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Abstract The micro-structure of wood-based insulation materials is ana-
lyzed to gain insight into how features on microscopic scales influence macro-
scopic thermal conductivity. Three-dimensional (3D) image data obtained by
micro-computed tomography reveals a complex structure formed by cellulose
fibers. To study the effect of geometry changes, simple B-spline represen-
tations of these fibers are highly desirable. A straightforward solution is to
extract a triangulated isosurface from the 3D image and partition it into
quadrilateral macro-cells with disk-like topology. For each cell, a B-spline
surface is constructed by minimizing a least squares error term. However, the
physical processing of the material affects the structure of the fibers. The
resulting changes in surface topology cause difficulties for the quadrilateral
partitioning. Image processing tools can solve these topological issues, but
they also impact geometry. We present a novel approach that splits geometry
and topology processing of the data. It allows for topological simplification
while still preserving the geometry of a scanned object. Established B-spline
approximation methods are used to create a model. The involved mathemat-
ical equations are described in detail with a focus on simple implementation.
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Our presented results demonstrate that smooth and accurate models can be
created for challenging data.

1 Introduction

An important part in researching material properties is the generation of
models representing microscopic structures which can be used for visualiza-
tion and simulation purposes. How these models are obtained strongly de-
pends on the size and complexity of the samples, the initial data acquisition,
and the target application.

We are concerned with model generation of cellulose fibers. A cellulose fiber
is understood as a hollow tube that is open on both ends. The empty space
inside is called lumen. Models of such structures are helpful to understand
and assess mechanical properties of a material on a macroscopic scale [1]. For
example, this understanding allows researchers to establish a relation between
the micro-structure and physical properties of paper [15]. Another example is
the analysis of sound-dampening properties of wood-based acoustic insulation
material with respect to its tortuosity, a parameter that relates physical,
acoustic, and morphological properties of a material [20].

Our goal is to investigate heat conductivity properties of wood-based ther-
mal insulation materials. The micro-structure of these materials consists of
a complex system of cellulose fibers which occur in chunks, chips, and as
individuals. To conduct simulations, B-spline surface models of such fibers
are desired. These models should consist of a low number of continuously
connected surfaces and include the inner and outer surfaces of the fiber wall.
The main feature of interest is the shape of the fibers as well as the contained
lumen. This means that small holes in the wall as well as roughness along the
surface can be neglected and do not need to be present in the final model.
B-spline surfaces are defined by a grid of control points. Storing just those
control points requires far less memory than a high-resolution triangulation.
Furthermore, B-splines are better suited to represent geometric detail than
a down-sampled mesh. Changing control point locations directly affects the
shape of the surface, which allows scientists to generate additional fibers for
simulations from a small number of prototypes.

The initial data is a scan of a material sample given as 16-bit grayvalue
image which is obtained by high-resolution synchrotron computed tomogra-
phy. For denoising, a 5× 5× 5 median filter is applied after which the image
is binarized with a global gray value threshold. Individual fibers are then
extracted from this image based on a local shape criterion [2].

However, the physical processing of the material causes damage to the
micro-structure which leads to cuts and holes in the fiber walls as well as
increased surface roughness in some areas. As Figure 1 shows, these effects
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complicate the topological structure of the surface by adding numerous small
tunnels, holes, and cavities.

Fig. 1: Example of an extracted fiber. While the overall geometrical shape
appears to be smooth, close-ups show artifacts affecting the local topology
on the surface.

A straightforward solution to create a B-spline model of those fibers is to
extract the isosurface of such a fiber in form of a triangulated mesh. In order
to compute a continuous B-spline model, this mesh needs to be partitioned
into a collection of quadrilateral macro-cells. Each macro-cell can then be
approximated by a B-spline surface. Due to the non-trivial topological situa-
tion on the fiber’s surface, most approaches to compute such a quadrilateral
decomposition either fail or produce a very large amount of small macro cells.
Standard image denoising operations can solve the topological problems, but
might also introduce a geometrical error to the resulting surface.

