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Summary. Large biomedical volumetric data sets are usually stored as file sets,
where the files represent a family of cross sections. Interactive rendering of large
data sets requires fast access to user-defined parts of the data, because it is vir-
tually impossible to render an entire data set of such an enormous size (several
gigabytes) at full resolution, and to transfer such data upon request over the In-
ternet in a reasonable amount of time. Therefore, hierarchical rendering techniques
have been introduced to render a region of interest at a relatively higher resolu-
tion. Regions rendered at coarser resolutions are provided as context information.
We present a dynamic subdivision scheme that incorporates space-subdivision and
wavelet compression.

1 Introduction

Real-color volume data sets can be obtained by taking photographs or scan-
ning cross sections of objects. These objects are typically in a frozen state
(cryosections). These techniques produce high-resolution image data in real
color. The resolution is only limited by the camera or the imaging device, and
not so much by principal limitations of the scanning device, because there is
no complex matrix transformation required to obtain 2D image data, as it
is the case for computed tomography (CT) or magnetic resonance imaging
(MRI). Therefore, real-color volume data sets tend to be much larger than
CT or MRI data.

A typical setup is a client-server architecture, where a large-scale data
set is stored on a powerful server, and the rendering is performed on the
client side. In order to make a data set available on a visualization server and
transmit data progressively to a rendering client, we need to compactify the
data set and break it down into smaller ”bricks”. The order of transmission
and the size or resolution of the bricks is determined and driven by the client
application. Our system uses a Windows N'T-based server system which is
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both data repository and content provider for shared rendering applications.
The NT system is connected to a Unix file system from where it accesses the
data. The client accesses the server via a web-based interface.

The client selects a data set and sends a request to the server. The server
analyzes and interprets the request and returns a customized Java applet to-
gether with an appropriate representation of the data set. The Java applet is
optimized for a specific rendering task. This means that the rendering algo-
rithm is tailored to a particular problem set. This keeps the applet small and
avoids additional overhead and considering different cases. The initial data set
is also small. It is refined later upon additional requests by the client. Bricks
of different sizes and different resolutions may be requested from the server.
We present a method that combines dynamic space-subdivision algorithms,
such as adaptive octrees for volumes, wavelet-based data representation, and
progressive data transmission for hierarchically stored volume data sets [1],

(8], [10].

2 Indexing scheme

Previous work on space-subdivision [4], [5], [11] has shown that octrees pro-
vide an efficient method to store large volume data sets, as long as the depth
of the octree is limited. Otherwise the data structures become so complex
that tree traversal causes additional overhead [9]. Wavelet compression has
been proven as an efficient method to transform a data set into a multires-
olution representation. Unfortunately, it is difficult to extract sub-volumes
from a compressed data set. We present a technique which combines both
methods in order to optimize performance.

A web-based user interface with local rendering capability on the client
side [7] requires hierarchical data representation on the server site. The server
transmits a coarse overview representation of the entire data set (context
information), which allows the user to select a region of interest. When this
region is specified, the client application sends a request to the server, which
responds by transmitting sub-volumes of the specified region at increasingly
higher resolutions. The client progressively refines the image for the specified
region. A prototype implementation is described in [7].

Biomedical imaging data are usually structured as sets of files, which
represent a series of 2-D cross sections. By arranging all slices in a linear
array, we obtain a 3-D volume. Unfortunately, when accessing the data, in
most cases we do not make use of the implicit coherency across single slices.
This coherency is only useful for extraction of cross sections perpendicu-
lar to the scanning direction, i.e., within a single image plane. Instead, in
most cases we need brick-like coherency within sub-volumes. Therefore, we
present a new data structure, which uses a combination of delimited octree
space-subdivision and wavelet compression techniques to achieve better per-
formance.
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In this article, we present an efficient indexing scheme, an adaptive data
reduction method, and an efficient compression scheme. All techniques are
based on integer arithmetic and are optimized for speed. Binary bit operations
allow for memory-efficient storage and access.

