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Abstract
The goal of visual surface inspection is to analyze an object’s surface and detect defects by looking at it from different angles.
Developments over the past years have made it possible to partially automate this process. Inspection systems use robots to
move cameras and obtain pictures that are evaluated by image processing algorithms. Setting up these systems or adapting
them to new models is primarily done manually. A key challenge is to define camera viewpoints from which the images are
taken. The number of viewpoints should be as low as possible while still guaranteeing an inspection of the desired quality.
System engineers define and evaluate configurations that are improved based on a time-consuming trial-and-error process
leading to a sufficient, but not necessarily optimal, configuration. With the availability of 3D surface models defined by
triangular meshes, this step can be done virtually. This paper presents a new scalable approach to determine a small number
of well-placed camera viewpoints for optical surface inspection planning. The initial model is approximated by B-spline
surfaces. A set of geometric feature functionals is defined and used for an adaptive, non-uniform surface sampling that is
sparse in geometrically low-complexity areas and dense in regions of higher complexity. The presented approach is applicable
to solid objects with a given 3D surface model. It makes camera viewpoint generation independent of the resolution of the
triangle mesh, and it improves previous results considering number of viewpoints and their relevance.

Keywords View planning · Object space exploration · Inspection automation · B-spline surface ·Model-based planning

1 Introduction

With the abundance of various sensing methods, almost
every produced object undergoes a quality assurance pro-
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cess. Because of their availability and application versatility,
optical sensors are commonly utilized, both as a support
and a primary sensing device. When it comes to sur-
face quality inspection, they are especially useful as there
are many advanced machine vision tools available (e.g.,
[3,10,15]). Moreover, they enable the possibility of inspect-
ing both optical and spatial properties of the object. Over the
years, significant effort has been put into inspection process
automation. An in-depth analysis of the topic and various
ways to automate machine vision tasks have already been
covered by the literature [2].

However, the automation of visual inspection is inextrica-
bly connected to the application and inspection environment;
it is therefore necessary that an expert designs the image
acquisition system and hardware configuration. The design
of the system affects the acquired images and consequently
enables or hinders the machine vision algorithms used for
analyzing images.

The expert approach is required when a decision concern-
ing the hardware placement is needed. The system design is
an iterative process consisting of four steps: assessment of
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Virtual Model Viewpoint Candidates Selected Viewpoints Path Planning Inspection

Fig. 1 Overall pipeline. A set of viewpoint candidates gets produced by
placing virtual cameras and directing them at certain pivot points on the
objects surface. From these candidates, a lower number of final view-
points get selected so that the object is still sufficiently covered. Then, a

camera path is planned considering the degrees of freedom of the used
inspection system. Finally, the physical inspection system carries out
the inspection by moving the camera along the computed trajectory and
taking pictures at the selected viewpoints

the product geometry and its reflection properties, construc-
tion of a prototype configuration, verification using several
machine vision algorithms, and configuration adjustment. It
is a process which works well, given a low geometric com-
plexity of the surface. An increase in complexity makes the
system designmore tedious and harder to evaluate in terms of
inspection completeness and accuracy, thus raising the need
of developing an automated design (planning) tool.With gen-
eral shift of the industry towardmoreflexible production lines
producing small size batches of geometrically very different
objects, this challenge becomes more relevant. For example,
additive manufacturing (3D printing) is one important appli-
cation, where no adaptive inspection solution yet exists.

During the assessment phase, an engineer will observe the
product from various angles, learning about object’s char-
acteristics (features) such as visible or potentially occluded
surfaces (geometry) and light response behavior. Based on
the observed features and own experience, the engineer will
infer the initial acquisition system configuration, relative to
the inspected object, and introduce further refinement. Even
for an expert, this process is often based on trial and error
and requires many iterations and tests. As a consequence,
setting up an inspection system manually can take days or
even weeks until it meets the required quality criteria. The
described process can be translated into more formal steps:
(1) read object features, (2) consider potential configurations,
(3) choose themost promising configuration (based on object
features and expert knowledge). The first two steps belong to
object space exploration and the third to optimization. Once a
set of optimal viewpoints (camera positions) is determined,
the physical system prototype has to be configured. Cam-
eras must be placed either statically or dynamically using
a manipulator. In case of a manipulator, an additional path
planning step is required for viewpoint traversal. Figure 1
illustrates this pipeline.

In this paper, we focus on the object space exploration,
i.e., the generation of viewpoint candidates. Our approach is
based on an analytic description of a 3Dmodel usingB-spline
surfaces.We define a number of feature functionals that mea-

sure inspection-relevant features on an object’s surface. The
viewpoint candidates are derived via non-uniform sampling
driven by the feature functionals. To validate the quality of
our results, we perform a standard algorithm for the next step
in the overall inspection pipeline, i.e., we select an optimal
subset of viewpoints using anext-best-view greedy algorithm.
It is a straight-forward algorithm which performs well and
provides good results for this particular purpose, as stated
by Gronle et al. [11]. The optimal viewpoints generated by
this approach are qualitatively very similar to those produced
by equivalent approaches. However, since the underlying set
coverage problem is NP-hard, the algorithm strongly bene-
fits from the fact that our method produces a small number
of viewpoint candidates.

2 Related work

The need for automated inspection planning tools was rec-
ognized decades ago, motivatingmany research efforts in the
1990s and early 2000s. Since then, automated inspection has
received less attention.

Early work of Cowan and Kovesi [5] presents an ana-
lytical approach, suggesting that for each surface polygon,
a 3D solution space should be formed by solving inspec-
tion requirements posed as analytic constraints. The optimal
solution is then reached through intersection of all obtained
solution spaces. Their work focuses on a low-complexity
surface patch, since such an approach is computationally
expensive.

To reduce the complexity of inspection planning, many
subsequent contributions aimed at good, practically accept-
able solutions instead of optimal solutions. A common
approach samples the space around the object and uses the
model only to evaluate or validate resulting viewpoint can-
didates.

For example, Sakane et al. [20,21] use uniformly and adap-
tively tessellated spheres for solution space discretization and
further evaluate the sphere facets by two criteria: reliability
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for recovering the surface normal vectors and detectability of
the surface by camera and illuminators. The size of the view-
point candidate sets is briefly commented on, stating that the
desired number of viewpoint candidates should be manually
chosen to balance the trade-off between planning complexity
and accurate inspection representation.

Tarbox and Gottschlich [28] use a densely sampled view-
ing sphere, explicitly stating they have no apriori preference
on viewpoint placement. The camera viewing distance d is
fixed to an arbitrary number, and the viewpoints are uni-
formly distributed over the sphere’s surface. It is assumed
that the visible parts of the object are always within the
acceptable depth of field. The main incentive for using dense
sampling is to increase the likelihood of the discovery and
coverage of regions which are difficult to sense by introduc-
ing redundancy. For meshes containing 1000–2500 vertices,
they produce a set of 15,000 viewpoint candidates which is
then used for the evaluation of the proposed optimization
algorithms. They stress discrete surface representation as a
major drawback of the sensor planning algorithms because
the allowed shapes of the surfaces are restricted.

Tarabanis et al. contribute to the inspection planning field
through their work on the MVP (machine vision planner)
system [26,27], where the use of viewpoint candidate sets
is recognized as the generate-and-test approach to inspec-
tion planning. The survey considers objects containing only
polyhedral features, and the authors state a clear need for
the development of planning algorithms capable of handling
complex surfaces. They are inclined toward the synthesis
approach, stating that the viewpoint candidate approach
might have the following drawbacks: computational costs of
the combinatorial search over finely tessellated (spherical)
parameter spaces, use of a tessellated sphere for viewpoint
visibility evaluation, and overall scalability of the approach.

Jing [14] employs a mesh dilation by a maximum depth
field within which a camera can operate. Such an approach
resembles the tessellated sphere, but with higher correla-
tion with the model geometry. The viewpoint candidates are
obtained by sampling the dilated surface until a predefined
number of viewpoint candidates are reached. Their orienta-
tion is calculated based on the distance d to the original object
primitives, where each primitive has an attraction force of
1/d2.

More recent contributions use a given 3D model actively.
Instead of focusing on the space around the object, they
directly sample the surface and determine camera positions
with a certain distance to the surface points. Such approaches
are more appropriate for the computation of feature-sensitive
results.

