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Abstract

We present a new method for topological segmentation in steady three-dimensional vector fields.

Depending on desired properties, the algorithm replaces the original vector field by a derived seg-

mented data set, which is utilized to produce separating surfaces in the vector field. We define the

concept of a segmented data set, develop methods that produce the segmented data by sampling the

vector field with streamlines, and describe algorithms that generate the separating surfaces. This

method is applied to generate local separatrices in the field, defined by a movable boundary region

placed in the field. The resulting partitions can be visualized using standard techniques for a visual-

ization of a vector field at a higher level of abstraction.

1. Introduction

Classical approaches for bivariate vector field segmentation are based on constructing the separatrix

structure of a field – a set of curves in the plane – defining regions that behave qualitatively similarly

[9, 15, 18]. Separatrices are usually generated by computing the critical points in the domain of

the vector field, determining the types of these critical points, and using numerical methods to trace

streamlines originating from so-called “originators” in the field, see [9]. These streamlines form

separatrices that segment the field into regions of similar topological behavior.

Unfortunately, similar techniques have not been developed for three-dimensional vector fields.

Most visualization techniques for three-dimensional flow fields concentrate on streamline and stream-

surface representations, however these techniques do not give a clear illustration of the field’s topo-

logical behavior. More sophisticated techniques use streamline analysis to extract features of the field

, such as attachment and separation lines on a boundary surface. However, separatrix methods have

been unavailable for the analysis of three-dimensional fields. Two basic problems have prevented

these studies: First, there are few critical points in three-dimensional fields, and second, the numeri-

cal marching methods to trace characteristic stream surfaces are difficult to implement and can create

substantial numerical errors. In general, visualization and classification of three-dimensional fields

continues to be an open problem.
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FIGURE 1: Separation of flow in a complex two-dimensional vector field from Scheuermann et al. [19]. Note the separatrices

originating from points of tangential flow on the boundary rectangle. This greatly enhances the visualization of the topological

flow in the field.

The method presented in this paper is similar to those that generate separatrix structures in two-

dimensional vector-fields: focusing on segmentation of the data set based on topological structure.

The algorithm is a two-step process that partitions a vector field into regions of topologically sim-

ilar flow. First, we sample the vector field using streamlines, and replace the original data by a

“segmented” data set. Second, a segmentation algorithm generates separating surfaces in the field.

We utilize a “local separatrix” concept introduced by Scheuermann et al. [19], which augments the

separatrices generated from critical points with “local separatrices” originating from the boundary

region of the data set. By segmenting the boundary region into “inflow” and “outflow” regions, a lo-

cal separatrix is the streamline generated from a point on the boundary where the flow is tangential,

see Figure 1. In this way, the algorithm generates a complete separation of the field into regions of

similar flow. For visualization of massive data sets, this algorithm can be used to determine similar

flow regions within a small region, avoiding the problem of analyzing the complete data set.

We utilize this concept to define a segmentation of a three-dimensional vector field into regions

bounded by local separatrices. By manipulation of a “boundary box” in the field, we can create

separating surfaces that define regions of similar flow depending on inflow/outflow regions on the

boundary of the box. This allows us to place a box in the field and generate separatrices throughout

the field, which can be visualized to determine characteristic features of the field.

Given a three-dimensional vector field and a rectangular boundary box B, we define a local

separatrix as a stream surface within B that is tangent to the boundary of B. The algorithm generates
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these local separatrices by creating a derived “segmented” data set by sampling the original vector

field with streamlines. These streamlines terminate either on the boundary or at a critical point. The

general idea is to assign a different characteristic marker (or property) to each critical point in the

field, and to each contiguous inflow or outflow region of the boundary of B – i.e., regions bounded by

lines where the flow is tangential on the boundary of B. Streamlines are initiated at points throughout

the data set and traced until they either reach the boundary of B or come arbitrarily close to a critical

point. Each of the streamlines is then marked appropriately. We apply the marker information to a

vertex of the data set by considering streamlines that lie close to the vertex and assigning markers

from these streamlines to the vertex. For example, given a point p on streamline S that has marker

k, if p lies in tetrahedron T , then we can examine the vertices of the tetrahedron to see which is

closest to p. If the closest vertex contains an m-tuple (m1, m2, ..., mm), then we increment mk.

