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Brain Modulyzer: Interactive Visual Analysis of
Functional Brain Connectivity
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Abstract—We present Brain Modulyzer, an interactive visual exploration tool for functional magnetic resonance imaging (fMRI) brain
scans, aimed at analyzing the correlation between different brain regions when resting or when performing mental tasks. Brain Modulyzer
combines multiple coordinated views—such as heat maps, node link diagrams and anatomical views—using brushing and linking to
provide an anatomical context for brain connectivity data. Integrating methods from graph theory and analysis, e.g., community detection
and derived graph measures, makes it possible to explore the modular and hierarchical organization of functional brain networks.
Providing immediate feedback by displaying analysis results instantaneously while changing parameters gives neuroscientists a powerful
means to comprehend complex brain structure more effectively and efficiently and supports forming hypotheses that can then be
validated via statistical analysis. To demonstrate the utility of our tool, we present two case studies—exploring progressive supranuclear
palsy, as well as memory encoding and retrieval.

Index Terms—Graph Visualization, Neuroinformatics, Cluster Analysis, Linked Views, Brain Imaging, Functional Magnetic Resonance
Imaging (fMRI).
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1 INTRODUCTION

UNderstanding the large-scale connectivity of the hu-
man brain is crucial to comprehending the brain’s

overall cognitive functioning. Connectivity in the human
brain encompasses multiple spatial scales, ranging from
individual neurons to entire brain regions and systems.
When studying large-scale brain organization, neuroscien-
tists often focus on high-level activity patterns of these spa-
tially distinct brain regions through non-invasive recording
procedures, such as functional Magnetic Resonance Imaging
(fMRI). The correlation of activity between regions yields
a measure of functional connectivity between regions, pro-
viding essential information about how neurons and neural
networks process information.

Neuroscience has established the existence of a rela-
tively small number of intrinsic networks, containing sets of
brain regions, also known as communities, that are densely
connected within themselves and sparsely connected to
each other. These networks underlie specific processes such
as lower- and higher-order vision, hearing, sensory-motor
processing and spatial processing [1], [2]. Graph-theoretic
techniques, such as community detection [3], can identify
these intrinsically connected networks. Furthermore, the
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modular structure of the brain is hierarchically organized.
The study of these hierarchical modules has revealed spe-
cialized cognitive sub- modules within larger communi-
ties. These sub-modules dynamically change their coupling
with each other based on the cognitive process that the brain
engages in.

Analyzing the hierarchical and modular nature of brain
networks is crucially important to obtain answers to rele-
vant scientific questions. For example, a better understand-
ing of these networks will allow us to comprehend network
variation among subjects; network changes during aging [4],
[5]; differences between networks as a consequence of psy-
chological and neurological disorders [6], [7], [8], [9], [10].
While statistical analysis is typically used for the analysis
of such networks [11], visual analysis techniques utilizing
graph theoretic methods provide valuable additional means
to explore brain connectivity patterns.

Existing visualization methods for functional connec-
tivity are primarily designed to communicate scientific
findings, not comprehensively supporting the exploration
of connectivity data. Moreover, existing tools do not run
analyses interactively for various parameter combinations
and do not provide immediate visual feedback about the
modular structure of brain networks at various hierarchical
levels. Such a feedback would allow scientists to formulate
or reject hypotheses early in the analysis process.

Brain Modulyzer (Fig. 1) solves this challenge and fa-
cilitates a thorough understanding of the connectivity data
by integrating multiple coordinated views to introduce
novel interaction techniques that explore the hierarchical
and modular properties of functional brain networks. The
methods and visualization system described in this paper
are the result of a close collaboration involving neuroscien-
tists and computer scientists, driven by the need to build
such a tool. Specifically, our system supports three types



TO APPEAR IN IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2

A B

C D

E F

Fig. 1. Our system links multiple views showing different data aspects to allow neuroscientists to investigate modular and hierarchical organization
of brain networks. A) Heat maps show the pairwise correlation matrix between parcellated regions. B) Selecting a region of interest—colored
green in the figure—and coloring all other parcellated regions based on their correlation shows connectivity in relation to anatomy. C) Node-link
diagrams—considering only connections above a threshold—show connectivity. D) Integrating community detection and coloring nodes according
to the community memberships highlights groups of brain regions with strong internal connectivity. E) The community graph provides a high-level
overview over communities in Fig. 1B by representing them as nodes. F) Dendrograms represent the hierarchical organization of the modules.
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of views: (i) abstract views show connectivity informa-
tion (Figs. 1A, 1C) and analysis results (Figs. 1D, 1E, 1F),
enabling quick identification of patterns of interest; (ii)
anatomical views relate this information to the anatomy
(Fig. 1B); and (iii) community analysis computes and iden-
tifies modules (Figs. 1D, 1E), their hierarchical structure
(Fig. 1F) and graph theoretic measures, all collectively pro-
viding overall insight into the topology of the brain net-
work.

