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Abstract: Hierarchical, texture-based rendering is a key technology for exploring large-
scale data sets. We describe a framework for an interactive rendering system
based on a client/server model. The system supports various output media
from immersive 3-D environments to desktop based rendering systems. It uses
web-based transport mechanisms to transfer the data between the server and
the client application. This allows us to access and explore large-scale data sets
from remote locations over the Internet. Hierarchical space-subdivision,
wavelet compression, and progressive data transmission are used to visualize
the data on the client side.

1. INTRODUCTION

We present a framework for distributed hierarchical rendering of large-scale
data sets that addresses two problems at the same time: (i) limited network
bandwidth and (ii) limited rendering resources. Our goal is to convert the
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data set into a more compact representation and to break it down into smaller
subunits, while making effective use of multiresolution techniques. Our
system uses a server-based data repository, which can be accessed remotely
by a rendering client in a hierarchical way. This is beneficial both for
effective data transmission over the Internet and for optimizing rendering
time on the client side.

The system consists of two components: (i) a server, which serves as a
data repository for large-scale data sets, and (ii) a rendering client, which
accesses the data on the server and renders the data (figure 1). For efficiency
reasons, most of the rendering is done on the client side. This means that the
client uses specially designed Java applets provided by the server to render
the data. Depending on the type of request that is sent by the client, the
server returns a Java applet for rendering geometry data (iso-surfaces) or
volume data. A 2-D texture-based desktop rendering application has been
implemented in Java3D. An alternative rendering client that uses 3-D
texture-based rendering and OpenGL has been implemented in C++
[Ope99]. This client can run in desktop mode or in VR stereo mode.

Customizing the rendering
application keeps the applet small and
avoids additional overhead for different
cases. The initial data set is also small.
The first scene provides the user with a
preview of the entire data set and is
refined later upon subsequent requests by
the client. The term ‘scene‘ in this
context refers to a 3-D object, which can
be rotated, scaled, and translated
interactively, as opposed to a single 2-D
preview image. All data transmitted from
the server is rendered as a 3-D object.

In order to keep the amount of data
transmitted over the Internet small, the
algorithm uses hierarchical data
compression and storage techniques. This
includes a data preparation step (section

3), adaptive space subdivision (delimited octrees for volume), wavelet-based
data reduction and storage of large volume data sets, and progressive data
transmission techniques for hierarchically stored volume data sets. These
hierarchical data structures will be explained in section 5.

The web-based user interface combines HTMLform-driven server
requests with customized Java applets, which are transmitted by the server to
accomplish a particular rendering task (section 5). This allows us to create a
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flexible user interface, which can be easily modified and customized. It also
enables features such as hypertext-documentation and online-help. The C++
version features interactive rendering and improved rendering performance.

2. RELATED WORK

In [Mic97], the authors present a framework for an interactive rendering
client in Java. In contrast to this universal solution, we use customized Java
applets that are loaded on demand (volume rendering, geometry rendering,
hybrid rendering, other volume tools). Similar to [Tra97], the tools are
available on the Internet as a rendering service for large-scale data sets.

Other web-based approaches include rendering of data directly from the
compression domain (volume data) [Lip97] and isosurface extraction
techniques (geometry data) [Eng99]. We present a method that combines
these techniques with an efficient hierarchical data structure. Our method
takes advantage of the fact that reconstruction from the Haar wavelet domain
can be implemented very efficiently using integer arithmetic without
additional overhead on the client side. The resulting patterns can be written
directly into the texture buffer.

Our prototype implementation features 2-D/3-D preview capability (both
in the Java3D and in the VR version), interactive cutting planes in a 3-D
rendering, hierarchical iso-surface models to provide context information
[Lor87, Nie91, Mon94], a lens function to examine particular regions of
interest (ROIs), and variable magnification and lens shape with interactively
modifiable ROI. The user interface can be extended to provide additional
functionality. Complex geometry scenes are converted into VRML2 so that
the web-based client can render the scene interactively in real time.

3. SYSTEM OVERVIEW

The server (figure 2) integrates a series data preparation steps. First, each
data set is prepared for hierarchical storage using NPACI’s Scalable
Visualization Toolkit before it is added to the data repository (section 7)
[Mey99].

The filter step is described in section 4, followed by the space
subdivision and wavelet compression scheme. The data is finally stored in a
repository (section 5).
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The server sends the data either through a web channel together with a
Java applet to the Java/VRML client, or to the C++ 3-D rendering engine
(figure 3).

4. DATA PREPROCESSING AND FILTERING

As datasets become larger and more
detailed, they can no longer be segmented
exclusively by interactive methods or by
hand. Also, they do not compress very well
because of lots of redundant data in the
unsegmented part of the image. Image parts
that would not contribute to the rendering
do not need to be stored. Therefore, using
segmentation in conjunction with data
compression, we obtain much better
compression rates and improved data
transmission times.

