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Abstract
Isosurface extraction is a standard method for vol-
ume data exploration, where a surface is extracted
according to a chosen isovalue of some trivariate
function. Automated isovalue-selection algorithms
typically offer a ranking of possible isovalues, from
which a user can choose. During isosurface ex-
traction, the isovalue is kept constant throughout
the data set. For most biological data, however, it
would be desirable to adjust the isovalue locally due
to shifts in the “material boundary value.” This ef-
fect becomes particularly evident when segmenting
anatomical branching structures of high fractal di-
mension. Adjusting isovalues manually is too te-
dious to be practical. We present an automated con-
touring approach with locally changing isovalues.
We call the resulting surface “metasurface.” Meta-
surface extraction is based on identification of struc-
tural information and detection of segments, which
allows for local isovalue determination and local
isosurface extraction. Our approach blends the con-
tours corresponding to different isovalues.

1 Introduction
Medical imaging techniques like computed tomo-
graphy (CT), magnetic resonance imaging (MRI),
or confocal microscopy today have the precision
that allows for acquisition of high-quality “three-
dimensional images.” Resolution sensitivities are in
the range of a few tenths of millimeters for CTs and
MRIs, and in the range of micrometers for confocal
microscopy. Our work is motivated by the desire to
visually explore bio-medical volume data represent-
ing branching structures, examples being blood ves-
sels, lung airways, or ganglion dendrites, see Figure
1.1 High-resolution imaging techniques are capable
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1Image courtesy of C.G. Plopper, Department of Anatomy,

Physiology, and Cell Biology, University of California, Davis.

of capturing branches of a range of many orders,
where order refers to the level of a branch in the
branching hierarchy.

Figure 1: Cast of rat lung.

Isosurface extraction (or contouring) is a stan-
dard technique to compute “material boundaries”
from volume data. The geometry is used to visu-
alize the structural information of a scanned ob-
ject or to quantitatively analyze it. Each material
boundary (or tissue type in most bio-medical ap-
plications) is associated with an isovalue, i. e., a
threshold used to separate interior from exterior ma-
terial. The underlying assumption is that the mate-
rial properties hardly change in the entire data set.
This assumption, however, sometimes needs to be
“loosened” when dealing with biological data. In
branching data, where partial voluming adds an ad-
ditional challenge, there appears to be a slight shift
in material density when traversing the branching
hierarchy, leading to the fact that no global constant
isovalue is the perfect choice throughout the whole
structure. Instead, one needs to locally adjust the
isovalue to the changing material properties.

A locally adjustable isovalue selection allows for
the extraction and visualization of all the structural
information in the underlying data including fea-
tures that are mutually excluded when using tradi-
tional isosurface extraction. Merely extracting an
isosurface and relaxing the surface to match the ma-
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terial boundary of the branching structure does not
work, since geometry for both large and small fea-
tures would not be present when starting with one
isosurface.

We present an approach to extract contours lo-
cally and combine the local contours to define a
global surface. Although many segmentation algo-
rithms exist and some of them produce more gen-
eral results than isosurfaces, no terminology has
been specified for such surfaces. To keep the de-
scription of our algorithm precise, we need to dis-
tinguish between the local isosurfaces an the global
surface. Thus, we would like to use the term “meta-
surface” for the global one with “meta” being the
Greek word for “alter” or “change,” as “iso” is the
Greek word for “same” or “equal.” We provide a
formal definition:

Definition 1 Let f : IR3
→ IR be a trivariate scalar

function. A metasurface is defined implicitly as the
solution of the equation

f(x, y, z) = fiso(x, y, z) ,

where fiso : IR3
→ IR is a continuous function rep-

resenting a three-dimensional field of changing iso-
values.