This paper makes the following contributions:
• We employ overview+focus+detail visualizations of

the modular structure and hierarchical organization of
brain networks. These visualizations explicitly show
inter- and intra-modular connectivity relationships.

• We provide methods that dynamically compute various
topological properties of brain networks such as graph
statistics, community structure and its associated hier-
archy, all based on a user-specified connection strength
threshold.

• We introduce an integrated system that uses the concept
of brushing and linking to combine multiple views
highlighting different data aspects and develop novel
interaction techniques to explore functional brain con-
nectivity.

• We present two case studies that demonstrate the use-
fulness of our visualization tool.

2 BACKGROUND

2.1 Functional Connectivity
Resting state fMRI captures intrinsic brain connectivity
when the brain is not performing any task [12]. With such
data, neuroscientists are especially interested in developing
a better understanding of the impact of diseases on brain
networks. For example, scientists can better characterize the
effect of diseases on the cognitive abilities of the human
brain based on changes reflected in rs-fMRI network data of
the subjects involved.

Brain connectivity based on fMRI analysis is defined in
terms of correlation matrices where each matrix entry ci,j
encodes the statistical similarity between the time courses of
parcellated brain regions i and j. Other imaging modalities
used to study connectivity include diffusion tensor imaging
(DTI) that map the anatomy of the white matter tracts non-
invasively.

2.2 Modularity Analysis in Functional Brain Networks
Modularity in complex networks measures the division
of a network into sets of modules where each module
possesses dense internal or intra-modular connectivity and
sparse external or inter-modular connectivtity [13]. Large
complex systems like brain networks exhibit modular or-
ganization [4] and have a hierarchical network structure at
multiple scales [14], [15]. This property of the brain ensures
that the network is robust, adaptable and able to evolve [14].

Analysis of modular organization of brain networks typ-
ically aims at answering high-level questions such as [16]:

• How diverse are inter—modular connections?
• How does one module specialized in performing a

certain task interact with other modules?

• What nodes in a module are responsible for global
inter-modular integration?

Exploring and ultimately answering these questions re-
quires techniques that dynamically explore both inter-
modular, and intra-modular connectivity data.

Visualizations showing the modular organization at
varying levels are helpful to neuroscientists for gaining
insights into the topology of the brain network, which
allows them to come to qualitative conclusions about the
data. For example, when analyzing the properties of brain
networks of diseased subjects diagnosed with schizophre-
nia, the subjects exhibited a significantly reduced hierarchy
which might indicate that their brain networks were less
efficiently wired [17].

3 RELATED WORK

We provide a brief review of visualization methods in
three domains: visual analysis in functional brain networks,
visualizations in hierarchical modular structures, and visu-
alization of communities in functional brain networks.

3.1 Visual Analysis Tools in Functional Brain Networks
Functional connectivity data can be visualized as heat
map—coloring each matrix cell ci,j (see Section 2.1) based
on a connection strength or as a node link diagram where
nodes represent brain regions and edges represent matrix
entries ci,j . The edge between nodes i and j encodes the
connection strength entry ci,j .

To visualize this data, prior work mainly used two com-
mon layout techniques, i.e., spatial and non-spatial layout
principles. Spatial data layout techniques take into account
the anatomy of the brain regions while non-spatial tech-
niques do not.

Abstract, non-spatial visualization techniques include
spring embedding graphs, matrix bitmaps and scatter
plots [18]. Fair et al. [19] and Deshpande et al. [20] used
spring-embedding algorithms to visualize the brain net-
work as 2D node-link diagrams. An alternative approach
to visualizing this non-spatial data is to view directly the
correlation matrix [21], [22], [23], [24].

Three-dimensional (3D) node-link diagrams [25], [26],
[27] that place the nodes at the spatial coordinates of the
anatomical view address this shortcoming. Tools that utilize
anatomical 3D spatial information, include the CoCoMac
Paxinos 3D viewer [26], BrainNet Viewer [28], Brain Voyager
QX d [29], and Visual Analysis Tool by Li et al. [30]. Al-
though visualizing functional connectivity data as 3D node-
link diagrams allows neuroscientists to inspect visually the
structural patterns in the brain, they lead to cluttered and
occluded visualizations. One way to overcome such clutter
and occlusion is to filter edges based on the connection
strength threshold [25]. Adopting a 2D anatomical layout
whose nodes are projections on 2D planes (based on two
anatomical axes) also reduces this clutter to some extent [24].