Most vertices will have only one non-zero marker incremented, as most of them will not have local

separatrices passing near them. However, some will have multiple markers present.

The m-tuple of markers for each grid vertex is “normalized” to generate a m-dimensional barycen-

tric coordinate tuple at each vertex. This resulting field where each point is associated with a barycen-

tric coordinate tuple is called a segmented data set. We utilize “material interface” methods to calcu-

late the boundaries between the regions, using a clipping procedure in barycentric space. The result

is a set of local separatrices in the field, separating the flow field according to the inflow and outflow

regions of the boundary.

The separating surfaces generated by this method are local separatrices (much like those drawn

by Dallmann [5]) of the field defined by the critical points and the field boundary. The user can

use a slicing tool (or other technique) to browse through the separatrices, locating vortices and other

features.

Section 2 describes work related to streamsurfaces, separatrices and vector fields. Section 3

defines the concept of a segmented data set, and discusses methods to find the separating surface be-

tween segments. Methods to sample three-dimensional vector fields and convert them to a segmented

data set are given in Section 4. Implementation details of the algorithm are discussed in Section 5

and results of the use of this method are given in Section 6.

2. Motivation and Related Work

Classical approaches used for bivariate vector field segmentation are difficult to extend to three-

dimensional fields. Two-dimensional vector fields are characterized by their critical points. Classi-

fication of these points, and segmentation by separatrices completely characterizes the flow in the

two-dimensional case. However, three-dimensional vector fields can be arbitrarily complex, may not
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contain critical points (e.g., the NASA delta wing [11]), and may contain complex features that are

very difficult to visualize.

Current three-dimensional vector field visualization techniques are based mainly upon streamline

and streamsurface generation [9, 15]. These techniques use the definition of the vector field to trace

massless particles through the field, tracking their progress by linking them in lines (streamlines) or

surfaces (streamsurfaces). Level sets [23] have been used to enhance streamline generation. How-

ever, the most important segmentation method for vector fields is the generation of separatrices. Sep-

aratrices are streamsurfaces that separate the flow. Scheuermann et al. and others [18, 19, 20, 21, 25]

have done research in this area for two-dimensional examples, but little has been done for three-

dimensional fields [17].

Other methods of automatic vector field visualization have been proposed that adequately vi-

sualize certain features of the data set. However, many of these methods focus on finding certain

phenomena within the vector field [5, 8, 9, 11, 12] without attempting to address the partitioning of

vector fields based on global topological surfaces. Other techniques to visualize three-dimensional

fields [10] also have difficulty in representing topological behavior.

Van Wijk’s method [22] creates implicit stream surfaces by calculating streamlines at all grid

points. This method assigns values to the stream lines in a region of interest, defining a scalar

function that is constant on streamlines. This allows one to obtain streamsurfaces as isosurfaces of

this scalar function.

Our method to generate local separatrices [19] is similar to that of Van Wijk as we also sample

the vector field using streamlines. We use this sampling to develop a segmentation of the field,

effectively replacing the original vector-field information. In this derived representation, the vertices

each have an associated barycentric coordinate tuple that represents the “probability” that the local

separatrix is close to the vertex. The local separatrices, which are separating surfaces defined by the

barycentric coordinate tuples, are generated by a material-interface generation algorithm, similar to

that of Bonnell et al. [2]. The output of the algorithm are local separatrices in the field that separate

the vector field into regions of similar flow.