Thus, isosurfaces are a subset of metasurfaces,
where fiso(x, y, z) = viso ∈ IR is a constant. If
the isovalue field fiso were known, we could ap-
ply standard isosurface extraction to the scalar field
f −fiso. Unfortunately, fiso is unknown and needs
to be determined explicitly or implicitly. The idea
behind our algorithm is to partition the domain of
scalar field f into small regions, where fiso is ap-
proximately constant, to locally extract isosurfaces
within each region, and to stitch the isosurfaces to-
gether to form the resulting metasurface.

When extracting isosurfaces from volume data,
the selection of an appropriate isovalue viso is
often left to the user, who must perform a te-
dious trial-and-error process to find a suitable
value. Obviously, it would be even more tedious to
find an appropriate locally changing isovalue-field
fiso(x, y, z) in such a trial-and-error process. Thus,
our intention was to automate the metasurface ex-
traction process as much as possible.

Some methods exist to automatically determine
isovalues from a given volumetric scalar field. The
methods typically consider gradient or even higher-
order derivative information in addition to the scalar

field to generate a list of ranked suggestions for a
good isovalue, from which a user can pick the most
suitable one. Our metasurface extraction algorithm
automatically determines an appropriate field fiso.

The metasurface extraction algorithm consists of
multiple steps. First, we identify structural infor-
mation throughout the volume data, as described in
Section 3. The structural information can be used to
partition the data set into volumetric segments con-
taining all relevant data, as discussed in Section 4.
In Section 5, we locally determine suitable choices
for isovalues independently within each segment.
Then, we can perform a local isosurface extraction
within each segment. A final step combines the lo-
cal isosurfaces to a global metasurface by blending
the surfaces in the transition areas, as described in
Section 6. The processing pipeline is shown in Fig-
ure 4.

2 Related Work

Isosurfaces are commonly extracted from volu-
metric scalar fields using marching algorithms for
three-dimensional grids. These algorithms go back
to the marching-cubes approach [16], which oper-
ates on uniform rectilinear grids. Many extensions
and improvements have been made to the original
approach including the solution of ambiguous cases
[7], better triangulations [19], application to tetra-
hedral grids [6], and a generic algorithm combin-
ing previous approaches [2]. A dual contouring ap-
proach has been introduced in [9], which has advan-
tages when dealing with adaptively refined grids.
The metasurface extraction algorithm presented in
this paper adopts the marching nature of existing al-
gorithms, as it consecutively considers one grid cell
at a time.

Determining an appropriate isovalue is a chal-
lenge inherent in any isosurface extraction method.
Early approaches left the choice of an appropriate
isovalue to the user. Tedious trial-and-error pro-
cesses led to the desire to have them replaced by
an automated method. A related topic is the choice
of appropriate transfer functions for direct volume
rendering techniques.

In [18], the trial-and-error process is replaced by
producing and displaying a high number of results
using various possible transfer functions, which re-
duces user interaction and makes the selection pro-
cess more intuitive. In [1], isosurfaces are extracted
automatically by examining the gradients of the vol-
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umetric scalar field and choosing the isovalue as the
maximum of a weighted gradient spectrum. In [12],
selection of transfer functions is based on investi-
gating a two-dimensional histogram of scalar val-
ues and gradients. This work was extended in [15]
by introducing a set of direct manipulation widgets
for multi-dimensional transfer functions. In [20],
another layer of abstraction is added, as the user
operates on the visualization results while the his-
tograms are not transparent to the user anymore.

For the extraction of metasurfaces, we believe
that user interaction for selection of an isovalue-
field fiso(x, y, z) is no longer an intuitive process.
Thus, our goal is to generate a completely auto-
mated surface extraction algorithm. To accomplish
this goal, we make use of existing automated iso-
value selection methods.