Spatial representations help neuroscientists orient them-
selves with respect to the brain regions while 2D non-spatial
graph layouts provide the necessary flexibility for visualiz-
ing modifications to the connectivity data [31]. Combining
both representations enables scientists to seamlessly investi-
gate whether network topology interacts with the spatial
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domain of the data, providing the ability to draw more
detailed conclusions. The Functional Brain Connectivity Ex-
plorer [32] was among the first published tools combining
the strengths of non-spatial and spatial visualization tech-
niques. Other papers concerned with visual analysis of brain
connectivity data include that by Akers et al. [33], Bruckner
et al. [34], Beyer et al. [35], Jianu et al. [36], Whitfield et al. [37],
Ribeiro et al. [38] and Brown et al. [39]. However, there
is still a need for additional visualization techniques that
can help neuroscientists answer more in-depth questions
and perform more specific analysis of modular structures
of functional brain connectivity data.

3.2 Visualization of Hierarchical Modular Structures

Early work in visualizing communities [40] by Heer et
al. [41] paved the path for automatically computing and vi-
sualizing communities. Later, research by Corinna et al. [42]
sought to solve the problem of visualizing overlapping
communities. However, these published approaches do not
focus on visualizing modular structures at multiple levels.
To address this problem, Herman et al. [43] described vari-
ous techniques to visualize hierarchical modular structures.
These techniques include tree-map [44], cone-tree [45] and
information cube [46]. Another technique, presented in the
ASK-Graph-View [47] solves the problem of visualizing
hierarchical structures by juxtaposing an interactive visual-
ization of a hierarchical tree with a graph and a matrix view.
However, this tool only visualizes user-selected clusters
from the hierarchical tree, hiding the overall connectivity
information between sub-clusters. Such visualizations make
the analysis of interrelationships between sub-clusters dif-
ficult. Analyzing these interrelationships is of importance
to interpreting overall topology of the modular structure of
hierarchical networks [14]. Summary graph [48], community
matrix visualizations [49], and dendrograms [50] provide
the foundation for visualizing hierarchical modular organi-
zations of the functional brain networks. In our work, we
expand on the aforementioned visual analysis techniques
for visualizing hierarchical modular data specifically in the
domain of functional brain connectivity data.

Our research builds on these methods and expands their
capabilities by emphasizing the visualization of hierarchi-
cally organized modular data.

3.3 Visualization of Modular Structures Based on
Functional Brain Connectivity

Little progress has been made concerning the interactive
visualization of the modular and hierarchical organization
of brain networks. The Connectome Visualization Utility
(CVU) [51] is a tool used for exploring the modular structure
of brain networks. However, CVU is limited to identifying
and visualizing modular structures at a single scale/level.
Furthermore, the visualization features of this tool do not
provide an overview of the communities or relationships
between them.

Current systems typically suffer from information over-
load, occlusion, or lack of overview visualization. Infor-
mation overload occurs when views provide few insights
because of the overwhelming number of visual elements.

Occlusion results when visualizations contain a large num-
ber of elements that overlap with each other, inhibiting
the comprehension of the data. Not providing an overview
of the data inhibits overall data comprehension as it only
captures the relationship of an individual brain region/node
while not providing the global context.

We address these problems and improve the current
technology by supporting these capabilities: (i) juxtaposed
visualization views in a detail+overview style; (ii) easy-to-
use navigational and explorational techniques that support
analysis of intra-modular, inter-modular or both types of
connectivity information; (iii) concurrent access to all the
representations of the same data by linked views; (iv)
easy manageability of modular and hierarchical information
through the inclusion of a network measure table.

4 OVERALL APPROACH

To support the two complimentary tasks of exploring con-
nectivity between brain regions and answering questions
based on their modular structure (Section 2), Brain Modu-
lyzer supports two analysis modes: correlation mode and com-
munity mode (Fig. 3). The correlation mode focuses on direct
visualization of the correlation matrix, showing correlation
strength between individual brain region and putting this
information in an anatomical context. The community mode
displays the results of analyzing the modular and hierarchi-
cal properties of brain networks. Switching between the two
modes provides in-depth insight into brain connectivity and
the modular structure arising from it in its anatomical con-
text, making it possible to formulate new hypotheses that
can subsequently be verified by offline statistical analysis.

4.1 Anatomical Views

To understand functional connectivity between brain re-
gions, neuroscientists need to determine how it relates
to the anatomy. For example, it is often important to
know whether two functionally correlated regions are also
anatomically close or how detected communities are dis-
tributed over the brain. Anatomical views in Brain Mod-
ulyzer provide this information by coloring brain regions
either based on their correlation strength to a selected
region—in correlation mode—or based on their community
membership—in community mode—to effectively combine
connectivity information with the anatomy.