Real-color RGB images, such as
cryosections, contain much more
information than CT or MRI data: the reso-
lution is usually higher (150-500 dpi as opposed to 25 dpi, today’s standard,
leading to an increase of the data volume by a factor of 203 = 8,000), and the
color information provides some additional cues. Therefore, we use an
automated segmentation pipeline, which allows us to apply different filters
and image processing algorithms to separate the tissue from the surrounding
material.

4.1 Human Brain Data Set

The Human Brain Data Set (courtesy of Arthur W. Toga, Ahmanson-
Lovelace Brain Mapping Center, UCLA School of Medicine) that we present
here has a resolution of 1472 x 1152 pixels per slice and consists of 753
images of cryosections. The data set provides real-color RGB information,
16 bits per channel. Due to the nature of the cutting technique, the data is
different from conventional CT or MRI data. The images are not real cross-
sections, but merely photographs of the surface and the structures that have
not been sliced yet. Cavities or gaps in the brain reveal structures that are
actually located behind the cutting plane, i.e., in deeper layers. These parts of
the image need to be eliminated and replaced by transparent regions. Also,
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Figure 2: Server operations
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Figure 3: Client: access mechanism

the brain must be separated from the surrounding matter, i.e., from the ice,
and from the background (figure 4).

4.2 Segmentation: Color Cues

The brain can be easily distinguished from the ice and the background by
using the RGB color information from the images. By using a different color
model, we can make use of the fact that the red and light brown components
are much more dominant in the brain than in the rest of the picture. We have
found that the YIQ color model works best for selecting this brown color
(the I component detects both the red component and the intensity). This

model is used in television
for natural representation of
skin colors.

Figure 5(a) shows a
resulting image (slice #100
of 753). The brain has been
nicely segmented. However,
the image still shows
transparent spots and holes
inside the brain structure
and some noise around the
brain. To fill these holes, to
smooth the contour, and to
remove the noise, we apply
a set of filters after YIQ
thresholding.

4.3 Filtering

Figures 5(b-e) show the individual steps of the filter pipeline. In figure 6,
the rectangles represent the filters that were used to fill the holes and
smooth the contour, and  the ovals depict the filters that were used to remove
the noise. Each process shows some progress, but after using a dilation filter,
some of the ice appears again close to the contours. An RGB color threshold
was used to remove these artifacts.

The segmentation pipeline consists of these steps:

(1) Median filter (5 x 5 window, remove holes, smooth contours);

(2) Region growing (8 directions, check for background pixels, remove
      noise if below size threshold);

Immersive
Workbench

CAVE
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Server application

Scalable Visualization
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(3) 2D morphology (9 x 9 window, dilation);

(4) RGB thresholding (removal of iced area); and

(5) 3D morphology (9 x 9 x 9 window, erosion).

      

      Figure 4: Cryosection of       Figure 5(a) YIQ thresholding          (b) Median filter

                     a human brain

      

   (c) Region growing       (d) 2-D morphology (dilation)       (e) RGB thresholding

Some algorithms require to vary the threshold, because the structure of
the image changes across the data set. However, it is much easier to select a
set of thresholds than to segment the entire data set by hand.

5. HIERARCHICAL SPACE SUBDIVISION

Volume data sets are usually arranged by the scanner software  as a set of
2-D images, which represent a series of 2-D cross-sections. Putting all those
slices together, we obtain a 3-D volume. Unfortunately, when we access the
data we typically don’t need the implicit coherency across single slices. This
coherency stretches only across one preferred direction. Instead, we merely
need brick-like coherency within subvolumes. We use a data structure,
which uses a combination of delimited octree space subdivision and wavelet
compression techniques to achieve better performance.
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The purpose of this
approach is not to present a
new compression scheme or
a new hierarchical
subdivision method. Instead,
we present an integrated
framework that combines an
efficient indexing scheme, a
suitable data reduction
method, and an efficient

compression scheme. All
techniques are based on

integer arithmetic and are optimized for speed. Binary bit operations allow
for memory efficient storage and access.

We use a standard file system to store our derived data structures, and we
use filenames as keys to the database, thus avoiding additional overhead,
which is typically caused by incorporating additional layers between the
application and the underlying storage system. We found that this method
provides the fastest method to access the data. Our indexing scheme in
conjunction with the underlying file system provides the storage system
(repository) for the server application, which reads the data at a low
resolution from the repository and sends it to a remote rendering client upon
request. After the user has specified a subvolume or region-of-interest (ROI),
the client application sends a new request to the server to retrieve a
subvolume at a higher level of resolution. This updating procedure typically
takes considerably less time, because only a small number of files need to be
touched. The initial step, which requires reading the initial section of every
file, i.e., of all bricks, can be sped up by storing an additional file which
contains a reduced version of the entire data set.