We use a standard file system (Unix or FAT32) to store our derived data
structures, and we use file names as keys to the database. This allows us to
avoid additional overhead, which is typically caused by inserting additional
access layers between the application and the underlying storage system.
We found that this method provides the fastest method to access data. Our
indexing scheme in conjunction with the underlying file system provides the
database system (repository) for the server application, which reads the data
from the repository and sends it to a remote rendering client upon request.
Initially, a low-resolution representation is requested from the repository and
rendered on the client side. This coarse representation provides context cues
and sufficient information for initial navigation. After a user has specified a
sub-volume or region of interest, the client application sends a new request to
the server to retrieve a sub-volume at a higher level of detail. When using the
data structures described below, this updating procedure typically requires
considerably less time compared to the single-slice representation, because a
smaller number of files needs to be accessed. The initial step, which requires
reading the initial section of every file, i.e., all bricks, can be accelerated by
storing an additional file that contains a reduced version of the entire data
set.

3 Storage scheme

The file size f for storing the leaves of the octree structure should be a
multiple n of the minimum page size p of the file system. The value of p
is typically defined as a system constant in /usr/include/sys/param.h on
Unix systems. The value of n depends on the wavelet compression method
described below. If the lowest resolution of the sub-volume requires b bytes,
the next level requires a total of 8 - b bytes (worst case, uncompressed), and
so forth.

We assume that we have a recursion depth of r for the wavelet represen-
tation, leading to 8" - b bytes that must fit in f. This implies that

f:n-pZSr-b. (1)

Both r and b are user-defined constants. Typical values are b = 512, which
corresponds to an 8 X 8 X 8 sub-volume, and r = 3, which provides four levels
of detail over a range between 8°-512 = 512 and 83 - 512 = 262,144 data
elements, which is a range of more than 2.7 orders of magnitude.

For optimal performance, and in order to avoid gaps in the allocated files,
we can assume that

n-p=2_8"-b, (2)
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thus

_Qr
n=28 o (3)
The enormous size of the data sets (see Section 4) requires that the data
is subdivided into smaller chunks that can be loaded into memory within a
reasonable amount of time [2], [6]. Since we are extracting sub-volumes, it
seems natural to break the data up into smaller bricks. This can be done
recursively using an octree method [4], [5], [11]. Each octant is subdivided
until we reach an empty region that does not need to be subdivided any
further, or until we hit the file size limit f, which means that the current leaf
fits into a file of the given size.
Each leaf contains a part of the original data set at full resolution. Memory
space is reduced by skipping empty regions. Typically, the size of the data
set shrinks to about 20% of the original size (see Section 5).

original (256 x 256) n =8 n=7

n=4

Fig. 1. Haar wavelet compression scheme (2-D case)
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Progressive data transmission and extraction of a region of interest re-
quires to access the data set in a hierarchical fashion. Therefore, it is useful
to convert the leaves into a multiresolution representation. This representa-
tion must be chosen in a way that the reconstruction can be performed most
efficiently with minimal computational effort [12]. Haar wavelets satisfy these
requirements. They also have the advantage that they can be implemented
easily with integer arithmetic [13]. The lowest resolution (Figure 1, lower-
right image) is stored at the beginning of the file, thus avoiding long seek
times.
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For the wavelet representation, we associate each sub-volume with a vector
space V that consists of a set of piecewise linear functions. The space VO is
associated with a constant function that is defined over the domain [0, 1) and
describes a single pixel. The space V' consists of 27 intervals, with a constant
function defined on each of these intervals. All vector spaces are subsets of

each other, i.e.,
Vic Vit i e No. (4)
We choose the following scaling functions as the basis functions for Vi:
¢ii(z) = ¢(2'x — j), j €1{0,...,2" — 1}, where

Mﬂ=<L ifo<a<l

0, otherwise.

(5)

Figure 2 illustrates the scaling functions.
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Fig. 2. Wavelet transformation: scaling functions
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We define another vector space W' that comprises all functions of Vit!,
and which is orthogonal to all functions in V*. These basis functions, which
span W', are the Haar wavelets, defined as

#’M('I) = 1/’(2% —7), j€{0,.., 20 — 1}, where

1, ifo<z<? (6)
1/;(:B):<—1, ifi<az<l1
0, otherwise.