3. Segmented Data Sets

Suppose we are given a data set based on an unstructured tetrahedral mesh, and an associated set

of “properties” c1, c2, ..., cm. For each vertex p in the data set, we associate an m-tuple α =

(α1, α2, ..., αm), where αi is the fraction of property ci present (or “valid”) at p. We assume that

0 ≤ αi ≤ 1, for i = 1, ..., m, and
∑m

i=1 αi = 1. We will call data sets of this kind segmented. A

segmented data set is thus one where each vertex p has an associated barycentric coordinate tuple α.
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FIGURE 2: The “property space” three-simplex in the case m = 4. The figure illustrates a three-dimensional projection of

the 3-simplex with an embedded tetrahedron.

Müller [14] and Nielson and Franke [6] defined methods to find the separating surface in an

unstructured tetrahedral data set when each vertex is associated with a particular “type” (i.e., exactly

one of the αi values is one for each vertex). Their methods follow the principle of the marching-cubes

algorithm of Lorensen and Cline [13], generating a separating surface within each tetrahedron.

Bonnell et al. [2] have solved a more general problem that treats the output from multi-fluid

Eulerian hydrodynamics calculations. In their application, grid cells contain fractional volumetric

information for each of several fluids, where each cell C of a grid S has an associated m-tuple

(α1, α2, ..., αm) that represents the portions of each of m fluids in the cell. By considering a “dual

grid,” Bonnell et al. associate the m-tuples with vertices of the dual grid and develop a method that

finds a (crack-free) piecewise two-manifold separating surface approximating the boundary surfaces

between the various fluids. Given m fluids, the method can potentially calculate m − 1 separating

surfaces for each tetrahedron.

Following the principles established by Bonnell et al. [2], we consider a 3-simplex (tetrahedron)

T in an unstructured three-dimensional grid containing m properties. Each vertex is of the form

(p, α), where p represents the Euclidean coordinates of the vertex, and α = (α1, α2, ..., αm) is the

associated barycentric coordinate tuple. To determine the possible segment boundaries in T , the

barycentric coordinate tuples associated with the vertices of T are mapped into a tetrahedron Tα in

an (m− 1)-simplex in “property space.” This (m− 1)-simplex has m vertices, where the kth vertex

is associated with a barycentric coordinate that has a value of one in the kth component, and zeros

in the remaining components. We construct a Voronoi diagram in the (m − 1)-simplex, using the

vertices of the simplex as the Voronoi points, and calculate the intersections of the 3-simplex Tα

with the Voronoi cells in the (m − 1)-simplex. These intersections define barycentric coordinates
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that are used to calculate intersections in the Euclidean-space coordinates of T . Triangulating these

coordinates defines the separating surface(s) in T . Executing this method for each tetrahedron of an

unstructured simplicial grid will define the separating surfaces of the properties c1, c2, ..., cm.

In the case of a tetrahedron with four properties, it is sufficient to assume that each vertex of T

has an associated barycentric coordinate tuple α = (α1, α2, α3, α4), where α1 + α2 + α3 + α4 = 1,

and αi ≥ 0. By considering the 3-simplex having vertices (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and

(0, 0, 0, 1) in property space, a partition of this simplex into Voronoi cells can be defined. The

boundaries of these cells are bounded by the faces of the 3-simplex and six 3-dimensional hyper-

planes, defined by the set of α such that (i) α1 = α2, (ii) α1 = α3, (iii) α1 = α4, (iv) α2 = α3,

(v) α2 = α4, and (vi) α3 = α4. The 3-simplex, resulting Voronoi partition, and an embedded

tetrahedron are shown in Figure 2.

Specifically, a tetrahedron T in an unstructured simplicial grid contains k properties if there are

k indices i1, i2, ..., ik, such that the associated barycentric coordinate tuple α = (α1, α2..., αm) of

each vertex of T has the property that αi = 0 for i �= i1, ..., ik. In the k-property case, a tetrahedron

T has an associated tetrahedron Tα in a (k − 1)-simplex in property space. The (k − 1)-simplex is

partitioned into Voronoi cells whose boundaries consist of the faces of the (k − 1)-simplex and the
(
k
2

)
hyperplanes defined by the equations αi = αj , where 1 ≤ i < j ≤ k.