Our contribution is a new approach that splits the data processing pipeline
into geometry and topology processing. A strongly cleaned and repaired im-
age is used to create the mesh of larger quadrilateral faces capturing the
topology of the idealized cellulose fiber. This quad-mesh is then used to par-
tition the original data, extracted from the unprocessed image, by assigning
each data point to the nearest quad-face. Processing the data this way pro-
vides the necessary input for established B-spline approximation methods.
The resulting B-spline models have fiber-like topology and closely approxi-
mate the geometry of the original data.
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2 Related Work

While no methods exist to extract isosurfaces directly in form of B-splines,
a variety of research has been published concerning the construction of B-
spline approximations of discrete data given as point clouds or surface meshes.
Such an explicit representation can easily be obtained from a 3D image by
contouring methods like Marching Cubes.

Regular tensor product B-spline surfaces can only represent structures
with disk-like topology. To construct a model for complex objects, the data
needs to be decomposed into quadrilateral cells. The data points in each cell
are then approximated by a single B-spline surface. The key challenge is to
ensure certain continuity constraints along boundaries. While a watertight
model, i.e., C0-continuous transitions along shared boundaries, is almost al-
ways a requirement, it is often desired to also have at least tangent plane
continuity, i.e., G1-continuous transitions.

Eck and Hoppe [3] provide an in-depth description of the overall pipeline
starting with a point cloud. Their first step is to establish a topological struc-
ture of the data by generating a fine surface mesh. Using a Voronoi-like tes-
sellation and its dual Delaunay-like complex, the mesh is subdivided into a
set of quadrilateral cells where each cell has a disk-like topology. Those cells
are parameterized using harmonic maps. A B-spline approximation using a
modification of Peters’ scheme [18] is then computed to minimize the least
squares error between the surfaces and the data points.

Gregorski et al. [8] propose a method to construct a set of B-spline sur-
faces approximating a given point cloud. They decompose their data into
quadrangular cells based on a so-called strip tree which provides an adaptive
subdivision of the data, similar to a quad-tree, into small boxes such that the
points contained in each box can be approximated by B-spline surfaces with
low error. Control points of neighboring surfaces are then adjusted during a
post-processing step to ensure C1-continuous transitions. Since they do not
establish a topological structure of the surface, their approach works best on
mostly flat objects.

Given a triangulated surface mesh and a manually defined subdivision into
quadrilateral cells, Krishnamurthy and Levoy [13] do a remeshing of each cell
to obtain a regular sampling of the data. This implicitly defines a parameter-
ization and reduces the complexity of the B-spline approximation. However,
to apply it to complex objects, an automatization of the quadrilateral de-
composition is necessary.

Yoo [22] describes an approach to construct a B-spline model of human
bones given as point cloud or sequence of computed tomography images.
First, the input data is used to define an implicit surface on which a fine quad-
mesh is constructed. Each quad and the normal vectors along its boundaries
are then interpolated by a B-spline surface.

Yoshihara et al. [23] capture the topology of a given point cloud by con-
structing an implicit function and applying a level set method. At the cost
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of geometrical accuracy in noisy regions, this allows for a stable processing
of difficult data. The object’s surface is approximated by a Catmull-Clark
subdivision surface and the corresponding control points are used to form a
fine quad-mesh which is interpolated by B-spline surfaces.

Lin et al. [14] present a method to create a smooth B-spline model to
approximate a mesh. The quadrilateral decomposition is done manually. After
constructing a curve network representing the boundaries, the data points in
each cell are approximated by a bi-quintic Bézier surface that interpolates
the boundary curves. The resulting surface model is made G1-continuous by
also interpolating pre-computed normal vectors along the boundaries.

Zhao et al. [24] introduce an iterative approach, allowing individual sur-
faces to use differing knot vectors. Given a point cloud and a partition into
quads, their approach constructs an initial set of B-spline surfaces to closely
approximate the data and then ensures approximate G1-continuity in a nu-
merical post-processing step.