In his work on underwater inspection path planning,
Englot [8] creates a viewpoint candidate set using random
sampling of themesh primitives,where each primitive is used
as a pivot point for a viewpoint. The viewpoints are generated

until each facet of the model has reached an arbitrary level of
redundancy (number of different viewpoint candidates from
which a facet can be observed), resulting in ca. 2500 and
1300 viewpoint candidates from approximately 131,000 and
107,000 vertex meshes, respectively.

Sheng et al. [23,24] focus on inspecting objects consist-
ing of surfaces with prominent differences in orientation or
having lowdegree ofwaviness. They take the flat patch grow-
ing approach by first splitting the surface into sub-patches,
calculating the bounding box of each sub-patch, and finally
placing the viewpoint candidate at a fixed distance along the
normal of the largest bounding box side.

Prieto et al. [19] discretize a 3D model described by
NURBS into voxels, split the object into subsurfaces repre-
senting simple patches, and, for each patch, find a viewpoint
which can be used on the surface in a sweeping manner (also
known as view swaths). While such an approach works well
on simple objects, it struggles when applied on free form or
highly complex surfaces.

Scott [22] suggests an alternative model-based approach
using geometric information of the object. A viewpoint can-
didate is created for each vertex of the mesh, which is stated
to be the optimal point for surface description. Due to the
high resolution and geometric complexity of some discrete
models, the first step is to perform a curvature-sensitive
resampling. After an additional decimation step, the final
viewpoint candidate set is created. A good decimation level
is heuristically determined to be 32 times lower than the target
model. The method achieves good results for a set covering
approach (e.g., a model of ca. 36,000 vertices is resampled
to 702 vertices and decimated to 72 viewpoint candidates).
The introduced geometry-based exploration principles pro-
vide the foundation for the feature-driven approach presented
in this paper.

Gronle and Osten [11] agree with [22] on generating one
viewpoint candidate per mesh vertex. Instead of sampling
down the triangulation, they reduce the cardinality of their
viewpoint candidate sets using an octree. Each leaf contains
a group of neighboring candidates fromwhich random view-
points get selected while others with similar orientation get
deleted.

Beside discrete solutions, recent works by Mavrinac et
al. [16] and Mohammadikaji [17] show a rise in continu-
ous optimization, which does not require the generation of a
viewpoint candidate set. It is a possible alternative to inspec-
tion planning and enables the discovery of a truly optimal
solution at the cost of higher computational requirements.
Due to the different nature of the general approach, an in-
depth comparison is beyond the scope of this paper.

The viewpoint candidate set generation itself has not
received much attention as a solemn research focus so
far. While it is present in the available literature, various
approaches and their impact to the selected final viewpoints
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are not discussed. Researchers mostly approach it in a way
to obtain any kind of reasonable search space before pro-
ceeding onto the optimization which is the focus of their
work. The obtained viewpoint candidate set is assumed to
be dense enough to contain the optimal viewpoints and is
thus deemed adequate. While such approaches offer a rather
clean shortcut to tackling the optimization problem, they also
inherently impose an optimization handicap due to the fact
that viewpoint candidates are mostly not generated based on
geometric features of themodel. The object space exploration
approaches used so far are reasonable and good in terms of
implementation simplicity. However, they also do not revise
different possibilities or modifications which could produce
both more meaningful and application-specific results, as
well as reduce cardinality of the generated viewpoint can-
didate set. Existing solutions have not considered uneven
object space sampling by concentrating the viewpoint candi-
dates in areas which might appear challenging during the
inspection based on various criteria. Such a modification
is crucial due to the fact that the optimization problem at
hand is a set covering problem and thus NP-hard. As such,
it requires a combinatorial approach to solve it. This work
aims to decrease the combinatorial complexity challenge
by providing an adaptive method for feature-driven place-
ment of viewpoint candidates. The results are meaningful
and application-specific viewpoint sets of suitable size for
the subsequent optimization process.

3 Method

The novel strategy, presented in this section, finds viewpoint
candidates by subdividing a continuous model of parametric
surfaces into smaller segments, leading to an adaptive and
feature-based sampling of the object.

We define a viewpoint candidate by camera-specific data,
i.e., the camera’s position in world coordinates and the view
vector defining the camera’s line of sight.

The approach uses a parametric surface representation;
in particular, it is designed for (but not limited to) objects
described by B-spline surfaces. While those surfaces are
often an intermediate product of the virtual design process,
they are rarely available to inspection system engineers.
Hence, it is assumed that only a triangulated surface mesh of
the object of interest is given. This can either be a digitally
designed model or a result of a 3D reconstruction of a physi-
cal object. Due to the use of lasers, 3D scanning tools produce
output in the form of point clouds; a conversion to a triangle
mesh can easily be achieved by a variety of freely available
tools and algorithms, e.g., [4]. When a model is given only
in such a discrete format, we compute a set of continuously
connected B-spline surfaces approximating the original data
in a first step. Of course, the input data—containing a low

or high degree of noise—have direct impact on the shape
quality of the computed B-spline surface model. If the input
data are obtained via 3D scanning, for example, then it will
be essential to ensure highly accurate scanning with a low
degree of noise to obtain high-quality B-spline models.

Using B-splines makes the subsequent steps fully inde-
pendent of the resolution of the input mesh and supports
the computation of analytically describable measurements
on the surfaces without undesirable discretization effects.
Given a model, the user needs to specify a so called fea-
ture functional E that measures the relevance of a surface
region with respect to certain application-specific features. It
should be designed in such a way that it has a high value
for regions that should be densely covered by viewpoint
candidates and a low value in less relevant regions. Let S
be a parametric surface, parameterized over a rectangular
region Ω0 = [umin, umax] × [vmin, vmax] ⊂ R2. A point on
the surface is denoted by S(u, v) ∈ R3, and the notation
S(Ω) = {S(u, v)|(u, v) ∈ Ω} is used to describe the seg-
ment of the surface corresponding to the region Ω ⊆ Ω0.
The value of the feature functional for the entire surface is
denoted by E(S) and the value of the segment corresponding
to a parameter region Ω by E(S,Ω).

In order for the algorithm to converge, the values of the
E(S,Ω) need to converge to zero as Ω converges to a
point. To obtain a stable subdivision behavior with respect
to the chosen termination threshold, the value of the fea-
ture functional computed for part of a region needs to be
smaller than the value computed for the region itself, i.e.,
for two parameter regions Ω,Ω ′ ⊆ Ω0, it is required that
E(S,Ω ′) < E(S,Ω) if Ω ′ ⊂ Ω .

For functionals that are defined as integrals over some
function f of the form

E(S,Ω) =
∫∫

Ω
f (S, u, v)dudv,

it follows that

E(S,Ω) = E(S,Ω ′)+ E(S,Ω ′′)

when Ω ′ ∪ Ω ′′ = Ω and Ω ′ ∩ Ω ′′ = ∅. In this case, E is
said to be additive, which means that partitioning a surface
segment leads to a partitioning of the evaluated values. This
leads to amonotonic decreasewhen the surface is subdivided.
When the function f has a regular distribution of values, the
value of E will decrease approximately exponentially with
respect to the depth of the subdivision.

The chosen measurement is used to steer the place-
ment and distribution of viewpoint candidates by recursively
subdividing regions with high values until a pre-defined
threshold is met. Once the surface network is subdivided,
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Fig. 2 Generating viewpoint candidates. Discrete data are approxi-
mated by a B-spline model. Surfaces are subdivided according to a
user-defined geometric feature functional (e.g., curvature). Viewpoint

candidate pivot points are placed at the centers of each subdivided seg-
ment. The cameras are positioned on the line defined by the normal
vectors of the surface

a viewpoint candidate is computed for each segment of the
subdivided model.

Assuming that the initial input is a triangle mesh model,
the individual steps can be summarized as follows:

1. Generate a representation of the object with a finite num-
ber of B-spline surfaces.

2. Subdivide the B-spline surfaces with respect to a user-
defined functional E(S,Ω) and an associated threshold
value t .

3. Place viewpoint candidates in R3 based on the subdivi-
sion of the model.

Figure 2 illustrates that process. Sections 3.1, 3.2, and 3.3
explain the individual steps of this strategy in detail. Sec-
tion 4 discusses a variety of possible and practical feature
functionals.