Methods detecting more than one isovalue have
been used to display multiple isosurfaces (e. g.,
[5, 10]) but not to adjust isovalues locally or to
automatically determine locally changing isoval-
ues. To extract isosurfaces from volume data repre-
senting objects with branching structures, surface-
growing algorithms have been developed. In [8],
three-dimensional regions are grown when the lo-
cal variation in intensity (scalar value) and gradi-
ent are above a certain threshold. In [3] (and to
some extend in [13] and [14]), conventional three-
dimensional region growing is supplemented with
two-dimensional propagation based on local two-
dimensional filters. Again, regions are grown when
the filtered value based on intensity and gradient lies
above a certain threshold. However, leaking due to
noise is still a problem and is only dealt with by
making certain assumptions about the size of the
segmented features or by user intervention.

Segmentation surfaces that do not need to de-
scribe an isosurfaces can also be achieved using ac-
tive surface models including many variations of
snakes [11], level-set methods [17] and other de-
formation models. These methods segment the vol-
ume data starting with an initial surface and iter-
atively adjusting that surface with respect to cost
functions. In particular, adaptive level-set methods
[4] have proved to be practical for various applica-
tions. However, the choice of an appropriate cost
function that leads to the determination of a surface
desired for our application is not straight forward.
A lot of tweaking may be necessary to compromise
between following desired features and not produc-

ing leaks.
A visualization similar to rendering metasurfaces

may be generated by direct volume rendering tech-
niques when applying multi-dimensional transfer
functions [15]. However, no boundary surface is
extracted that could be used for further processing
including quantitative analysis.

3 Identifying Structural Information

Let the trivariate function f be the representation
of a scanned object. In bio-medical imaging ap-
plications, f represents density or similar intensity
values of scanned materials or tissue types. The
materials range from gases and liquids to solids of
varying density like bones. In particular, for ob-
jects with branching structure, one can distinguish
between gases or liquids inside the branching struc-
ture, the branching structure itself given by tube-
like branches and joints of branches, and gases or
liquids surrounding the branching structure.

Our first goal is to identify the structural infor-
mation in the volume data. By structural informa-
tion we refer to the parts of the data that possi-
bly contain information about the structure of the
scanned object. We separate structural information
from internal or surrounding material in a crude pre-
segmentation. We want to define masks to “mask
out” material not to be considered for further inves-
tigation. A mask can be represented by the union of
intervals from the range of function f .

The function f is given in a discrete fashion,
as a volumetric grid used to approximate a scalar
field. The scanning procedure of bio-medical imag-
ing techniques typically results in a stack of two-
dimensional images, which can be arranged to form
a three-dimensional regular rectilinear grid with
grid cells being cubes or cuboids. Masks can op-
erate on this discrete data structure determining for
each grid cell whether it contains structural infor-
mation (see Figure 4).

The simplest case for the definition of the mask
is given when density/intensity values of non-
structural parts, i. e., of internal and surrounding
material, are approximately known and, in addition,
structural parts are known to have different den-
sity/intensity values. The mask can directly be de-
fined as the interval I including exactly the known
density values for non-structural parts. All grid cells
that only contain values within the range of interval
I are “masked out.”
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In case no a-priori knowledge about the underly-
ing data is given, we have to automatically deter-
mine an appropriate mask. An automated isovalue-
selection algorithm applied to the entire data set can
be used for this purpose. Any of the approaches
described in Section 2 can be used. We decided
to use an approach based on two-dimensional his-
tograms, where the two dimensions are given by
density/intensity values and their gradients, which
proves to be sufficient. From the histogram we can
deduce which values are likely to describe structural
and non-structural information, respectively. We
base our decision on the assumption that solids have
higher densities than gases or liquids. We pick val-
ues with respect to high density-gradient peaks from
the two-dimensional histogram in the upper density
region. We define our mask by an interval describ-
ing densities of non-structural information chosen
with a certain error tolerance. The error tolerance is
introduced based on the fact that, in case of doubt,
it is better to choose a smaller interval in order to
“mask out” less.

Once the masks have been applied, we can com-
pute local bounding volumes. A bounding volume
is a section of the data set that contains part of the
relevant structural information. The data structure
of a bounding volume is a collection of adjacent
grid cells, often approximating the discretized ver-
sion of a bounding box.