Based on their previous work, Peters and Fan [19] provide an in-depth the-
oretical analysis of G1-continuous B-spline surface constructions. They state
necessary constraints that B-splines based on a quad-mesh with arbitrary
topology need to satisfy in order to obtain tangent plane continuity every-
where. A key statement is that in a general setting, a G1-continuous B-spline
surface model can only be constructed when the used knot vectors have at
least two interior double knots.

Satisfying these requirements, Fan and Peters [4] provide a construction
scheme for bi-cubic B-splines with exactly two double inner knots. Equations
for all control points are explicitly given as linear combinations of the sur-
rounding vertices of the quad-mesh, but the method can also be modified to
approximate a set of discrete data points.

While a large variety of methods for many scenarios exists, they are pri-
marily designed for structures that allow for a decomposition into a relatively
small number of quadrilateral macro cells. However, this paper deals with
rough fiber structures with complicated surface topology. A straightforward
decomposition of the data into disk-like quadrilateral cells would require a
very high number of small cells. Automatically removing these effects during
a pre-processing step strongly affects the geometry of the resulting B-splines.
Hence, an alternative solution is introduced here.

3 Pipeline

The key aspect of our method is splitting geometry and topology processing,
see Figure 2. After the data has been processed this way, standard methods
for B-spline approximation can be applied.

To compensate for small holes and the rough surface structure in the data,
a topological simplification is employed. We apply a morphological closure to



6 Dennis Mosbach, Katja Schladitz, Bernd Hamann, Hans Hagen

Fig. 2 Pipeline sep-
arating geometry and
topology processing. To
partition the data into
quadrilateral cells, a mor-
phological closure oper-
ation is applied to the
input image. The iso-
surface of the image is
extracted and re-meshed
into a quad-mesh defining
the topological structure
of the B-spline model.
The approximation is
computed with respect to
the data points extracted
from the isosurface of the
original mesh.

the volume image, i.e., we perform a sequential application of dilation and
erosion on the object represented by the image’s foreground [17]. The size of
the filter mask needs to be chosen sufficiently large to fill the entire structure.
Efficient implementations for large filter masks are available [16]. This oper-
ation preserves the original outer boundary in smooth regions and absorbs
any outside material into the fiber’s surface, see Figure 3. The inside of the
fiber and holes in its wall are closed. The resulting object has the topology
of a cylinder. Hence, applying Marching Cubes leads to a surface mesh with
a topological structure that is well-suited to be partitioned into large and
evenly sized macro-cells. A re-meshing into a small number of quadrilateral
cells is performed on this mesh, using a freely available implementation of the
Quadriflow algorithm [11]. The resulting quad-mesh is a “rough geometrical
approximation” of the data, but it provides a suitable topological structure
for a B-spline model.

For the geometry-focused part of the pipeline, the original image is consid-
ered. As with the closed image, a triangulated isosurface is extracted using
Marching Cubes. The vertices of this triangulation provide the geometry data
for the B-spline approximation. To associate them with the topological struc-
ture of the quad-mesh, each point is assigned to the closest quad-face. An
initial parameterization is obtained by projecting the points onto their asso-
ciated faces. By assigning the corners of a quadrilateral to the corners of the
unit square, a correspondence is established between the position of the pro-
jected point in the quadrilateral and a tuple in (u, v)-parameter space, where
(u, v) ∈ [0, 1]2, see Figure 4. This initial parameterization is not optimal, but
it suffices to generate a proper initial surface approximation. The parame-
terization is optimized during the iterative surface construction approach as
described in Subsection 4.2.1.
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(a) (b) (c) (d)

Fig. 3: Performing a morphological closure operation simplifies the topology
of the object. A slice of the 3D volume data (a) and a close-up of the cor-
responding region in the isosurface (b) highlight regions hard to handle for
subsequent processing. Applying the closure operation simplifies the surface
structure, as seen in (c) and (d).