3.1 Obtaining a B-splinemodel

AB-spline surface is defined by several variables. For a given
order k ∈ N, a (quadratic) grid of nc × nc control points
bi, j ∈ R3, and a knot vector τ ∈ [0, 1]nc+k+1, it is denoted
by

S : [0, 1]2 → R3

S(u, v) =
nc∑

i=1

nc∑

j=1

Ni,k,τ (u)N j,k,τ (v)bi, j (1)

where Ni,k,τ (·) is the i-th B-spline basis function of order k
and associated knot vector τ .

The B-splines used in the context of this paper are cubic
(order k = 3) and have uniform knot vectors with multiple
end knots

τ = (0, . . . , 0︸ ︷︷ ︸
k+1 times

, τ1, . . . , τnc−k−1, 1, . . . , 1︸ ︷︷ ︸
k+1 times

)

with τi = i
nc−k for i = 1, . . . , nc − k − 1. In general, the

presented method is not restricted to this choice.
A single B-spline surface is usually not sufficient to rep-

resent a complex object as it can support only disk-like
surface topology. Therefore, a number of B-spline surfaces
are needed, each modeling a part of the object, and they
are stitched together to define an overall watertight (C0-
continuous) model.

Constructing such a network of B-spline surfaces to repre-
sent discrete data has been researched for many years and is
well covered in the literature [9]. Figure 3 illustrates the gen-
eral idea of obtaining such a network. The remainder of this
section summarizes the individual steps and basic concepts.

In order to compute such a network ofB-splines to approx-
imate a triangulated surface, the surface first needs to be
subdivided into a collection of four-sided regions (quadrilat-
erals). For small or geometrically simple objects, this can be
done manually, e.g., by defining a set of cutting planes or
simply drawing boundary curves on the surface using CAD
tools.

When objects are too complex to be processed manually,
an automaticmethod is needed.Many solutions are available.
Here, an approach described by Eck and Hoppe [7] is used.
This method starts by computing a surface Voronoi tessel-
lation, ensuring that all cells have disk-like topology. Then,
the dual Delaunay-like complex is constructed, consisting of
triangular cells. Finally, these cells are merged pairwise into
quadrilateral cells.While this is an older approach, it still pro-
vides good results and can be implemented easily. When it is
necessary to deal with more complex topological situations,
various advanced algorithms and their implementations are
available as well [13].

To set the discrete data points inside each quadrilateral
(quad) cell in correlation with the respective parametric sur-
face, the cells are parameterized over the unit square, i.e.,
each vertex of the triangulated mesh pi in a cell is assigned
a parameter value (ui , vi ) ∈ [0, 1]2. Various methods for
this step are available. For example, CGAL [29] provides a
package for mesh parameterization.
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Fig. 3 Construction of a B-spline model approximating a triangulated
surface. First, the mesh is partitioned into a collection of quadrilateral
cells. Each cell is parameterized over a square region providing the cor-

relation between discrete data points and their location on the B-spline
surface. The B-spline model is obtained by minimizing the distances of
those points using a least-squares approach

A B-spline surface S that approximates the data points
within a quad cell can be computed by minimizing the least-
squares error ELS, given by

ELS =
∑

i

∥S(ui , vi ) − pi∥2. (2)

The only variables in this term are the B-spline control
points bi, j . Minimizing (2) results in a surface that approxi-
mates the discrete data points as closely as possible, ignoring
the spaces in between. As a consequence, it often includes
unwanted wiggles that are not part of the original surfaces.
This effect can be mitigated by adding a fairing term that
penalizes this effect. A commonly used approach is the thin
plate energy functional [7,12] given by

ETP =
∫ 1

0

∫ 1

0
∥∂uu S(u, v)∥2

+ 2 ∥∂uvS(u, v)∥2

+ ∥∂vvS(u, v)∥2 dudv. (3)

A smooth surface can be computed by minimizing

(1 − λ)ELS + λETP → min (4)

with λ ∈ [0, 1). A high value of λ leads to an approximation
with a mostly near-planar, averaging surface, while a low
value causes the surface to be closer to the data points.

A C0-continuous network of surfaces can be obtained by
adding a set of linear constraints that force control points of
neighboring surfaces along their shared boundary curve to
be equal.

While the generation ofB-splinemodels is not our focus, it
is a relevant step when only discrete input data are available.
To ensure the desired behavior of subsequent data process-
ing steps, it is important that the B-spline surfaces capture

relevant features of the real-world object well, e.g., overall
shape, curvature, and topology.Consequentially, this require-
mentmust be satisfied, to a lower degree, by the discrete input
data as well. The combination of least-squares approxima-
tion and smoothing (4) prevents single deviating data points
from having a notable impact to results. However, the qual-
ity of the B-spline model strongly decreases when exhibiting
significant noise or incorrect topology—problems that can
arise when using low-resolution 3D scanning technology.

3.2 Subdivision of themodel

This sectiondescribes the feature-based subdivision approach
for a given B-spline model consisting of ns surfaces Si :
Ω0 → R3, i = 1, . . . , ns defined over a rectangular param-
eter region Ω0 ⊂ R2. Let E(S,Ω) be the given functional
that measures how prominent a feature of interest occurs
within the segment of S restricted to Ω ⊂ Ω0. The goal is
to subdivide each surface into segments, such that E , evalu-
ated for any of these segments, is below a given threshold t .
Since the presented recursive approach considers each sur-
face individually, it can be applied in parallel to all B-spline
surfaces of the model.

Subdivision of the B-splines takes place in parameter
space. The subdivision method is inspired by the work of
Nouanesengsy et al. concerning analysis-driven refinement
[18]. Initially, for each B-spline surface S, the given func-
tional E is evaluated for the entire surface. If its value is
larger than t , the parameter domain is subdivided into four
equal-size rectangles. The procedure continues recursively
for each subregion. Once the value of E evaluated for a seg-
ment falls below t , the corresponding parameter region does
not get subdivided any further. Algorithm 1 summarizes this
procedure. Figure 4 demonstrates the subdivision of a single
surface based on thin plate energy.
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(a) Subdivision in parameter
space

(b) B-Spline surface in R3

Fig. 4 Subdivision of a single B-spline surface using thin plate energy
as feature functional. Plotting the integrandvalue ofEq. (3) in the param-
eter space Ω0 = [0, 1] × [0, 1] illustrates how the approach leads to a
deeper subdivision in areas with high values (a). b Shows the surface
S(Ω0) and its subdivision into segments in R3

Algorithm 1 Recursive Subdivision
function subdivideSurface(S,Ω, E, t)

if E(S,Ω) > t then
(Ω1,Ω2,Ω3,Ω4) ← split(Ω)
return

⋃4
i=1 subdivideSurface(S,Ωi , E, t)

else
return {S(Ω)}

end if
end function

function split(Ω = [u0, u1] × [v0, v1])
uc ← u0+u1

2
vc ← v0+v1

2
Ω1 ← [u0, uc] × [v0, vc]
Ω2 ← [uc, u1] × [v0, vc]
Ω3 ← [u0, uc] × [vc, v1]
Ω4 ← [uc, u1] × [vc, v1]
return (Ω1,Ω2,Ω3,Ω4)

end function

3.2.1 Choosing the subdivision threshold

Finding a good subdivision threshold value depends on the
understanding of the inspection requirements and intuition
behind the used subdivision criteria. For example, a mea-
surement that computes a maximum incidence angle for a
segment is easily understood, while an integral of principal
curvatures requires the user to have specialized training in
geometry in order to interpret the resulting values.

Defining the subdivision threshold manually requires
technical knowledge about the expected values for differ-
ently shaped surfaces. This can be mitigated by evaluating
the feature functionals for all individual surfaces and calcu-
lating the average value

tavg =
∑ns

i=1 E(S)

ns
. (5)

The user defines a percentage of the average to control the
amount of viewpoint candidates. For example, choosing t =

0.5tavg leads to a subdivision of the surface network until the
values of each patch are below half of the overall average
feature value. Alternatively, if the feature functional has the
additivity property, it is possible to express the threshold as
a percentage of the total value over the entire object.

A suitable subdivision threshold can also be chosen inter-
actively in real time. In this scenario, it is necessary to
pre-compute the subdivision for a small threshold t1, e.g., a
lower bound for the range of considered thresholds. Depend-
ing on the complexity of the feature functional, computing
this fine subdivision can be time-consuming. However, when
all intermediate steps and evaluated measurements are stored
in a tree structure, the tree can be cut back in real time for
any threshold t2 > t1. This makes it possible for the system
engineer to adjust a slider in a graphical user interface and
interact with a visual representation of the subdivided model
to determine the best threshold for a specific application sce-
nario.