Our new data structure uses considerably less memory than the original
data set, even if the user chooses lossless compression (see statistics, section
6). By choosing appropriate thresholds for wavelet compression, the user can
switch between lossless compression and extremely high compression rates.
Computing time mainly depends on the size of the bricks. Therefore we take a
closer look at the filesize to determine an optimal size for the subvolumes.

One of the advantages of this approach is the fact that the computing time
does not so much depend on the resolution of the subvolume, but merely on
the size of the subvolume. This is because the higher resolution versions
(detail coefficients in conjunction with the lower resolution versions) can be
retrieved in almost the same time from disk as the lower resolution version
alone. All levels of detail are stored in the same file, and the content of

Figure 6: 2-D/3-D filtering
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several files, which make up the subvolume, usually fits into main memory.
Since seek time is much higher than read time for conventional harddisks,
the total time for data retrieval mainly depends on the size of the subvolume,
i.e., the number of files that need to be accessed, and not so much on the
level of detail. The seek time for a file in general is much higher than the
seek time within a file for the desired level of detail.

5.1 File storage

The filesize f for storing the leaves of the octree structure, which is
described in section 5.2, should be a multiple n of the minimum page size p
of the file system. p is typically defined as a system constant in a system file
named param.h). n depends on the wavelet compression. If the lowest
resolution of the subvolume requires b bytes, the next level requires a total
of 8 · b bytes (worst case, uncompressed) and so forth.

We assume that we have a recursion depth r for the wavelet
representation. This gives us 8r · b bytes, which must fit in f. This means:

bpnf r ⋅≥⋅= 8
Both r and b are user-defined constants. Typical values are b = 512,

which corresponds to an 8 x 8 x 8 subvolume, and r = 3, which gives us four
levels of detail over a range between 512 and 83 · 512 = 262144 data
elements, which is more than 2.7 orders of magnitude.

For optimal performance and in order to avoid gaps in the allocated files,
we can assume that

bpn r ⋅=⋅ 8 ,

thus                                             
p

b
n r ⋅= 8

5.2 Delimited octree and wavelet structure

The enormous size of the data sets (section 4) requires to subdivide the
data into smaller subunits, which can be loaded into core memory within a
reasonable amount of time [Mey97, Mey99]. Since we are extracting
subvolumes, it seems quite natural to break the data up into smaller bricks.
This can be done recursively by using an octree approach [Jac80, Mea80,
Red78]. Each octant is subdivided until we reach an empty region which
does not need to be subdivided any further, or until we hit the filesize limit f,
which means that the current leaf fits into a file of the given size.



VR-based Rendering Techniques for Large-scale Visualization 9

Each leaf contains the full resolution. The memory reduction occurs by
skipping the empty regions. Typically, the size of the data set shrinks to
about 20%, i.e., one fifth of the original size (section 6).

Since we want to access the data set in a hierarchical fashion, we have to
convert the leaves into a multiresolution representation. This representation
must be chosen in a way that the reconstruction can be performed most
efficiently with minimal computational effort. 3-D Haar wavelets fulfill
these requirements (figure 7). They also provide the advantage that they can
be easily implemented as integer arithmetic. The lower resolution is stored at
the beginning of the file, thus avoiding long seek times within the file.

          

Figure 7: Wavelet compression scheme (2-D case)

Another very useful property is the fact that a volume converted into the
frequency domain, i.e., the wavelet representation, requires the exact same
amount of memory as the original representation. This is also true for all
subsequent wavelet recursions. The wavelet recursion terminates when we
have reached a predefined minimum subvolume size b. The lower bound is
the size of a single voxel.

Each octant can be described by a number [Fol96, Hun79]. We use the
following numbering scheme (figure 8): A leaf is uniquely characterized by
the octree recursion depth and the octree path. We limit the recursion depth
to eight, which allows us to encode the depth in 3 bits. In order to store the
path, we need 3 bits per recursion step, which gives us 24 bits. 4 bits are
spent to encode the depth of the wavelet recursion. The remaining bit is a
flag that indicates that the file is empty. This prevents us from opening and
attempting to read the file and speeds up the computation. The total number
of bits is 32.
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Figure 8: Encoding scheme for file storage

Each bit group can be easily converted into an ASCII character by using
binary arithmetic, e.g., (OCT_DEPTH >> 29) | 0x30) would encode the
octree depth as an ASCII digit. By concatenating these characters we can
generate a unique filename for each leaf.