Fig. 4: Initial parameterization. Each vertex of the original isosurface is or-
thogonally projected onto the closest face of the quad-mesh. The corners of
the quad correspond to the corners of the unit square [0, 1]2. The relative
position of the projected point in the quad defines the parameterization.

Cellulose fibers are hollow. To reconstruct a fiber wall and the contained
lumen, the inside and outside of the isosurface representing the wall are con-
sidered separately. The topology is the same in both cases. Hence, the same
quad-mesh can be used for both approximations. However, each data point
needs to be classified as belonging to either the interior or exterior surface
of the fiber wall. This classification can be done by applying a Euclidean
Distance Transform to the closed image, assigning to each voxel the distance
to the closest point of the isosurface [7]. As the morphological closure still
mostly preserves the outer surface, data points with low distances (in our case
≤ 2 voxels) are considered to belong to the outside surface of the wall, while
data points with larger distance values are considered to belong to the inside.
Once the classification is performed, separate surface models are constructed,
one for each set of data points.

The quad-mesh obtained from the simplified image is closed. Since the
layout produced by the Quadriflow algorithm is sensitive to sharp features,
the actual open ends of the fibers align well with individual quad-faces. To
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reproduce the open structure of fibers, these quads are removed and the
open space between inside and outside B-spline surfaces is closed via linear
interpolation between the boundary curves.

Image processing operations, including closure, Euclidean Distance Trans-
form and isosurface extraction with Marching Cubes, are performed with the
implementations in MAVI [6]. The projection of the data points onto the
quad-mesh is performed with the freely available software package libigl [12].

4 B-spline Approximation

This Section reviews the construction of B-spline surfaces to approximate
discrete data. The concepts are based on literature [5] and the methods men-
tioned in Section 2. Equations that need to be solved are stated in a uniform
notation with a focus on simple implementation.

As input, a set of data points and their parameterization is required. Op-
tionally, they can also have weights assigned to them, which is useful when
considering a non-uniform distribution of data points. For complex objects
that cannot be modeled with a single surface, a partition into quadrilateral
cells is required. The data of each cell is then approximated by an individ-
ual B-spline surface that has to satisfy certain continuity constraints with
neighboring surfaces.

After introducing the basic notation in Subsection 4.1, Subsection 4.2 dis-
cusses the construction of a single surface. Finally, a global system including
the constraints necessary for a continuous model consisting of multiple B-
spline surfaces is introduced in Subsection 4.3.

4.1 B-spline Surface Notation

A B-spline surface is defined by an order k ∈ N, a knot vector for each
parameter direction, and a rectangular grid of control points. To keep the
construction of a model with multiple continuously connected surfaces as
simple as possible, the B-splines considered here are restricted to quadratic
grids of nc × nc control points and use the same knot vector

τ = ( 0, ..., 0︸ ︷︷ ︸
k+1 times

, τ1, ..., τnc−k−1, 1, ..., 1︸ ︷︷ ︸
k+1 times

) ∈ [0, 1]nc+k+1

with knots τi ≤ τi+1 in u and v direction. The piecewise polynomial basis
functions of order k defined by knot vector τ are denoted by Ni(·) := Ni,k,τ (·).

The B-spline surface is given by
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S :[0, 1]2 → R3

S(u, v) =

nc∑
i=1

nc∑
j=1

Ni(u)Nj(v)bi,j .