When considering branching structures, the data
set has many tube-like branches winding or stretch-
ing through the volumetric domain. The idea for
the selection of the size s = (s1, s2, s3) of a bound-
ing volume is that bounding volumes should be lim-
ited by the diameter of the branches to be extracted.
To determine an appropriate value for s, we extract
an isosurface using the “best” global isovalue de-
rived from the two-dimensional histogram as de-
scribed above. Based on the isosurface, we can ap-
proximate the average diameter d of the branches.
The average diameter is just a rough estimate de-
rived from the diameter of some extracted tubes.
If existent, a priori-knowledge can be used instead.
The size s of the bounding volumes is set to s =
(d, d, d).

Using s as a guiding value, we partition the vol-
umetric domain of our data set such that each grid
cell that has not been “masked out” belongs to ex-
actly one bounding volume. Because of prior mask-
ing, bounding volumes are not necessarily box-
shaped (see Figure 4).

4 Detecting Segments
Based on the identification of structural information
using masks and the size of bounding volumes, we
detect individual segments. The idea is to detect
small segments of a branch that can be stitched to-
gether to define the entire branch, while the geom-
etry of each segment can be computed locally and
independently of the other segments.

Segments are detected in a constructive way
while traversing the volumetric grid. A segment S

is constructed by starting with a grid cell, which
contains structural information, and exploring its
neighbor cells. If any of the neighbor cells also con-
tain structural information, we add them to segment
S. Progressively, we explore the neighbors to possi-
bly add more cells to segment S, proceed with their
neighbors, and so on. The exploration strategy is
defined by a breadth-first search. The search ter-
minates when none of the neighbors can be added
to the current segment S or when segment S has
reached its maximum size limited by the bounding
volume size.

After one segment has been completed, we iter-
ate our procedure to construct more segments. As
long as there are grid cells that are identified to con-
tain structural information and do not belong to any
of the segments extracted so far, we generate new
segments.

5 Local Isosurface Extraction
Since the detected segments are of limited size, we
can assume that the changes of the isovalue-field
fiso within the bounding volume of a segment are
very small. Thus, we set fiso = viso for a constant
value viso ∈ IR and apply an isosurface extraction
method to extract the desired material boundaries
locally for each segment, see Figure 4.

To determine the local isovalue viso for a seg-
ment S, any of the automated isovalue computa-
tion methods described in Section 2 can be ap-
plied. We have tried algorithms based on one- and
two-dimensional histograms, i. e., based on den-
sity/intensity values solely or on density/intensity
values and their gradients, respectively. For the cho-
sen examples, a one-dimensional histogram-based
approach was sufficient.

For implementation efficiency and simplicity
purposes, we store the automatically determined
isovalue viso in each grid cell of segment S. When
doing so for all segments detected in the previ-
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ous step, we obtain a discrete representation of our
isovalue-field fiso. Standard isosurface extraction
algorithms can be applied globally to extract the in-
dividual local isosurfaces for each segment. The
only difference to traditional isosurface extraction
is that the isovalue is not a constant but is being
looked up for each grid cell individually.

We have implemented a marching cubes-like ap-
proach that traverses the volumetric grid once. Grid
cells that do not contain any structural information
are tagged (see Section 3) and can be skipped.

6 Blending Isosurfaces

Let S1 and S2 be two adjacent segments. Each seg-
ment has an automatically detected isovalue associ-
ated with it. Let v1 be the isovalue for segment S1

and v2 be the isovalue for segment S2. When iso-
surfaces of two adjacent grid cells are extracted with
respect to different isovalues, the two extracted iso-
surface components do not match generally on the
shared cell faces. Figure 5 shows four selected pos-
sible cases that can emerge on the shared cell face.