Intersections in the property space (m − 1)-simplex can be found by a straightforward clipping

procedure. Suppose that an edge of Tα with endpoints α(1) and α(2) crosses the hyperplane defined

by α1 = α2. If α is the intersection point, we can compute r such that

α = (1 − r)α(1) + rα(2).

If the first two coordinates of α are equal, i.e., on hyperplane α1 = α2, then the first two coordinates

of (1 − r)α(1) + rα(2) are also equal. Thus,

(1 − r)α(1)
1 + rα

(2)
1 = (1 − r)α(1)

2 + rα
(2)
2 ,

which allows us to calculate r directly. (See Hanson [7] for similar methods.) We utilize a “clipping

and capping” algorithm that allows us to iteratively clip against each Voronoi boundary, capping

the resulting clipped object at each stage. In this way, the clipped object is always convex, and the

capping procedure is straightforward. The polygons of Tα determined by the clipping algorithm

are then used to define polygons in the Euclidean coordinates of T , which represent the segment

boundaries in T .
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FIGURE 3: The inflow/outflow areas of the boundary box in a tornado data set. The terminating tetrahedra with inflow faces

are colored red, and the ones with outflow faces are colored blue. The terminating tetrahedra that have regions of tangential

flow are colored green. Note the circles on the top and bottom of the box boundary. These outline the center vortex of the

tornado on the boundary of the box.

4. Segmenting Vector Fields

Given a vector field defined over a three-dimensional simplicial grid, we use streamlines to sample

the vector field to create a segmentation of the field. The segment boundaries of this field will be ap-

proximations of the local separatrices. We first mark all critical points with a unique value (property),

and identify and mark all connected inflow regions of the boundary. These marks are the property

values of the field. We then sample the field using streamlines, tracing each streamline backward

(see [23]) until it reaches either a critical point, or a boundary. Each streamline is associated with

a unique marker considering its origin. Next, we transfer the marker information to the vertices,

creating barycentric coordinate tuples at the vertices. By applying the segmentation algorithm of

Section 3, we generate the local separatrices of the field.

4.1. Marking Boundary Cells

Streamlines terminate at the boundary of the data set, or at a critical point. Tetrahedra lying on the

boundary or tetrahedra that contain critical points are called terminating tetrahedra. When stream-

lines encounter a terminating tetrahedron, a marker is assigned to the streamline. Two types of

terminating tetrahedra exist: internal and external. Internal terminating tetrahedra contain critical

points [19]. External terminating tetrahedra have one or more triangular faces on the domain bound-

ary. There exist three classifications of boundary triangles on an external terminating tetrahedron: A

boundary triangle is either an inflow triangle, an outflow triangle, or it has a area of tangential flow.

A boundary triangle is an inflow triangle if each vector �v1, �v2, and �v3 associated with the vertices of
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FIGURE 4: Streamline and Triangle. The points s1 and s2 cause the markers associated with p1 and p3, respectively, to be

incremented.

the triangle satisfy

�vi · �n > 0

where �n is the inward face normal of the boundary triangle. Similarly, a boundary triangle is an

outflow triangle if

�vi · �n < 0.

If neither property holds, then the face contains points that have tangential flow.

Terminating tetrahedra are marked using two methods: Internal terminating tetrahedra are de-

tected and marked individually while boundary external terminating tetrahedra are marked using an

area-growing approach. An unmarked boundary terminating tetrahedron T is identified and its type

is determined. A unique mark is then generated and assigned to T . The boundary neighbors of T are

identified and inherit the same mark if they have the same boundary flow characteristic as T . The

algorithm progresses with the neighbor boundary tetrahedra until all boundary tetrahedra have been

marked. Figure 3 illustrates the marking process for terminating tetrahedra on a tornado data set.