4.2 Single B-spline Surface Approximation

First, the approximation of a set of data points by a single B-spline surface
is discussed. Given a set of np points pi ∈ R3 with assigned parameter values
(ui, vi) ∈ [0, 1]2 and a weight wi ∈ R. The least squares error of the surface
with respect to the data is denoted by

ELS =
1

2

np∑
i=1

wi ‖S (ui, vi)− pi‖2 . (1)

An equivalent notation can be used to simplify this term. Let b ∈ Rn2
c×3

be a one dimensional list containing the B-spline control points and let
bx, by, bz ∈ Rn2

c be the vectors containing their x, y, and z coordinates. A
correlation between the list index i and the index i, j in the original grid can
be established with a bidirectional mapping, e.g., i = inc+ j. Using the same
index mapping, let

N(u, v) = [N1(u)N1(v), ... , Nnc
(u)Nnc

(v)] ∈ R1×n2
c (2)

be a row vector containing the associated tensor products of basis functions.
Then, Equation (1) can be written as

ELS =
1

2

np∑
i=1

wi
∥∥N(ui, vi)b− pTi

∥∥2 .
Furthermore, let N ∈ Rnp×n2

c be the matrix containing the basis function
coefficients for the parameters ui, vi associated to each data point pi and let
a list of all data points be denoted by p, i.e.,

N =

 N(u1, v1)
...

N(unp
, vnp

)

 , p =

 p
T
1
...
pTnp

 .
The least squares error can then be expressed as

ELS =
1

2

∑
σ∈{x,y,z}

(Nbσ − pσ)TW (Nbσ − pσ)
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with the weights as diagonal matrix W = diag(w1, ..., wnp
) and gradient

∇σELS = NTWNbσ −NTWpσ.

Minimizing the least squares error is equivalent to solving ∇σELS = 0 for all
components σ ∈ {x, y, z}.

Due to the discrete nature of the data, an approximation based on only the
least squares error often includes unwanted wiggles. This is compensated by
penalizing the deviation from a smooth surface by a fairing term. A commonly
used term is the thin-plate-energy functional [3, 10]

ETP =
1

2

∫ 1

0

∫ 1

0

‖∂uuS(u, v)‖2 + 2 ‖∂uvS(u, v)‖2 + ‖∂vvS(u, v)‖2 dudv

which, for B-splines, can be rewritten as

ETP =
1

2

∑
σ∈{x,y,z}

bTσMbσ

with gradient
∇σETP = Mbσ

where M ∈ Rn2
c×n

2
c is a matrix containing the integrals of the basis functions

given by

M =

∫ 1

0

∫ 1

0

(∂uuN(u, v))T (∂uuN(u, v))

+ 2(∂uvN(u, v))T (∂uvN(u, v))

+ (∂vvN(u, v))T (∂vvN(u, v))dudv.

The B-spline basis functions are piecewise polynomials. Hence, their integrals
can either be determined analytically or by numeric integration, e.g., applying
Gaussian quadrature to each knot interval [τi, τi+1) with a high enough degree
to be exact for the given case.

To compute a smooth surface that approximates the data points, a linear
combination of both terms is minimized, i.e.,

min. (1− λ)ELS + λETP (3)

with the parameter λ ∈ [0, 1) controlling the impact of the fairing term to the
resulting surface. Since (3) is a system of quadratic equations with respect
to the B-spline control points, its optimal solution can be found by solving

0 = (1− λ)∇σELS + λ∇σETP

= (1− λ)(NTWNbσ −NTWpσ) + λMbσ
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for each coordinate σ ∈ {x, y, z}. It can be written as

((1− λ)(NTWN) + λM)b = (1− λ)NTWp. (4)

This is a linear system with respect to the control points b. It can be solved
by a variety of freely available code packages, e.g., Eigen [9].

4.2.1 Iterative Approximation

The described approach aims on minimizing the distance between data points
pi and the points on the surface S(ui, vi), associated to them through their
parameterization. However, these are not necessarily the smallest distances
between the data points and the surface. It is common practice to improve the
quality of the approximation by employing an iterative approach alternating
between the construction of the surface and an update to the parameter
values.