In order to retrieve a subvolume, we have to find the file(s) in which it is
stored. We start with the lower left front corner and identify the subvoxel by
recursive binary subdivision of the bounding box for each direction. Each
decision gives us one bit of the subvolume path information. We convert
these bits into ASCII characters, using the same macros as above. The first
file we are looking for is 7xxxxxxxx??, where the ’x’s describe the path,
and ’?’ is a wildcard. If this file does not exist, we keep looking for
6xxxxxxx???, and so forth, until we find an existing leaf. If the filename
indicates that the file is empty (last digit), we can skip the file. The filename
also indicates how many levels of detail we have available for a particular
leaf. This allows us to scale the rendering algorithm. In order to retrieve the
rest of the subvolume, we must repeat this procedure for the neighboring
leaves. The number of iterations depends on the recursion depth and
therefore on the size of the leaves found. The algorithm terminates when all
files have been retrieved so that the subvolume is complete.

6. STATISTICS AND RESULTS

Our test applications include molecular biology, medicine, and
earthquake simulation. Our prototype for the biomedical field was designed
to support three-dimensional visualization of a human brain, which allows us
to study details by moving different tools, such as an arbitrary cutting plane
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and variously shaped lenses, across the data set. The various data sets are
typically between 20 MB and 76 GB, which makes them impossible to
transfer over the Internet in real time. The rendering client operates vastly
independent from the size of the data set and requests only as much data as
can be displayed and handled by the Java applet. An example of a volume
display of a human brain, which can be rendered on the workbench, is shown
in figure 9. This image also shows the prototype for a Java applet.

Table 1 shows the reduction of memory which is required to store a large
data set, if we use an octree at two different levels. The column on the right
represents the original data set. The wavelet decomposition takes about 0.07
sec for a 643 data set, and 68 sec for a 10243 data set. The reconstruction can
be done more efficiently and usually takes about 30% of the time
(measurements based on an R12000 processor) of the decomposition. The
transmission of the full data set (10243 · RGB = 3 GB) over a 10Mbps LAN
connection took between 232 and 1563 seconds. This data is not
representative, because transmission times vary over a great range depending
on the network link and the actual network load. The transmission time for
the lowest level of detail (643) in compressed format was negligible.

Table 1: Statistics

The segmented images are volume rendered in hardware using three sets
of textures, each set aligned to one of the principle axes. With a Pentium III
550 MHz and a 32M Nvidia GeForceTM video card, a downsampled 1283

volume fits in texture memory and can be rendered at over 15 fps. A 2563

volume does not fit in texture memory and can be rendered at approximately
2 fps. The user can interactively rotate the volume, and apply multiple axis
aligned cutting planes to quickly visualize specific regions of the brain
(figure 9).
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Figure 9: Volume rendering of a human brain (C++ VR client and Java client applet)

The overall conclusion is that the reduction of memory allows for faster
response times, more rapid data transmission, and faster rendering. The
wavelet decomposition algorithm takes less time than the performance gain
by reducing the amount of data to be sent and using an efficient data
indexing and storage scheme.

7. CONCLUSIONS

We have presented a framework for a distributed hierarchical rendering
system for large-scale volume data sets. The first step is to filter the data and
extract certain features (segmentation). The presented pipeline allows us to
segment a large-scale data set semi-automatically with minimal user
intervention. The parameters must be chosen carefully in order to obtain
optimal results. After filtering and segmenting, the data is converted into a
hierarchical format and stored in a repository, which can be accessed by a
remote or immersive client application. We have presented an efficient
numbering scheme and access method for hierarchical storage of sub-
volumes on a regular file system. This method allows us to access a region-
of-interest as a set of bricks at various resolutions. The simplicity of the
method makes it easy to implement. The algorithm is scalable by increasing
the word length for the bit string and the filename length. The algorithm has
also been tested on larger data sets. The data decomposition, reconstruction
and rendering times for the region-of-interest and the context were still
acceptable due to the flat directory structure of the indexing scheme.

Future research focuses on automated image analysis to determine
segmentation parameters automatically, the introduction of alternative
wavelet compression schemes, support for time-variant data sets, and the use
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of a web channel also for the immersive workbench and the CAVE. It would
also be desirable to provide an interface to upload data sets and apply filters
and data compression algorithms online in an automated way. This would
allow users to upload and explore their own data interactively.

The developed tools will be integrated, adapted and evaluated in the
National Partnership for Advanced Computational Infrastructure (NPACI)
framework. Integration of San Diego Supercomputer Center's High-
performance Storage System (HPSS) as a data repository to retrieve large-
scale data sets, accessing the data via NPACI's Scalable Visualization
Toolkits (also known as VisTools), and evaluation of particular applets with
NPACI partners, are some of the main goals.
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