4.2. Segmentation

We sample the flow field using streamlines. As streamlines encounter a terminating tetrahedron T ,

they are assigned the marker kT associated with T . We then retrace the points that generate the

streamline, and for each point s increment the mkT
property stored at the grid vertex nearest the

point s. This is illustrated in Figure 4. Given a streamline point s in tetrahedron T , we calculate

the barycentric coordinate β of s in T , and increment the mkT
property in the vertex of T that

corresponds to the largest component of β. This is illustrated in Figure 5.

After sampling all streamlines, we normalize the property values at the vertices of the grid, cre-

ating the required barycentric coordinate tuples. The result is a segmented data set.
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FIGURE 5: Separatrix and Triangle. Points on streamlines on both sides of the separatrix contribute to the barycentric

coordinate tuple at a vertex. The streamline with marker 1 and the streamline with marker 2 both contribute to α2, as the

points s1 and s2 both lie closer to p2.

5. Implementation

The algorithm is straightforward to implement and is based upon streamline generation and interface

construction. However, we have found that the complexity of vector fields, the size of the data sets,

and the sampling strategy creates a number of issues.

• Due to the fact that a large number of inflow/outflow boundary regions may occur on the bound-

ary, the barycentric coordinates tuples may contain a large number of components. However,

most of the data points will be associated with only one marker. Several of the data points may

be associated with two markers near the local separatrices, and the case where three or more

markers are present will be rare. Thus we never store the full barycentric coordinate, but only

those components of each coordinate that are non-zero. This enables the algorithm to work

with a large number of “properties.”

• Many three-dimensional vector fields have orbits, i.e., closed streamlines, that never enter a

terminating cell, see [26]. In this case, a separate “property marker” must be used for each

orbit. We have tested several heuristic algorithms to detect orbits and have implemented one

that correctly identifies orbits when two-tetrahedron patterns are repeated along a streamline.

This strategy seems to work well in practice and is illustrated in the results below.

• The seed points of streamlines can be calculated in different ways. A randomized Monte Carlo

approach can be used, as can a stratified sampling approach, see [3]. In our implementation,

we used an approach that distributes points uniformly throughout a tetrahedron and this seems

to work well. Effective seeding of streamlines is still an issue of further research.

• To reduce potential numerical errors, the accuracy of the generated streamlines is carefully

monitored in our implementation (see [16]). Streamline propagation was restricted to a per-

9



FIGURE 6: The boundary box of the circle data set colored as to the flow of the field across the boundary of the box. Inflow

faces are shown in red, outflow in green, and faces that have tangential flow are shown in blue.

tetrahedron basis, i.e., step size is controlled locally by considering the size of a tetrahedron.

6. Results

Notes for the editors: We have kept this illustrations large in this section of the paper for review

purposes. The pictures will be reduced to one or two pages in the final version.

We have tested this algorithm on several scientific data sets. The initial data set is a circular field,

generated over a 10 × 10 × 10 grid. The boundary box is offset to better illustrate the flow. Figure 6

shows the boundary box with outlines of the tangential flow boundaries. The inflow boundary faces

are shown in red, the outflow faces in green, and the tangential faces in blue. Figure 7 shows a

streamline representation of the field, colored by the property markers. Figure 8 illustrates the results

of the segmentation algorithm on this low-resolution data set.

The second example is a flow field from a simulated tornado. This data set was generated by

Crawfis and Max [4] to illustrate flow patterns in three-dimensional flow fields. The data set is

64× 64× 64. Figure 9 shows the boundary box and the flow patterns on the faces of the box. There

are two outflow regions on the boundary of the box, a circular green region on the bottom of the

box, and all other regions shown in green. Figure 10 shows a side view of illuminated streamlines

(see Zockler et al. [27]) in the tornado flow field. The faces of the boundary box are again colored
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FIGURE 7: Streamline representation of the flow in the circle data set. Regions are colored based upon sample properties.

The orange streamlines are identified as an orbit by the algorithm. The small regions of red and green streamlines in the

lower-left and lower-right regions of the data set correspond to the separating surfaces seen in Figure 8.