Figure 3 illustrates these basis functions.
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Fig. 3. Haar wavelets

A discrete signal in V! can be represented as a linear combination of
the basis functions of V9 and W ... W’. We can represent an image I as

I(z) = Zli Pu_1i-1(T), (7)

where l;,7 € Np, is the image data. After the first transformation, we

obtain

nj/2 nf2

1) = Yl bgmnima(@) + Y ch - bpoaina(o), (®)
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where the first sum represents the averaged image data, which can also
be described as a low-pass filtered image, and the second sum comprises the
detail coefficients, representing a high-pass filtered image, or the difference
between one of two adjacent pixels and their average value. A detail coefficient
describes the symmetric error or deviation of the averaged value from one of
the two original values.

It is easy to lift this scheme to the 3-D case. A simple solution would be an
enumeration of all grid points, e.g., row-by-row and slice-by-slice, in a linear
chain, so that one can still apply the 1-D algorithm given above (standard
decomposition). This, of course, would reduce the data set only by a factor
of two, instead of 23 = 8. Thus, we apply the algorithm alternatingly to each
dimension. Figure 4 shows the method for the 2-D case [12].

Helg! | | HeHgs

I Image :
Lg/L¢: low-pass filter on rows/columns
Hg/H¢: high-pass filter on rows/columns

Fig. 4. Wavelet compression scheme

First, all rows of the original image I are decomposed into a low-pass-
filtered image Lpl (reduced image) and the high-pass-filtered components
HplI (detail coefficients). For the next transformation, the algorithm is ap-
plied to the columns, which results in Lo Lrl, HoLpl, Lc Hrl, and HcHpl
(prefix notation). The same technique can be used in three dimensions.

After each cycle, we end up with a reduced image in the upper-left corner.
Subsequently, the algorithm is only applied to this quadrant (see Figure 5).
The algorithm terminates when the size of this quadrant is one unit length
in each dimension.

This method of alternating between dimensions is known as non-standard
decomposition (Figure 1 shows the LcLr components for an MRI scan at
different levels of detail).
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Fig. 5. Wavelet compression: memory management

A very useful property of the wavelet scheme is the fact that even for loss-
less compression a volume converted into the wavelet representation requires
the exact same amount of memory as the original representation. Since many
coefficients are relatively small, the number of different discrete values is also
small, provided we use integer arithmetic. Extremely small values can be ne-
glected to obtain even better compression rates (lossy compression). We use
a simple run-length encoding (RLE) scheme that turns out to be efficient,
especially for small brick sizes b. It also allows for easy decoding. The space
requirement (lossless compression) is the same for all subsequent wavelet re-
cursions, i.e., for all levels of detail. The wavelet algorithm terminates when
it reaches a pre-defined minimum sub-volume size b. The lower bound is the
size of a single voxel.
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Fig. 6. Numbering scheme
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Each octant can be described by a number [3]. We use the following
numbering scheme (see Figure 6): A leaf is uniquely characterized by the
octree recursion depth and the octree path. We limit the recursion depth to
eight, which allows us to encode the depth in three bits. In order to store the
path, we need three bits per recursion step, which gives us 24 bits. Four bits
are spent to encode the depth of the wavelet recursion. The remaining bit is
a flag that indicates whether the file is empty or not. This prevents us from
opening and attempting to read the file and accelerates the computation. The
total number of bits is 32 (double word).

3 3 3 4 1
oct.depth| sub 1 o sub 8 | wav.depth |empty

Fig. 7. Tree encoding

Each bit group can be easily converted to an ASCII character by using
binary arithmetic, e.g., (OCT_DEPTH >> 29) | 0230 (’C’ notation) would
encode the octree depth as an ASCII digit. By appending these characters
we can generate a unique file name for each leaf.

In order to retrieve a sub-volume, we have to find the file(s) in which the
corresponding parts are stored. We start with the lower-left-front corner and
identify the subvoxel by recursive binary subdivision of the bounding box for
each direction. Each decision yields one bit of the sub-volume path informa-
tion. We convert these bits to ASCII characters, using the same macros as
above. The first file we are looking for is Txxxxxxxx77, where the ’x’s describe
the path, and ’?’ is a wildcard. If this file does not exist, we keep looking
for 6xxxxxxx7??7, and so forth, until we find an existing leaf. If the file name
indicates that the file is empty (last digit), we can skip the file. The file name
also indicates how many levels of detail we have available for a particular
leaf. This allows us to scale the rendering algorithm. In order to retrieve the
rest of the sub-volume, we must repeat this procedure for the neighboring
leaves. The number of iterations depends on the recusion depth and therefore
on the size of the leaves found. The algorithm terminates when all files have
been retrieved and the sub-volume is complete.