After a surface has been constructed, the parameter values of each data
point are updated, by minimizing

(u′i, v
′
i) = argminu,v∈[0,1]‖S(u, v)− pi‖.

which can either be done exactly using computationally expensive nonlinear
optimization or approximately by considering low-degree Taylor series [21].
An example using a first-order Taylor series is shown in Figure 5. The new
parameter values are restricted to the unit square. To ensure stable behav-
ior of the method, data points that are close to surface boundaries are not
assigned to neighboring surfaces, even when the distance to them might be
smaller.

Fig. 5: Parameter optimization using first-order Taylor series. The error vec-
tor between each data point pi and its corresponding point on the surface
S(ui, vi) is projected onto the tangent plane. The difference between the pro-
jected point and S(ui, vi) is proportionally applied to the parameterization
to obtain an improved parameter tuple (u′i, v

′
i).
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4.3 Constructing a Continuous Surface Model

When constructing a model with ns surfaces, the same principles than for a
single surface apply, but some modifications are necessary to ensure contin-
uous transitions between neighboring surfaces. Control points and data can
be stored in a global list by concatenating the lists of each individual surface.
The coefficient, weight, and smoothing matrices are combined to diagonal
block matrices. Using

b̂ =

 b
(1)

...
b(ns)

 , p̂ =

 p
(1)

...
p(ns)

 ,

N̂ =

N
(1) 0

. . .

0 N (ns)

 , Ŵ =

W
(1) 0

. . .

0 W (ns)

 , M̂ =

M 0
. . .

0 M

 ,
instead of the single surface terms in Equation (4) leads to the same result
as constructing each surface individually.

4.3.1 Achieving C0-continuity by Adding Constraints

To obtain C0-continuity, i.e., a watertight model, the row of control points
along a shared boundary between any two neighboring surfaces needs to
be identical. This can be expressed by a number of constraints of the form
b̂i− b̂j = 0 with i, j being the indices in the global control point vector of the
points that need to be identical. All constraints together can be expressed by
a matrix vector product: Gb̂ = 0 where each row of matrix G ensures that
two corresponding control points have to be identical.

With these constraints, the optimization problem (3) becomes

min. (1− λ)ÊLS + λÊTP (5)

s.t. Gb̂ = 0.

Using the method of Lagrange multipliers, an optimal solution of (5) can be
found by solving[

((1− λ)N̂T Ŵ N̂ + λM̂ GT

G 0

] [
b̂

Λ

]
=

[
(1− λ)N̂T Ŵ p̂

0

]
(6)

with Lagrange multipliers Λ. This system can be implemented and solved in a
straightforward way. However, adding the C0-constraints in form of a matrix,
increases the size of the overall system compared to the unconstrained case.
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4.3.2 Achieving C0-continuity by Reduction of Variables

An alternative is to implicitly enforce C0-continuity, by using only one vari-
able for each set of control points that are supposed to be identical. The
matrix G is not needed and the overall number of unknowns is reduced,
which allows better performance when solving the system. However, an in-
dex transformation is necessary to implement this system, i.e., each index î
in the global (full) control point list b̂ is assigned a new index ĩ in the re-
duced list of control points b̃. Using a matrix H with entries Hî,̃i = 1 and
zero everywhere else, the original list of control points can be reconstructed
as b̂ = Hb̃. Plugging that in into the objective function (5) and solving for
the gradient being equal zero leads to(

(1− λ)HT N̂T Ŵ N̂H + λHT M̂H
)
b̃ = (1− λ)HT N̂T Ŵ p̂ (7)

4.3.3 Achieving G1-continuity

The index transformation can be modified to also ensure G1-continuity,
i.e., transitions between surfaces with continuous tangent planes. Here, the
method by Fan and Peters [4] is used. Given a quad mesh, they provide

equations for a smooth surface model where all B-spline control points b̂i are
expressed as linear combinations of the quad mesh vertices q. Using these
equations and an appropriate indexing, the overall B-spline control points
can be expressed as b̂ = V q.

