be checked when applying inverse lifting operations. Only

to vertices with no dependencies inverse lifting can and (for consistency) has to be applied.

We define an approximation error E(P ) for every polyhedron P according to an error metric. Following the approach

described in [17], P is subdivided when its error E(P ) is beyond a threshold, where the threshold increases with increasing

distance from the viewpoint. Let d(P ) be the distance from P to the viewpoint, dmax the maximum distance from the viewpoint

(or the range of sight), and Emax the maximum approximation error. P is subdivided when

E(P ) >
d(P )

dmax

Emax .

The parameters dmax and Emax are application-specific and user-controlled. For fly-through data exploration, one can restrict

subdivision steps to regions within the view frustum, which is defined by the range of sight dmax and a maximum deviation

angle from the line of sight. Note that the adaptive resolution of the mesh is solely determined by the view-dependent visualiza-

tion application. We do not perform a wavelet compression. The wavelet filters are used to improve the approximation quality

for a given resolution and not to determine the adaptive resolution of the mesh.

For the definition of the approximation error, we use a simple and thus efficient error metric. Given the original function

F at the discrete sample values, the error for a polyhedron P is defined as

E(P ) =

√

1

|P |
∑

x∈P

(

F (x) − f(x)
)2

,

where |P | denotes the volume spanned by P and f(x) the value at x linearly interpolated from the values at the vertices of P .

We add the approximation errors at all vertices x of the finest resolution level that lie in P . One can define a screen-space error

by projecting E(P ) onto the screen. For some applications, we have used a more sophisticated, data-dependent error metric

that also takes a chosen isovalue into account, see [6].

When a polyhedron P is subdivided, the vertex inserted by the subdivision step is updated (using a w-lift operation), in

addition to all the vertices the inserted vertex is dependent on (using an s-lift operation). The latter are not necessarily vertices

of P . When a subdivision step is reversed, the same vertices are updated again using the inverse lifting operations in reverse

order. Some of the s-lift operations must not be reversed. For example, Figure 6 shows a mesh with two adjacent cuboids,

where in a first step the first cuboid is subdivided, in a second step the second cuboid is subdivided, and in a third step the first

subdivision step is reversed. To some of the vertices ◦, to which an s-lift operation has been applied in the first subdivision step

(their new index is 1), we must not apply the reverse s-lift operation, since a new dependency has been generated by the second

subdivision step.

Following these rules, the index of a vertex in an adaptively refined mesh is always uniquely defined and consistent with

its neighborhood.
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(a) (b)

Figure 7. View-dependent visualization of Lung data set using adaptively refined 3
√

2-subdivision mesh. Lifting schemes

have been used to apply linear B-spline wavelet filters to the adaptive mesh hierarchy. (a) Adaptively refined 3
√

2-subdivision

mesh. (b) Visualization of isosurface, which is shown from the side to illustrate the decreasing resolution level with increasing

distance from the focus located on the right hand side. (Data set courtesy of E. Wisner, Department of Surgical and Radiological

Sciences, University of California, Davis)

7 Results

Figure 7 shows a view-dependent visualization of a primate lung data set. The size of the shown CT data set is 512 × 512 ×
266, and the range of the values is [0, 255]. For visualization purposes, we have extracted an isosurface (for isovalue 86)

from an adaptively refined 3
√

2-subdivision hierarchy, where linear B-spline wavelet filters have been used for generating the

multiresolution hierarchy. The wavelet filters have been applied to the adaptive setting using the described lifting scheme.

Figure 7(a) shows the adaptively refined mesh, where the viewpoint is located at the center of the “right” quadrilateral face of

the bounding box. Figure 7(b) illustrates how view-dependent visualization works by showing the extracted isosurface from a

point that does not coincide with the viewpoint used for view-dependent isosurface extraction. It can be seen clearly how the

resolution changes from fine to coarse in the adaptively refined mesh.

In [15], we showed the improvement in quality when comparing the results obtained with wavelet filters to those obtained

without wavelet filters in a non-adaptive setting. Typically, approximation error is 10 to 15% lower when applying wavelet

filters, and error reduction is higher when considering coarser resolutions. For the view-dependent setting, we have observed

the same behavior. Thus, in order to meet a certain error bound (as defined in the last section), we need to process less

polyhedra and, when applying isosurface extraction, need to display less triangles. The amount of polyhedra and triangles we

save is proportional to (and in the same range as) the error reduction.

In Figure 8, we provide a visual comparison of view-dependent visualization with and without wavelet filters. The data

set is a CT scan of a Bonsai tree. The size of the data set is 2563, and the range of the values is [0, 255]. Figure 8(a) shows an

isosurface (for isovalue 42) extracted from an adaptively refined 3
√

2-subdivision hierarchy without wavelet filters; Figure 8(b)

shows the same isosurface extracted from an adaptively refined 3
√

2-subdivision hierarchy with wavelet filters. Both hierarchies

satisfy the same error bound. The hierarchy with wavelets filters requires 868 polyhedra less to meet the error criterion. The
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(a) (b) (c)

Figure 8. Comparing isosurfaces extracted from adaptively refined 3
√

2-subdivision hierarchy without (a) and with (b) wavelets

filters for Bonsai data set. The visualization with wavelet filters requires less geometry to meet same error criterion / approxi-

mation quality. (c) High-quality visualization of an adaptively refined 3
√

2-subdivision hierarchy with wavelets filters. Adaptive

refinement allows us to traverse less than 30% of original amount of geometry while producing images of same quality. (Data

set courtesy of S. Roettger, Abteilung Visualisierung und Interaktive Systeme, University of Stuttgart, Germany)

extracted isosurface from the hierarchy with wavelets filters consists of 2454 fewer triangles. Thus, during both isosurface

extraction and rendering computation time can be saved.

Figure 8(c) illustrates the benefits of using adaptive refinement techniques. The shown isosurface (for isovalue 42) is

“visually equal” to the one extracted from the highest-resolution representation of the data set, but it is based on fewer than

30% of the original number of polyhedra. For adaptive refinement, we have used the data-dependent error metric described in

[6]. The center of the data set has been used as focus of attention.

8 Conclusion

We have demonstrated how wavelet filters can be applied to adaptive refinement of 3D meshes. The used underlying mesh

hierarchy is based on 3
√

2 subdivision, which is a regular refinement scheme leading to structured grids with highest adaptivity.

Since the splitting steps of the 3
√

2-subdivision scheme are equivalent to longest-edge bisection steps applied to tetrahedral

meshes, our techniques can be applied to both kinds of mesh hierarchies.

We have used a linear B-spline wavelet lifting scheme to derive narrow filter masks, which can be applied to adaptively

refined 3
√

2-subdivision meshes. We have shown that the application of the wavelet masks does not impose restrictions on the

adaptivity of the meshes. All wavelet filtering operations can be performed without further subdivision steps. Moreover, when

following the described rules to define and resolve vertex dependencies, every vertex is always represented at a uniquely defined

level of resolution.

We have applied our wavelet filters to view-dependent visualization and have shown that our methods are functional and

practical, that wavelet filters reduce approximation error in adaptively refined mesh hierarchies, and that wavelet-based adaptive

refinement can reduce the amount of polyhedra to be processed for visualization purposes.
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