3.2.2 Modifications

If the used feature functional is additive, it allows for a poten-
tial speedup of the process by starting with a fine subdivision
of all surfaces. The subdivision tree is then computed back-
wards, i.e., by merging individual surface segments as long
as the value of the merged patch stays below the subdivision
threshold. The computational speedup is due to the fact that
E only has to be evaluated for the deepest subdivision level.
The values of the combined segments can be obtained by
adding the values of the individual segments.

Furthermore, the algorithmcanbe extended to handlemul-
tiple functionals describing different features of interest, e.g.,
both curvature and surface area. For this purpose, the feature
functional and threshold parameter must be replaced by a
list of functional threshold pairs. All functionals are evalu-
ated, and when one exceeds its corresponding threshold, the
evaluated segment is subdivided.

3.2.3 Iterative subdivision

The goal of the recursive subdivision is to generate a suf-
ficient sampling of the model with respect to the features
of interest. Alternatively, a global approach guided by a
desired number of viewpoint candidates can be chosen. This
approach becomes necessary when external constraints limit
the amount of allowed viewpoint candidates.

Let tn be a given number of maximum viewpoints for the
entire model. Instead of individually subdividing each sur-
face until themeasurement reaches the subdivision threshold,
the feature functional is evaluated for all surface segments
and the segment where it is maximal is subdivided. This pro-
cedure is repeated until the desired amount of segments is
reached. Algorithm 2 summarizes this approach.
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Algorithm 2 Iterative Subdivision
function subdivideModel({S1, S2, ..., Sns }, E, tn)

S ← {S1, S2, ..., Sns }
while |S| < tn do

(S′,Ω ′) ← argmax
S,Ω:S(Ω)∈S

E(S)

(Ω1,Ω2,Ω3,Ω4) ← split(Ω ′)
S ← S \ S′(Ω ′) ∪ {S′(Ω1), S′(Ω2), S′(Ω3), S′(Ω4)}

end while
end function

3.3 Computing the viewpoint candidates

After the subdivision phase, one viewpoint candidate is
placed per surface segment of the subdivided model. First,
a pivot point is chosen, i.e., the point that determines the
camera viewing direction. Then, the actual camera position
is calculated via a user-defined distance d. This distance
is manually determined by a system engineer according to
the inspection setup requirements. That way, the viewpoint
candidate generation approach assures compliance with the
camera’s depth-of-field constraints at generation time.

The approximated center of the segment is used as a pivot
point. It can be obtained by evaluating the surface at the
center point of its respective parameter domain. The camera
position is computed bymoving away from the surface in the
direction of the surface normal, given by

n(u, v) = ∂u S(u, v) × ∂vS(u, v)
∥∂u S(u, v) × ∂vS(u, v)∥

.

The position of the camera is defined as

Cd
S,Ω = S(uc, vc)+ n(uc, vc) · d, (6)

where (uc, vc) is the center of the parameter domain Ω . For
a rectangular region Ω = [u0, u1] × [v0, v1], it is given
by uc = u0+u1

2 and vc = v0+v1
2 . The view direction of the

camera is the reversed normal vector. Figure 5 illustrates this
concept.

4 Feature functionals

The feature functional E is essential for distributing the view-
point candidates. In order to produce high-quality results,
tailored to specific applications, it needs to be defined in a
way that identifies areas of interest by assigning them high
values while at the same time giving low values to areas that
do not contain the desired features. It is up to the system
engineer to either choose or define a functional applicable
to their use case. A good functional should be intuitive and
easy to compute.

Fig. 5 Computing the viewpoint candidate for a surface segment. a
Illustrates a subdivision of a surface in parameter space. The image
S(Ωi ) of the highlighted region is shown in (b). Evaluating the surface
at the center of Ωi yields the pivot point for this segment. The camera
position is obtained by moving away in the direction of the surface
normal at that point

As discussed in Sect. 3, the values of E(S,Ω) need to
converge toward zero as Ω converges to a single point to
ensure termination of the subdivision. The following subsec-
tions introduce a number of fundamental feature functionals
that satisfy this property. They are suitable candidates for a
variety of shapes, as they highlight common geometric fea-
tures of interest. The modularity of the algorithm allows it to
be easily extended with custom functionals as long as they
also satisfy the convergence property.

Some of the presented feature functionals are defined as
integrals. For implementation purposes, those can be eval-
uated numerically. Trapezoidal rules have proved to be an
adequate method, as for a sufficiently dense sampling of the
surface, the error becomes neglectably small [1].

4.1 Curvature

In the context of surface inspection, the placement of view-
point candidates should be focused around highly curved
parts of the object. The high surface variation in those regions
usually requires an inspection from several directions, while
flat regions can be covered with a single or only a few view-
points.

Commonly used terms to describe curvature are theprinci-
pal curvatures κ1 and κ2. At any given point on the surface,
these are the normal curvature values in the directions in
which the surface has its lowest and highest bending, respec-
tively. Combined, they define themean curvature H = κ1+κ2

2
and the Gaussian curvature K = κ1κ2. More detailed infor-
mation on differential geometry and curvature can be found
in literature [6].

Individually, these terms are not suited to separate flat
and curved regions, as both can become zero in non-flat
regions, i.e., if one of the principal curvatures is zero while
the other has a value other than zero (Gaussian curvature)
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or if κ1 = −κ2 ̸= 0 (mean curvature). This can be resolved
by directly considering the principal curvatures. The surface
integral given by

Eκ(S) =
∫∫

S
κ2
1 + κ2

2 dS (7)

is a meaningful measurement to describe the total bending
of a surface S [12]. It is equal to zero if and only if S is a flat
surface. To compute the integral with respect to a parameter
region Ω , it can be rewritten as

Eκ(S,Ω) =
∫∫

Ω
(κ2

1 (u, v)

+ κ2
2 (u, v)) ∥∂u S(u, v) × ∂vS(u, v)∥ dudv. (8)

B-splines are parametric surfaces with well-defined first
and second derivatives everywhere. Hence, it is possible to
analytically evaluate κ1 and κ2 at any point and numerically
compute the entire integral.

For implementation purposes, it is useful to express the
integrand of Eq. (8) in terms ofGaussian andmean curvature:

κ2
1 + κ2

2 = 4H2 − 2K .

Evaluating this term requires less operations, as H and K
can be obtained directly from the coefficients of the first and
second fundamental formswhich are straightforward to com-
pute at any point of a B-spline surface [6].

4.2 Thin plate energy

Numerically computing the integral of the principle curva-
tures yields precise and intuitive results at the price of high
computational cost. However, it can be sped up immensely by
approximating Eq. (7) using the thin plate energy functional,
as introduced in Eq. (3).

For B-splines, this term can be rewritten in a more com-
pact form by expressing the grid of nc × nc control points
bi, j as one-dimensional list. Let bx , by, bz ∈ Rn2c be col-
umn vectors containing the x, y, z components of the control
points. Equivalently, let N (u, v) ∈ R1×n2c be a row vector,
containing the corresponding products of basis functions
Ni,k,τ (u)N j,k,τ (v). Using this notation, a B-spline surface
(1) can be rewritten as

S(u, v) = (N (u, v)bx , N (u, v)by, N (u, v)bz)T.

Then, the thin plate energy can be expressed as

ETP(S,Ω) =
∫∫

Ω

∥∂uu S(u, v)∥2

+ 2 ∥∂uvS(u, v)∥2

+ ∥∂vvS(u, v)∥2 dudv
= bTx Mbx + bTy Mby + bTz Mbz (9)

with the matrix M ∈ Rn2c×n2c given by

M =
∫∫

Ω
(∂uu N (u, v))T (∂uu N (u, v))

+ 2(∂uvN (u, v))T (∂uvN (u, v))

+ (∂vvN (u, v))T (∂vvN (u, v))dudv.

Since the basis functions are piecewise polynomials, the inte-
gral can either be computed analytically or by integrating
each polynomial segment using a numeric integration rule,
e.g., Gaussian quadrature with an order sufficiently high to
be exact for polynomials of the given degree. After calcu-
lating M , evaluating ETP(S,Ω) requires the calculation of
computationally inexpensive matrix–vector products.