FIGURE 8: The separating surfaces generated by the algorithm on the circle data set. In this low-resolution example, the

”kinks” are produced as an artifact of the “marching tetrahedra” algorithm.
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FIGURE 9: The boundary box and the flow patterns on the faces of the box. The inflow faces are shown in red, the outflow

faces in green and the faces with tangential flow are shown in blue.

to represent the flow across their faces. The two outflow regions are clearly visible in this picture.

Figure 11 illustrates the output of the segmentation algorithm with a view that corresponds to that

of Figure 10. Notice that the algorithm correctly identifies the funnel as the boundary of the two

outflow regions. Here we marked streamlines only by the outflow region. Figure 12 illustrates the

streamlines and segmented surface from above.

The third example is from a computational simulation of a spherical argon bubble that is hit by a

1.25 Mach shock in the air. The bubble is deformed through interaction with the vorticity generated

as the shock passes over the bubble. This data set was generated at the Center for Computational

Sciences and Engineering at Lawrence Berkeley National Laboratory and has been used in a variety

of adaptive mesh refinement methods (see Berger and Colella [1]). The data set is 128 × 128 × 256

and we illustrate the field at time step 500. Here the argon bubble has deformed into a shape with a

characteristic “smoke ring.” Figure 13 gives a side view of illuminated streamlines that represent the

field at this time step. The boundary box is also shown with color coding for the flow over the faces

of the box. Figure 14 shows the result of the segmentation algorithm on this data set. The separatrices

shown separate the flow between outflow regions on the boundary box, and also correctly identifies

the ring with the vortices due to the turbulence. The ring is generated by identifying orbits in the

streamlines, see Section 5. Figure 15 and Figure 16 give a front view of the argon bubble flow field

and the results of the segmentation algorithm. Figure 17 and Figure 18 show close-up views of the

ring identified by the segmentation algorithm.
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FIGURE 10: A side view of illuminated streamlines in the tornado data set. The faces of the boundary box are again colored

according to the flow across the faces. In this illustration, the streamlines seeded outside the funnel travel to outflow regions

on the sides and top of the boundary box. Streamlines seeded within the funnel travel to the outflow region at the bottom. on

the top of the data set to the outflow regions on the bottom.

FIGURE 11: The output of the segmentation algorithm on the tornado data set showing the separatrix between streamlines

that flow to different outflow regions. This illustration was produced using the same viewpoint as Figure 10.
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FIGURE 12: A top view of the results of the segmentation algorithm for the tornado data set.

FIGURE 13: A side view of illuminated streamlines representing time step 500 in the argon bubble data set. The boundary

box is also shown with faces colored as to the flow across the boundary of the box. The streamlines shown have been selected

to illustrate the shockwave.
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FIGURE 14: A side view of the result of the segmentation algorithm on the argon bubble data set. The shockwave (ring) is

clearly identified along with closed surfaces trailing the shockwave due to the turbulence.

FIGURE 15: A front view of the illuminated streamlines in the argon bubble data set.
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FIGURE 16: A front view of the results of the segmentation algorithm on the argon bubble data set.

FIGURE 17: A close-up view of the “ring” identified by the segmentation algorithm.

16



FIGURE 18: A close-up view of the “ring” identified by the segmentation algorithm.
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7. Conclusions and Future Work

We have presented a new algorithm to generate separating surfaces in three-dimensional vector fields.

The algorithm samples the vector field using streamlines, replaces the original vector field by a

derived segmented data set, and uses the segmented data to generate the separating surfaces. The

algorithm is straightforward to implement and is applicable to a large number of data sets.

The proposed algorithm could be improved in several ways. Using knowledge about regions of

tangential flow on the boundary and the critical points, we could seed our streamlines near critical

points [24] and near tangential flow regions [19]. This strategy avoids processing streamlines away

from the local separatrices. We plan to utilize these techniques to improve the sampling process and

produce an “interactive” data exploration environment for vector fields. These separating surfaces

should also be generalized to time-varying data.
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