4 Results

Our test application focusses on biomedical imaging. We have designed a
prototype to support 3-D visualization of a human brain, which allows us
to study details by moving tools, such as an arbitrary cutting plane and
different-shaped lenses, across the data set. The various data sets are typically
between 20 MB and 76 GB in size, which makes them too large to transfer
over the Internet in real time. The rendering client operates independently
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from the size of the data set and requests only as much data as can be
displayed and handled by the Java applet.

n_ Velad | EMsl  Ducken [ilic

=] @ Wechsenau [ Links »|

vrml
model lens  setup

EW7F7/W7V

Fig. 8. Prototype application

The web-based user interface combines HT ML-form-driven server requests
with customized Java applets, which are transmitted by the server to accom-
plish a particular rendering task.

Our prototype application (Figure 8) features 2-D/3-D preview capabil-
ity; interactive cutting planes (in a 3-D rendering, with hierarchical isosurface
models to provide context information); and a lens paradigm to examine a
particular region of interest (variable magnification and lens shape, interac-
tively modifiable region of interest). Complex scenes can be pre-computed
on the server side and transmitted as a VRML2 file to the client so that the
client can render the scene, and the user can interact with it in real time.

5 Comparison

Our data structure uses considerably less memory than the original data set,
even if we choose lossless compression. In our experiments we found that we
can save between 62% and 85% of memory for storing a typical biomedical
data set (about 14 MB). By selecting appropriate thresholds for the wavelet
compression algorithm, we can switch between lossless compression and ex-
tremely high compression rates. Computing time is balanced by choosing an
appropriate file size (see Section 3).

One of the advantages of our approach is the fact that the computing time
does not depend so much on the resolution of the sub-volume, but merely
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on the size of the sub-volume, i.e., the region of interest. This is due to the
fact that the higher-resolution versions (detail coefficients in conjunction with
the lower-resolution versions) can be retrieved in almost the same time from
disk as the lower-resolution version alone. All levels of detail are stored in
the same file, and the content of several files (*bricks”), which make up the
sub-volume, usually fits into main memory. Since seek time is much higher
than read time for conventional harddisks, the total time for data retrieval
primarily depends on the size of the sub-volume, i.e., the number of files that
need to be accessed, and not so much on the level of detail.

Octree BSP tree
Algorithm
level 1 level 2

Data type MRI CT MRI CT MRI CT
Pre-processing 56 63 98 97 156 159
Depth 4 4 5 5 12 12
Memory | v otV 1vYooo o

= 2|5 & |lg 8 |s &l 8 |s &

B il i|ai|bmi|li

Fig. 9. Space-subdivision algorithm

Figure 9 shows the reduction in the amount of memory required to store
a large data set when we use an octree at two different levels. The column on
the right represents the original data set. The wavelet decomposition takes
about 0.07 sec for a 64 data set, and 68 sec for a 10243 data set. Recon-
struction can be done more efficiently and usually requires about 30% of
the time (measurements based on an R12000 processor). For the above data
we assume lossless wavelet decomposition. RLE or other (lossy) compres-
sion/decompression algorithms take an additional amount of time, but this
is negligible compared to data transmission time.

6 Conclusions

We have presented an efficient numbering scheme and access method for hier-
archical storage of sub-volumes on a regular file system. This method allows
us to access a region of interest as a set of bricks at various levels of detail.
The simplicity of the method makes it easy to implement. The algorithm is
scalable by increasing word length and file name length. Future work will
address better wavelet compression schemes, lossy compression techniques,
and the integration of time-varying data sets.
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We are currently working on the integration, adaptation and evaluation
of these tools in the National Partnership for Advanced Computational In-
frastructure (NPACT) framework. Future research efforts will include integra-
tion of San Diego Supercomputer Center’s High-performance Storage System
(HPSS) as a data repository to retrieve large-scale data sets, and accessing the
data via NPACT’s Scalable Visualization Toolkits (also known as VisTools).
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