The coefficients of the matrix M only depend on the used
knot vector τ , the order k of the B-spline, and the evaluated
parameter region Ω . Assuming that all B-spline surfaces in
themodel have the same order and knot vector,M only needs
to be computed once per subregion Ω ⊆ Ω0 that is consid-
ered during a subdivision step. The matrices for individual
subregions can be precomputed and saved up to a predefined
maximum subdivision depth allowing for them to be reused
on different models with same order and knot vector.

4.3 Maximum deviation from average normal

An alternative approach to obtain a subdivision into mostly
flat surface segments is to aim at a low variation in nor-
mal vectors within each patch. Finding the maximum angle
between normal vectors at any two arbitrary surface points
is a nontrivial task. A more practical solution is to calcu-
late the average normal of a surface segment and compute
the maximum angle between any normal vector on the seg-
ment and this average normal. This is a modification to the
approach used by Sheng et al. [23] who apply this concept
in the discrete case of triangulated surfaces.

In the continuous setting of B-splines, the average normal
vector of a surface segment is given by

ñavg(S,Ω) =
∫∫

Ω n(u, v) ∥∂u S(u, v) × ∂vS(u, v)∥ dudv∫∫
Ω ∥∂u S(u, v) × ∂vS(u, v)∥ dudv

with normalization

navg(S,Ω) = ñavg(S,Ω)

∥ñavg(S,Ω)∥ .
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The functional tomeasuremaximumnormal deviation is then
defined as

END(S,Ω) = max
(u,v)∈Ω

cos−1 (
navg(S,Ω) · n(u, v)

)
.

4.4 Maximum incidence angle

While this work focuses on geometric properties of the target
objects, it can also utilize additional knowledge frommaterial
science. Some properties like surface roughness or reflection
behavior require a restriction of the angle under which the
surface of the object is inspected. This is achieved by intro-
ducing a functional that measures the maximum deviation
between the surface normal at any point of the segment and a
ray that originates from a camera placed according to Eq. (6)
at distance d:

EIA(S,Ω) = max
(u,v)∈Ω

cos−1

(

n(u, v) ·
Cd
S,Ω − S(u, v)

∥Cd
S,Ω − S(u, v)∥

)

.

More complex constraints like a range between minimum
and maximum angle or deviation from an optimal angle can
be modeled in a similar way.

4.5 Area

Surface area itself can also be used as subdivision crite-
rion. It makes sure that at least one viewpoint candidate gets
generated per predefined maximum amount of area. This is
especially useful in cases where features of interest cannot
be expressed by simple mathematical functions or in a pro-
totyping process where specific feature functionals are not
yet determined. Moreover, inspection pipeline characteris-
tics such as a narrow camera frustum might impose limiting
factors on the amount of the surface that can be processed
from a single viewpoint. A subdivision by area will always
ensure a certain sampling resolution of the surface.

The surface area is given by

EA(S) =
∫∫

S
1dS. (10)

To obtain the feature functional for arbitrary segments,
Eq. (10) is rewritten as

EA(S,Ω) =
∫∫

Ω

∥∂u S(u, v) × ∂vS(u, v)∥ dudv.

For complex objects, this functional can be used in combi-
nationwith other geometric feature functionals like curvature
to control sampling rate sparsity in flat regions.

4.6 Region of interest

Engineers and inspectors working with production lines can
usually predict where defects will occur based on their expe-
rience. Even if the inspection is already automated, this kind
of knowledge can be obtained by analyzing the distribution
of previously detected defects.

If this information is available, the application scientist
can define a region of interest (ROI), either directly by using
a brush tool on the surface or freely in 3D world coordinates
(e.g., by defining abounding sphere or boundingbox) to high-
light regions of the object at which the viewpoint candidate
distribution needs to be more intense. With

fROI(x, y, z) =
{
1, if (x, y, z) ∈ ROI

0, otherwise
,

the ROI-functional is defined as the surface area that is inside
the region of interest:

EROI(S,Ω)

=
∫∫

Ω
fROI (S(u, v)) ∥∂u S(u, v) × ∂vS(u, v)∥ dudv

Besides highlighting regions where errors are expected,
this functional can also be used to focus on critical parts of
the object inwhich surface defects have a higher significance.

5 Selecting final viewpoints

After a set of viewpoint candidates is computed, a list of opti-
mal viewpoints needs to be selected with the requirement
of keeping the number as low as possible while covering
the desired parts of the object. For that purpose, the initial
mesh model of the object is used to evaluate the viewpoints.
Let F be a set containing the nF surface primitives (tri-
angles) of the mesh, and let a set of viewpoint candidates
V = {v1, ..., vnvpc} be given. The goal is to find a set of opti-
mal viewpoints O ⊆ V which sufficiently covers the object.
To represent the coverage relation between viewpoints and
the faces of the mesh, a visibility matrix A ∈ {0, 1}nF×nvpc is
constructed,with coefficients ai j = 1 if and only if viewpoint
v j covers the i-th triangle fi ∈ F .

Since all sets are discrete and finite, the task is equivalent
to the Set Coverage Problem [25] and can be written as

min
nvpc∑

i=1

ci xi , ci =
1

∑nF
i=1 ai j

s.t. Ax ≥ b(F). (11)
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The binary variables xi indicate whether the i-th viewpoint
candidate is selected, i.e., O = {vi ∈ V |xi = 1}. The vector
b(F) ∈ {0, 1}nF controls which surface primitives need to be
covered by the inspection system. Using b(F) = (1, ..., 1)T

is equivalent to requiring full coverage.
The next best view approach is frequently used to solve

this problem [11,14,22]. Since the goal of this paper is to eval-
uate viewpoint candidate sets, the sameapproach is usedhere.
That way, comparable results are obtained and the strengths
of the presented approach can be discussed. The visibility
matrix is built using ray tracing to create the correlation
between the primitives and the viewpoints which can observe
them. The starting viewpoint is chosen by finding the trian-
gle covered by the least amount of viewpoints. From the set
of viewpoints that observe this triangle, the viewpoint which
observes the largest part of the object is chosen. Further view-
points are chosen in an iterative way by always choosing the
viewpoint that observes the most uncovered triangles. The
process is repeated until all the primitives are covered or
there are no more viewpoints available.

6 Results

The presented method is applied to models of varying com-
plexity to demonstrate the viability of the approach as well as
to highlight the differences between the feature functionals
introduced inSect. 4. To enable ameaningful comparison, the
subdivision thresholds are chosen to generate approximately
the same magnitude of viewpoint candidates.

Each result picture shows the subdivided models includ-
ing glyphs to mark pivot points and normal directions. When
using integral-based functionals, the used subdivision thresh-
old t is given in relation to the average threshold tavg as
defined by Eq. (5). For the measurements that are evaluating
angles, the threshold is provided as fixed value in degrees.
The number of viewpoint candidates generated by the recur-
sive subdivision is denoted by nvpc.

Figure 6 shows the results from applying the recursive
subdivision to a cylinder geometry (stretched in one dimen-
sion). Top and bottom are each realized by a single B-spline
surface while the mantle is modeled by four surfaces. Due to
the stretching in x-direction, two of these surfaces are rela-
tively flat, while the other two surfaces are highly bent. The
respective sizes of the object in x , y, and z directions are 80,
20, and 20 units in world coordinates.