The surface as a whole is discontinuous. Such
artefacts are known in the context of extracting iso-
surfaces from adaptively refined grids. Such dis-
continuities are often referred to as “cracks.” In our
case, however, the representation of the scalar field
is continuous (assuming piecewise linear interpola-
tion), which we can use to “fix the cracks” in the
sense of contour stitching.

In marching cubes-like isosurface extraction, the
vertices of the resulting triangular mesh (the so-
called “isopoints”) lie on the edges of the grid. To
resolve the discontinuities in our surface, we have
to ensure that the isopoints on the shared edges for
segments S1 and S2 coincide.

The marching-cubes case-table leads to different
possible constellations on the shared face. In the
regular case, as depicted in Figure 5(a), we can
blend the contours (shown as dotted and dashed
lines, respectively) by relaxing the local isosurfaces
to match the contour with respect to the “average”
isovalue v1,2 = v1+v2

2
(shown as a solid line).

In case the two contours do not intersect the same
edges of the shared face, as depicted in Figures 5(b),
the shared face reflects a transition with respect to
the marching-cubes cases. To accommodate for
such a transition, the two contours are relaxed to a
contour that contains face vertices. In case of topo-
logical changes, as depicted in Figures 5(c)-(d), we

can proceed in the same way. The contour lines may
degenerate to points at the cell vertices.

The resulting surface is a metasurface without
discontinuities.

7 Results
Figures 2 and 6 show the results we obtained when
applying our metasurface extraction approach to the
data set of a rotational x-ray scan of the arteries of
the right half of a human head. The x-ray scan ex-
hibits an aneurism.2 The goal was to extract the
geometry of the arteries’ branching structure. The
data size is 2563 with a 1 : 1 : 1 spacing.

In Figure 2, we compare the results from isosur-
face extraction (using a traditional marching cubes-
like approach) with the results from our metasurface
extraction approach. The upper row shows an iso-
surface extracted from the entire volumetric data set
(Figure 2(a))3 and from a part of the volumetric data
set (Figure 2(b)). The branches in Figure 2(b) are
not connected, as the branching structure continues
outside the chosen volumetric domain. The middle
row shows a metasurface. The metasurface extrac-
tion algorithm was also applied to the entire data
set (Figure 2(c)) and the chosen part (Figure 2(d)).
Our metasurface approach is capable of extracting
much more structural branching information when
compared to the standard isosurface approach.

We observed that the data set contains noise. Our
segment detection algorithm is sensitive to noise,
as it detects even very small segments. An auto-
mated approach cannot distinguish between noise
and actual small features without using heuristics.
Thus, we incorporated an optional user intervention
mechanism applied during segment detection to re-
duce or even eliminate noise. As we keep track of
the size of the segments we detect, we can suppress
segments up to a given size. Ideally, all segments
of a size below a certain threshold represent noise
and all segments of a size above the threshold rep-
resent features of the structure. What is left to the
user is to select the threshold from an interval with
range zero to bounding volume size. This selection
is as simple as adjusting a single slider and com-
parable to choosing the size of a 3D low-pass filter
in a preprocessing. To make our algorithm com-
pletely automatic (even for data containing noise),
we set the threshold by default to an empirically de-

2Data set courtesy of Philips Research, Hamburg, Germany.
3Also cf. http://www.volvis.org/.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Isosurface extraction (upper row) compared to metasurface extraction without (middle row) and
with cutting of noise (lower row). Algorithms were applied to aneurism data set (left column) and a part of
the aneurism data set (right column). Metasurface extraction was capable to extract much more structural
information of branching structure including branches of high order.
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termined value. The lower row of Figure shows 2
the results. Again, we applied the metasurface ex-
traction algorithm to the entire data set (Figure 2(e))
and the chosen part (Figure 2(f)).