By considering the vertex positions q as unknowns and using the matrix
V instead of the index transformation H, (7) can be rewritten as(

(1− λ)V T N̂T Ŵ N̂V + λV T M̂V
)
q = (1− λ)V T N̂T Ŵ p̂. (8)

Solving this linear system corresponds to finding a quad mesh on which the
scheme by Fan and Peters produces a set of B-spline surfaces minimizing the
objective function (5). The resulting surfaces are G1-continuous everywhere.

5 Results

We applied our method to a number of isolated fibers. Figure 6 shows an
example, including intermediate steps. Further results are shown in Figure
7. Even though many complicated topological situations arise in the data,
our algorithm produces stable results, see Figure 8. The overall shape and
important characteristics, like length and bending, are well-preserved. Loose
noise-like structures occurring in regions with high roughness are smoothed,
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while larger material parts are absorbed resulting in only a small distortion of
the surface. Holes in the fiber walls are closed, and the topological structure
of the surface does not impact the stability of the quadrilateral partitioning.

Each resulting B-spline surface is of order k = 3 and is defined by 8 × 8
control points. The surface model is constructed with the G1-continuous
approach described in Subsection 4.3.3, which defines the knot vector as
τ = (0, 0, 0, 0, 13 ,

1
3 ,

2
3 ,

2
3 , 1, 1, 1, 1). The computation is done via three itera-

tions of surface approximation and parameter optimization, with decreasing
smoothness parameters λ1 = 0.9, λ2 = 0.5, λ3 = 0.1.

6 Conclusions

We have presented a new approach that reconstructs high-resolution cellulose
fibers from 3D images with a low number of B-spline surfaces. Due to the
production process of the material, the micro-structure contains complex
topology that is problematic for established methods to handle properly. By
splitting the processing pipeline into geometry and topology processing, we
can deal with the topological difficulties and compute stable reconstructions
of idealized structures.

After the data is processed with the pipeline, a B-spline surface model
can be generated by using established B-spline methods. Our detailed de-
scription of the resulting linear system of equations focuses on an elegant
implementation.

Our method can handle challenging situations in the image. For example,
surface roughness has almost no impact. Even when larger material parts are
present near the surface of a fiber, its wall is still reconstructed in a topolog-
ically correct way, and surplus material is treated as a local deformation of
the surface. The triangulated meshes extracted from high-resolution images
contain 423 628 to 1 203 844 triangles, and they are modeled with 236 to 676
B-spline surfaces.

We designed our method for fiber-like objects having simple overall topol-
ogy to deal with local topological changes that arise in the presence of surface
roughness or small holes and tunnels. Future work could address adaptations
of our method to more complex shapes, e.g., chunks of connected fiber bun-
dles.
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(a) Original data (553 748 triangles) (b) Simplified surface

(c) Quadmesh (118 quads) (d) Partition of original data

(e) B-spline model of inside surface (f) B-spline model of outside surface

(g) Final B-spline model (236 B-spline surfaces)

Fig. 6: Main processing steps. (a) shows an isosurface of the original image.
After applying a morphological closure operation, the topology is simplified
(b). A quad-mesh is computed for this surface (c). The initial set of data
points is partitioned by assigning each vertex to the nearest quad (d). A
smooth B-spline construction is applied to model the fiber wall’s inside (e)
and outside surfaces (f). The final model is obtained by removing the B-
spline surfaces at the end and linearly interpolating between the respective
boundary curves (g).
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(a) Isosurface (1 203 844 triangles) (b) B-spline model (676 B-spline surfaces)

(c) Isosurface (423 628 triangles) (d) B-spline model (432 B-spline surfaces)

(e) Isosurface (710 808 triangles) (f) B-spline model (580 B-spline surfaces)

(g) Isosurface (601 040 triangles) (h) B-spline model (268 B-spline surfaces)

Fig. 7: Additional results. Isosurfaces of the exact image data (a), (c), (e),
(g) and their B-spline approximations (b), (d), (f), (h).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8: Examples of data artifacts (a)-(d) and the B-spline approximations in
those areas (e)-(h).
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