The springmodel shown in Figure 7 is geometricallymore
difficult. Its minimum bounding box has length and width
equal to 15 and height equal to 20 world units. Like the
cylinder, it consists of one individual circular surface at the
top and bottom, respectively. Instead of a smooth mantle,
it consists of more complex surfaces with high variation in
curvature along its side. This part is divided into four slices

(a) Thin plate energy
t = 0.4tavg, nvpc = 42

(b) Curvature
t = 0.4tavg, nvpc = 36

(c) Max. normal deviation
t = 45◦, nvpc = 36

(d) Max. incidence angle
t = 60◦, d = 20, nvpc = 48

(e) Area
t = 0.3tavg, nvpc = 48

(f) Region of interest
t = 0.5tavg, nvpc = 45

Fig. 6 Application of the recursive subdivision to a cylindermodel. The
curvature-based functionals a–c yield a higher sampling where surface
bending is high. However, using the thin plate energy also leads to a
subdivision of the top and bottom surfaces. Likewise, the incidence
angle d produces the desired sampling of the curved areas while also
subdividing flat regions to provide sufficient coverage under the given
angle constraints. The subdivision by area e provides a good overall
coverage while the region of interest f places the viewpoint candidates
primarily on the highlighted region

along the circumference, each being split into three individ-
ual B-spline surfaces along its height. As long as the goal
of the viewpoint placement is only unconstrained coverage,
this model can still easily be processed by a human inspec-
tor, while the curvature behavior along the mantle introduces
difficulties to most automatic methods. However, once con-
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(a) Thin plate energy
t = 0.2tavg, nvpc = 194

(b) Curvature
t = 0.2tavg, nvpc = 194

(c) Max. normal deviation
t = 70◦, nvpc = 482

(d) Max. incidence angle
t = 85◦, d = 20, nvpc = 326

(e) Area
t = 0.2tavg, nvpc = 224

(f) Region of interest
t = 0.5tavg, nvpc = 86

Fig. 7 Application of the recursive subdivision approach to the spring
model. The subdivisions for thin plate energy (a) and curvature (b) are
identical for equivalent thresholds. However, the normal deviation c
shows less stable results. While the subdivision for the given threshold
is finer than for the other curvature-based measurements, choosing a
slightly higher threshold would cause no subdivision at all. Using the
incidence angle (d) is also less stable as the middle part of the object
does not get subdivided at all. As in the case of the cylinder model, the
area measurement e leads to a evenly distributed sampling while the
region of interest f subdivides only the highlighted part of the model

straints, e.g., coverage under restricted angles, are factored
in, the complexity of this task increases drastically for human
operators, necessitating an automated solution.

In Figure 8, the recursive subdivision is demonstrated on
a geometrically and topologically more challenging object.

(a) Thin plate energy
t = 0.75tavg, nvpc = 1400

(b) Curvature
t = 0.75tavg, nvpc = 1 325

(c) Max. normal deviation
t = 30◦, nvpc = 1571

(d) Max. incidence angle
t = 35◦, d = 130, nvpc = 1 379

(e) Area
t = 0.75tavg, nvpc = 1406

(f) Region of interest
t = tavg, nvpc = 1361

Fig. 8 When applying the recursive subdivision to more complex mod-
els, differences between used functionals become more distinctively
visible. Using the thin plate energy a leads to a higher refinement
on curved regions, but also on some of the flat regions as they still
contain planar distortions. Measuring curvature directly b provides a
more accurate placement of viewpoint candidates around the thin and
highly curved parts of the object, while still moderately refining the
outer surfaces with medium bending. Similar results are obtained using
the normal deviation (c) and incidence angle (d) functionals. A regular
sampling is obtained when considering surface area (e). The region-of-
interest functional f leads to a high intensity of viewpoint candidates in
the highlighted part

The data itself had been obtained from a 3D volumetric
image, and the B-spline representationwith 452 surfaces was
computed fully automatically using the surface reconstruc-
tion approachdiscussed inSect. 3.1.Dimensions of the object
are 72 world units in x , y, and z direction, respectively. Set-
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(a) t(TP) = 0.4t(TP)
avg

t(ROI) = 0.8t(ROI)
avg

nvpc = 66

(b) t(TP) = 0.05t(TP)
avg

t(ROI) = 0.1t(ROI)
avg

nvpc = 55

Fig. 9 Combining feature functionals for the recursive subdivision.
Both models are subdivided using both thin plate energy (TP) and
region-of-interest functional (ROI), ensuring an adequate overall cov-
erage based on surface bending while also focusing on a highlighted
region

ting up an inspection system for this model manually would
take considerable effort. In this example, the boundaries of
the individual B-spline surfaces are not aligned with any fea-
tures of the object. Hence, some surfaces can cover both
curved and flat parts. The curvature-based criteria are able
to handle this scenario especially well, leading to a dense
placement of viewpoint candidates around highly bent areas.

In some cases, several types of geometric features are rele-
vant and need to be considered for the placement of viewpoint
candidates. As discussed in Sect. 3.2.2, the recursive subdivi-
sion approach can evaluate several functionals and compare
them with their respective thresholds at each step. Figure 9
demonstrates this modification on selected examples.

Figure 10 shows results of the iterative subdivision (Algo-
rithm 2) applied to a single B-spline surface. Thismodel is 19
world units wide and longwhile having a height of 11.8 units.
It combines a variety of curvature situations within a single
surface. In contrast to the recursive approach that focuses
on coverage of the object with respect to given objectives,
the iterative approach gives the user direct control over the
number of viewpoint candidates. Furthermore, it allows for
an intuitive comparison of the used feature functionals, as
similarities and differences can easily be spotted in the visu-
alizations.

6.1 Viewpoint set optimization

To validate the viewpoint candidates generated by our
method, we briefly present the results of the subsequent opti-
mization step, i.e., a small number of viewpoints are chosen
to solve the set covering problem, see (11). To do so, the
viewpoint candidate sets are processed with the next best
view approach as explained in Sect. 5. The results are given

(a) Thin plate energy (b) Curvature

(c) Max. normal deviation (d) Max. incidence angle

(e) Area (f) Region of Interest

Fig. 10 Applying the iterative subdivision constrained by the number of
total viewpoints highlights the differences between the presented feature
functionals. The number of iterations is limited to 101 leading to 304
viewpoint candidates in total. The curvature-based measurements (a–
c), as well as the incidence angle functional (d), focus the subdivision
primarily on curved regions. Small differences can be observed on those
areaswith onlymoderate bending as the individual functionals prioritize
them differently. The area measurement (e) provides a regular, feature-
independent sampling. Using the region of interest (f), subdivisions
occur only in segments that contain parts of the highlighted region

in Table 1. While the time for the viewpoint candidate gen-
eration is only dependent on the properties of the B-splines,
the selection step utilizes the original mesh for the raytracing
and verification. Hence, the times depend on the number of
triangles as well as the number of viewpoint candidates. The
machine used to compute these results is equipped with an
Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz and uses 16
gigabyte of DDR3 RAM.
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Table 1 Results of the viewpoint candidate generation based on the recursive subdivision for different feature functionals and set optimization with
goal of maximum coverage

Viewpoint candidate generation Viewpoint set optimization
Feature functional Threshold SD duration (s) nvpc nopt RT duration (s) NBV duration (s)

(a) Cylinder (21,800 mesh primitives, 6 surfaces, 16 × 16 control points)

Thin plate 0.4tavg 0.001 42 16 49.5534 0.522725

Curvature 0.4tavg 12.518 36 10 41.1863 0.42676

Normal deviation 45◦ 2.848 36 10 41.3229 0.424306

Incidence angle 60◦ 4.317 48 22 56.68 0.578682

Area 0.3tavg 2.950 48 24 61.5702 1.03087

(b) Spring (51,800 mesh primitives, 14 surfaces, 20 × 20 control points).

Thin plate 0.2tavg 0.005 194 13 267.679 189.91

Curvature 0.2tavg 79.921 194 13 269.428 181.005

Normal deviation 70◦ 20.835 482 9 647.222 610.145

Incidence angle 85◦ 25.189 326 9 408.495 359.285

Area 0.2tavg 17.253 224 13 312.948 205.012

(c) Tangle cube (82,672 mesh primitives, 452 surfaces, 6 × 6 control points).

Thin plate 0.75tavg 0.008 1400 36 2614.64 249.015

Curvature 0.75tavg 16.696 1325 32 2556.78 270.601

Normal deviation 30◦ 2.134 1571 32 3103.06 289.856

Incidence angle 35◦ 3.021 1379 33 1771.99 234.972

Area 0.75tavg 1.883 1406 38 2613.49 268.04

The computational time is caused primarily by three key steps of the process which are measured individually: Application of the recursive
subdivision algorithm (SD), computation of the visibility matrix via raytracing (RT), and performing the next best view algorithm (NBV). The
number of viewpoint candidates is given by nvpc while nopt denotes the number of viewpoints chosen during the selection step

7 Discussion

As the presented results demonstrate, a good overall func-
tional that provides satisfying results for all types of
geometries is difficult to define. However, the fundamen-
tal functionals used in this paper have proved to effectively
focus the viewpoint candidate placement around the desired
features. When a system engineer has a good idea of what
characteristics the viewpoint candidates should be focused
on, the recursive subdivision will provide the desired result.