Coloring of isosurfaces is usually done using a
single color, which does not add any information
about the data set (see Figure 2). When extracting
metasurfaces, the surface can be colored with re-
spect to the locally changing isovalue, as shown in
Figure 6. We defined a one-dimensional continuous
transfer function, which assigned each value of the
range of the scalar function f a color. Each local
isosurface is drawn in the color assigned to the iso-
value that was used to extract the local isosurface.
Figures 6(a) and (b) illustrate the coloring of meta-
surfaces without and with cutting using the surfaces
from Figures 2(c) and (e), respectively. We used a
color map ranging from bright yellow to dark red,
and flat shading to emphasize the change in color.
The colors indicate the shift in density/intensity val-
ues for different-order branches in the branching
structure data.

In Figure 3, we apply isosurface and metasurface
extraction to a part of a data set with low signal-to-
noise ratio. The data set represents a CT scan of a
canine lung.4 While the extracted branches are dis-
connected for the isosurface in Figure 3(a) due to
noise, the metasurface in Figure 3(b) exhibits the
geometry of a branching structure. Compared to
Figure 1, we did not capture all branches, which is
primarily due to the resolution of the scanning tech-
nique (branches in the subpixel range).

The results show that approach can automatically
obtain locally adjusting segmentation results in a
general setting. No manual tweaking of several
parameters is necessary, and there are no obvious
flaws (such as leaking artefacts) in our segmenta-
tion.

The complexity of our metasurface extraction al-
gorithm is linear in the number of grid cells. In
our current implementation, we iterate three times
through all grid cells. This number could be re-
duced to two by combining the segment detection
with the local isosurface extraction step. The com-
putation times for the shown examples are in the
range of a few seconds. For larger data sets we be-
lieve that using a hierarchical volumetric data orga-
nization would be beneficial, especially when larger

4Data set courtesy of E.R. Wisner, Department of Surgical and
Radiological Sciences, University of California, Davis.

blocks of volumes exist that do not contain struc-
tural information.

The results document that metasurface extraction
is superior to a marching-cubes-like isosurface ex-
traction method when it comes to the extraction of
branching data with a shift in material boundary val-
ues. It remains to compare our approach to region-
growing or active-surface/level-set approaches. For
future work, we plan on implementing other state-
of-the-art approaches and comparing them to our
approach in a user study: Experts in lung anatomy
are to evaluate all methods pointing out their advan-
tages and drawbacks.

8 Conclusions and Future Work
We have presented an algorithm for the extraction
of metasurfaces. Metasurfaces are “material bound-
ary surfaces extracted with changing isovalue.” The
motivation for introducing metasurfaces is the de-
sire to extract material boundaries from volumetric
bio-medical imaging data, especially when consid-
ering objects with branching structure. Often, one
can observe density shifts in the boundary material,
which requires the adaption of the isovalue during
boundary surface extraction.

Our metasurface extraction algorithm is based on
detection of structural information using a masking
technique, size estimation for boundary volumes,
volume partitioning into segments, local isosur-
face extraction, and blending of local isosurfaces.
We applied our methods to objects with branching
structure and achieved a significant improvement in
results when compared to traditional isosurfacing
approaches. Features mutually excluded by stan-
dard isosurfacing techniques can be incorporated
into one surface.

An obvious target for improvement is the size
of the bounding volume, which currently is de-
fined globally. As we extract isosurfaces locally, the
bounding volume size should vary locally. We also
plan on investigating how we can make isovalues
vary continuously rather than in discrete steps. Con-
tinously changing isovalues would make the blend-
ing step obsolete.
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Figure 4: Processing pipeline for metasurface extraction.

(a) (b) (c) (d)

Figure 5: Blending (solid lines) of contours (dashed and dotted lines) on a common face: (a) Regular case.
(b) Geometrical change. (c),(d) Topological change.

(a) (b)

Figure 6: Colored metasurfaces extracted from aneurism data set without (a) and with cutting of noise (b).
Colors refer to locally chosen isovalue using one-dimensional continuous transfer function.
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