The thin plate energy provides good results for most sit-
uations. It is also the fastest of the presented functionals and
can be evaluated in real time, even for larger objects. As a
consequence, it allows the operator to find a good subdivision
threshold in an interactive way, e.g., by adjusting a slider and
observing the changes in the visualization. Using the thin
plate energy, however, can also cause subdivisions in some
flat areas. While the subsequent viewpoint optimization for
inspection purposes is an NP-hard problem, a few additional
viewpoints are usually not an issue. This effect is further
analyzed in Sect. 7.1.

Using curvature as subdivision criterion produces dense
sampling of highly curved regions without subdividing flat
areas at all. Because it requires a high amount of elemen-
tary computations, it cannot be evaluated in real time. The

bending at any point on the surface segment contributes to
the evaluated value leading to slight averaging effects, i.e.,
singular occurrences of a high surface bending will not nec-
essarily trigger a subdivision of a mostly flat surface piece if
the threshold is chosen high enough.

When this effect is not desired, the deviation from the
average normal can provide better results. This functional is
more susceptible to local spikes, leading to very high subdivi-
sion levels around them. However, the subdivision threshold
should be modified carefully, as minor changes can drasti-
cally increase or reduce the amount of generated viewpoint
candidates. Section 7.3 analyzes this behavior in more detail.

The maximum incidence angle functional is more practi-
cally relevant, as it ensures that the entire segment assigned to
a viewpoint can be inspected under a certain angle. However,
as Fig. 7d shows, the intermediate viewpoint placement eval-
uation during individual steps can lead to strong fluctuations
of the subdivision depth.

Using subdivision by surface area provides regular sam-
pling. It ensures that no segment is larger than the given
threshold. It does not highlight any particular properties of
the object on its own. However, it is a good supplement for
any other criteria that focus on high subdivisions around spe-
cific features, e.g., the region of interest.
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Table 2 Qualitative overview over different aspects of the presented feature functionals

Functional Intuition of values Computational cost Meeting design objectives Additivity

Thin plate energy − − +++ + Yes

Curvature − −− ++ Yes

Normal deviation ++ − ++ No

Incidence angle ++ − ++ No

Area + − ++ Yes

Region of interest + − +++ Yes

The intuition of values describes how easy it is for a human operator to understand the values obtained by evaluating the given functional.
Computational cost is important when the system has to be set up interactively or close to real time. How well a functional meets the design
objective determines to which extend the results and the user’s expectations will align. Fulfilling the additivity property leads to a stable behavior
with respect to modifications of the subdivision threshold

(a) Model with isolines (b) Thin plate energy (c) Curvature

Fig. 11 Analysis of the stretched cylinder. a Shows the model with iso-
lines corresponding to the individual knots τi of the B-spline surfaces.
Planar distortion can be observed on the top surface, caused by forc-

ing a quadrilateral surface into an elliptic shape. As a consequence, the
thin plate energy b does not vanish. c Shows that the curvature values
conform with the expected result

In fact, the region-of-interest functional is the most inter-
active of the presented subdivision criteria. It allows users
to highlight important features manually without the need
to formally define and implement a measurement. On more
complex models, the features of interest and the regions they
are occurring inmight be detected using a domain specialized
tool.

In general, all of the curvature-related functionals lead
to a good overall viewpoint candidate placement, ensuring
that the object is covered from all angles with a relatively
low amount of viewpoints. They automatically summarize
the object’s geometric complexity into meaningful values
freeing the user of the need to specify complex properties
manually. The remaining measurements are tailored for spe-
cific situations and do not necessarily aim at full coverage of
the object in highly bent areas. This can be compensated by
combining them with one of the curvature-based criteria.

Table 2provides a summarizedoverviewover the strengths
and weaknesses of the discussed criteria. The following sub-
sections will further discuss individual aspects.

7.1 Curvature computation approach

While the thin plate energy is a widely used functional
in variational design to approximate surface bending, it is
important to keep in mind that it has been motivated by
the physics of deformations. Therefore, it does not accu-
rately model the actual geometric properties of the object.
A simple example can be constructed by considering a para-
metric surface S◦ with rectangular parameter region Ω◦ =
[umin, umax] × [vmin, vmax] modeling a flat disk. It is clear
that κ1 = κ2 = 0 everywhere which means that there is no
geometric curvature. Hence, Eκ(S◦,Ω◦) = 0. However, the
mapping from a rectangular region to a circular object has
to include planar distortions, i.e., second derivatives do not
vanish everywhere, implying that ETP(S◦,Ω◦) ̸= 0.

Figure 11b demonstrates this effect. It shows the sym-
metrical cylinder model consisting of 6 individual B-spline
surfaces with a color plot of the thin plate energy integrand

∥∂uu S(u, v)∥2 + 2 ∥∂uvS(u, v)∥2 + ∥∂vvS(u, v)∥2
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Table 3 Distribution of feature
values on the cylinder model
shown in Fig. 11

Functional Top/bottom (2×) (%) Long sides (2×) (%) Short sides (2×) (%)

ETP(S) 18.83 2.95 28.22

Eκ (S) 0 0.41 49.59

While the curvature functional shows the desired distribution, using the thin plate energy will cause a subdi-
vision of the flat surfaces on the top and bottom before considering the slightly curved side surfaces

(a) Model with isolines (b) Thin plate energy (c) Curvature

Fig. 12 Analysis of the spring model. The isolines (a) of the B-splines
indicate less distortion in planar regions than for the cylinder in Fig. 11.
Although this still causes low nonzero values for the thin plate energy

there, the color plot b shows that they can be neglected. The distribution
is almost identical to the curvature shown in (c)

Table 4 Functional values on individual surfaces of the spring model shown in Fig. 12

Functional Top/Bottom (2×) Lower surfaces (4×) (%) Middle surfaces (4×) (%) Upper surfaces (4×) (%)

ETP(S) 0.27% 8.46 8.16 8.25

Eκ (S) 0 8.71 7.65 8.64

The distribution of values of thin plate energy and curvature mostly coincide, as the low thin plate energy values on the top and bottom surface are
almost neglectable

on the surface. Since the top and bottom surfaces have
ellipsoidal shapes, their second derivatives do not vanish—
especially close to the curved boundaries. At the same time,
the surfaces on the side with almost no bending are described
by a close to uniformly distributed grid of B-spline control
points. Hence, there is only little thin plate energy. Applying
one of the presented subdivision approaches leads to a sub-
division of the top and bottom before considering these two
side surfaces. However, as Table 3 shows, the most energy
is located at the highly curved surfaces at the ends, which
means that the design objective (i.e., subdivision of highly
curved regions) is still met.

The exact curvature measured by κ2
1 + κ2

2 is shown in
Fig. 11c. Like the thin plate energy, it has a low value on the
long side surfaces and a high value on the strongly curved
ends. However, it vanishes on both the top and the bottom,
which is in alignment with the expected result when aiming
for a curvature-based subdivision.

The cylinder model has a relatively simple curvature sit-
uation (at least one principal curvature is zero at any point)

causing the differences to be distinctively visible. In fact,
the value distributions are more aligned when considering a
more complex example.

Figure 12 shows the thin plate energy and curvature func-
tional values for the spring model. They are summarized in
Table 4highlighting that there are still planar distortions caus-
ing nonzero values of thin plate energy on the flat top and
bottom. However, compared to the high values occurring on
the sides, they are almost neglectable. A qualitative compar-
ison of the color plots of the integrands of ETP(S) (Fig. 12b)
and Eκ(S) (Fig. 12c) on the surface leads to the conclusion
that both functionals behave similarly for this model.

For a curvature-based subdivision, these comparisons
indicate that using Eκ(S) yields more accurate results as it
always exactly meets the design objective. Onmore complex
models, the difference becomes less significant. While it can
lead to some additional viewpoint candidates in unintended
regions, ETP(S) still prioritizes highly bent regions lead-
ing to the indented subdivision there. However, evaluating
Eκ(S) requires a large number of operations, while ETP(S)
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can be computed by simply evaluating Eq. (9). Hence, at the
cost of some accuracy, thin plate energy can be used in real
time, allowing a user to interactively modify the subdivision
threshold. On the other hand, if the viewpoint candidates do
not need to be generated interactively and time is not a critical
factor, using the curvature functional is preferable.

7.2 Intuition behind feature functional values

An important aspect for the usability of any method is how
easy it is for the operator to understand and control the param-
eters. While the principles underlying the feature functionals
can be understood fairly easily, choosing a good termination
threshold requires some knowledge of the expected values.

To a user, the integral values evaluated for the thin plate
energy or curvature are just numbers with no intuitive mean-
ing. Instead of defining a fixed number as threshold, it is
easier to normalize those values and set the threshold to a per-
centage of the total or average measurement. This is possible
since all presented integral measurements can be summed up
to a “total” value for the entire object.

The measurements for area and the region of interest are
somewhat more intuitive. If the operator has a feeling for
the dimensions of the objects, it is possible to define a fixed
number ofmaximumarea for the subdivision.However, since
those measurements are also integral based, the approach of
using an average value also proves viable here.

While a threshold for the maximum angle-basedmeasure-
ments could also be chosen in relation to their average, it is
actually more intuitive to set a fixed number for those func-
tionals. The evaluated values are angles, whichmight already
be explicitly determined by external constraints. Even if not,
it is fairly intuitive for a user to understand the meaning of
a maximum angle when setting up the parameters for the
system.

7.3 Stability

To apply the recursive subdivision, a termination threshold
needs to be chosen. Unless already given by some external
constraints, a system engineer would usually determine this
value experimentally, e.g., as described in Sect. 3.2.1. Fig-
ure 13 shows examples of this process for selected feature
functionals.

Besides the intuition of the expected values, it is also
important to be aware of the stability of the used feature func-
tionals. In an optimal setting, small changes to the threshold
value only add or remove a low amount of viewpoint can-
didates. However, in some cases, a small variation in the
threshold canmake the difference between subdividing a sur-
face several times and no subdivision at all (e.g., Fig. 7c, d).

Such behavior is analyzed by applying the iterative subdi-
vision, i.e., always subdividing the surface with the highest

feature value until a certain number of iterations have been
done (Algorithm 2). Plotting the highest occurring feature
functional value in relation to thenumber of iterations enables
visual analysis of the stability behavior. Figure 14 demon-
strates this approach for three individual surfaces. Each
surface gets processed with 100 iterations of the subdivi-
sion approach. The plots show the behavior of all presented
feature functionals except the region of interest, as it is just
a restricted variety of the area measurement. Computing the
recursive subdivision with a threshold value t corresponds
to finding the first intersection between the graph and the
horizontal line y = t .

Due to the partition of values when splitting a surface,
the integral-based criteria show a monotonous decrease that
becomes almost exponential when the surface has a regu-
lar geometry. This leads to a stable behavior when choosing
a threshold, as well as a fast convergence of the recursive
method.

The angle-based functionals measure the maximum devi-
ation of any normal vector from the average normal or a
ray originating at the camera, respectively. However, when
subdividing the surface, both the average normal and the
camera position are recomputed, possibly introducing sig-
nificant jumps. As a consequence, sudden increases in the
evaluated maximum deviation can occur. It is clear that these
jumps do not occur anymore when the surface gets subdi-
vided into sufficiently small segments. However, for surfaces
with high frequencywiggles (e.g., Fig. 14d), it will takemany
iterations until this criterion is met. For smoother surfaces,
these functionals converge almost with the same rate as the
integral-based measurements (Fig. 14a).

7.4 Limitations

The subdivision approach does not explicitly address the total
coverage of an object. However, for the presented models
this aspect does not pose a problem as the subdivision is
always fine enough to ensure that at least one viewpoint is
available everywhere. If a guaranteed total coverage or at
least coverage of certain parts is desired, a feature functional
can be defined measuring the uncovered areas. One way to
address this issue is by modeling a viewing frustum through
an angular criterion, e.g., by measuring the maximum devi-
ation between camera view direction and view vector to any
point on the surface.

Furthermore, the algorithm does not deal with self-
occlusions and collisions of viewpoint candidates with the
object’s geometry. Holes or tight cavities still pose a chal-
lenge. Of course, the task of doing visual surface inspection
itself is very complex. While it is desired to have a gen-
eral and adaptable approach suitable for this task, finding a
method that is able to process completely arbitrary objects
automatically without any intervention or constraints still
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(a) Thin plate energy
t = 0.75tavg, nvpc = 234

(b) Thin plate energy
t = 0.25tavg, nvpc = 882

(c) Thin plate energy
t = 0.75tavg, nvpc = 192

(d) Thin plate energy
t = 0.25tavg, nvpc = 612

(e) Curvature
t = 0.75tavg, nvpc = 339

(f) Curvature
t = 0.25tavg, nvpc = 1098

(g) Curvature
t = 0.75tavg, nvpc = 150

(h) Curvature
t = 0.25tavg, nvpc = 402

(i) Area
t = 0.75tavg, nvpc = 234

(j) Area
t = 0.25tavg, nvpc = 612

(k) Area
t = 0.75tavg, nvpc = 138

(l) Area
t = 0.25tavg, nvpc = 402

Fig. 13 Subdivision threshold impact. Lowering the subdivision threshold increases sampling density in areas of interest, depending on the feature
functional. By adjusting the threshold, an operator can interactively ensure that the object is sufficiently covered, keeping total number of viewpoint
candidates low

requires a lot of further research. However, the presented
method is designed in a way that allows various modifica-
tions to tackle this problem, e.g., by adapting the way the
pivot points are chosen or the direction in which the camera
is placed. Additional post-processing steps can be applied to
correct the positioning of invalid viewpoint candidates.

8 Conclusions and future work

The presented method provides an adaptive and intuitive
solution for object space exploration by generating desir-

able viewpoint candidates in sufficient numbers. It allows
skilled system engineers to factor in expert knowledge, while
at the same time producing viable results when used with the
default settings. The experiments have shown that the thin
plate energy functional leads to well-distributed viewpoint
candidates requiring little computational effort.

As the results show, objects can be fully covered with a
small number viewpoint candidates. Thus, the subsequent
NP-hard problem of selecting optimal viewpoints has to be
solved only for a small input. The subdivision threshold, and
with it the density of the surface sampling, can be chosen
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(a) Surface with isolines (b) Integral Based Criteria (c) Max Angle Based Criteria

(d) Surface with isolines (e) Integral Based Criteria (f) Max Angle Based Criteria

(g) Surface with isolines (h) Integral Based Criteria (i) Max Angle Based Criteria

Fig. 14 Analysis of the stability and convergence behavior of the
presented functionals. Three selected surfaces (a, d, g) of different geo-
metric complexities are considered. For each surface, 100 subdivision
steps are performed. Each plot shows the highest measured value on
the y-axis with respect to the number of performed subdivisions nsd on
the x-axis. The integral-based values (b, e, h) are given as percentage

of the total value measured for the entire surface, as it always equals
the sum of all segments. Since the decrease is close to exponential, a
logarithmic scale is used. Angle-driven functionals (c, f, j) are given
as absolute values. Correspondence to the recursive subdivision can be
obtained by finding the first intersection between the plotted graphs and
a vertical line representing the subdivision threshold y = t
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interactively. By pre-computing the subdivision to a certain
depth, the operator can modify the threshold and evaluate the
impact on the results in real time.

The use of B-splines makes the approach independent of
the resolution of a discrete representation, as a singleB-spline
surface can represent surface triangulations of various resolu-
tions. The analytic and continuously differentiable B-spline
representation allows for the computation of various mea-
surements. A user can easily factor in application-specific
constraints or define new features to be focused on during
inspection. Additionally, the B-spline construction, based on
least-squares approximation and a smoothing term, can com-
pensate for small amounts of noise in the discrete input data.

Future extensions of this method will focus on optimizing
camera positions in order to consider additional properties
like material behavior or light source placement. It is also
worth investigating how the subdivision itself can become
more adaptive, e.g., to highlight interesting regions with
fewer overall subdivision steps. Ultimately, the goal is to
have an efficient and purely virtual system that sets up the
physical inspection system. This will be of substantial bene-
fit in agile production environments, where a high degree of
automation is desired.

The overall pipeline for setting up inspection systems has
existed for years and in many variations. Despite the des-
perate need to do so, full automation for arbitrary objects
has not yet been achieved. While the work presented here
addresses one singular aspect of the inspection pipeline,
it provides researchers and engineers with a powerful and
adaptable solution, with the potential for further innova-
tions. Continuous development of this approach will lead to
smart inspection systems capable of adapting to newproducts
within minutes, making production and inspection systems
truly agile.
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