• The Brain parcellation view provides a comprehensible
overall picture of the brain by visualizing parcellated
regions of interest in their anatomical context. Each
brain region is displayed as a set of contiguous voxels
comprising it (Fig. 3A).

• Parcel centroid view: Visualizing brain regions as vox-
els often suffers from from occlusion and visual clutter.
The parcel centroid view addresses this issue by dis-
playing just a sphere at the centroid of each brain region
using the same color scheme as the brain parcellation
view (Fig. 3C).

• Slice views: Parcellated brain region are often sparse
and fill only a small portion of the volume. As a
consequence, it is difficult to identify their exact lo-
cation in the brain. The slice views (Fig. 3B) display
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Fig. 2. Our system uses the connectivity matrix and its associated parcellation as input. The system operates in two modes—correlation mode and
community mode. Correlation mode focuses on analysis of correlation network data, and the Community mode supports modular analysis.

Fig. 3. Results of community detection with respect to anatomy. Each
community is represented by a distinct color, and each region is colored
according to its community membership. Parcellated brain regions can
be shown as outlines in Fig. 4A or centroid depiction via a sphere Fig.
4C.

structural data from an MRI scan, providing the spatial
cues necessary to locate the parcellated regions. Users
can qualitatively assess the anatomical locations of the
brain regions within the three complimentary planes:
sagittal, coronal and axial. The view displays grayscale
images of the MRI scan (registered with the parcellation
volume) to provide the 2D spatial context of the 3D
volume view.

To provide additional anatomical context for the 3D views
(brain parcellation view and parcel centroid view), our tool
displays a semi-transparent contextual isosurface represent-
ing the brain surface in the 3D views.

4.2 Abstract Views

The abstract views support identifying, exploring, and an-
alyzing patterns of interest underlying the correlation data.
By removing the anatomical constraints on the visualiza-
tions, the 2D non-spatial abstract views with flexible layouts
convey changes in connectivity in an explicit way.

• The matrix view supports quickly assessing connectiv-
ity trends across the entire data set [52], [53], [54]. The
view provides users with information about general
correlation or relationships between brain regions. Each
matrix entry ci,j is color-coded according to the corre-
lation strength between the i-th brain region and j-th
brain region. As the data is symmetric, the ci,j value is
equal to the cj,i value.

• The graph view allows users to easily identify topolog-
ical patterns of interest and perform qualitative graph
theoretical analysis. The view shows the brain network
encoded in the functional connectivity data matrix as
a node-link diagram. Nodes depict brain regions, and
edges indicate the (pairwise) correlation strength be-
tween the nodes.

The following capabilities support performing high-level
brain analysis tasks with our tool:

• Node coloring: Often neuroscientists are interested in
a node and its correlation with the other nodes to
investigate its topological role in the network. Our tool
allows users to dynamically select brain regions and
explicitly highlight their edge strengths with respect to
other nodes in the graph. The changes are highlighted
by coloring the nodes and the edges in the graph view
according to their correlation data values.

• Thresholding: Visualizing all the information provided
in the matrix produces a complete graph, e.g., the 27
region graph in Fig. 1C, would have 576 edges. Such
a graph suffers from clutter and overdraw, inhibiting
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users to perform any meaningful qualitative analysis.
Brain Modulyzer supports filtering connectivity data
based on a specific threshold value to remove clutter-
causing edges in the graph. This feature allows users to
selectively focus on the strongest connections between
brain regions.

• Dynamic layout change: Different graph layouts pos-
sess varying degrees of user preference and aesthet-
ics, highlighting different properties of network data.
Circular-layouts, for e.g., focus on neutrality [55], i.e.,
displaying all the nodes equidistant from each other,
allowing users to better focus on connections rather
than its underlying topology. Brain Modulyzer sup-
ports the most widely used graph layout algorithms
used by neuroscientists, including the neato graph lay-
out [56], force-directed-layout [57], and circular or shell
layouts [58].

• Annotations: To provide in-depth details of regions
of interest, all of the linked views provide interactive
tooltips that convey useful quantitative information
about network measures, correlation strength and the
abbreviation of the region selected.

4.3 Community Detection and Visualization
The community detection mode in our tool facilitates the
exploration of the modular property of brain networks.
Community detection is performed on the data to iden-
tify and explore modules and its hierarchies. We apply
community detection, e.g., Louvain’s method [3], to detect
communities from the input correlation data and assign
colors with a maximum perceptive distance [59] to each of
these communities.

To enable real-time interaction with the user, the tool
detects and renders communities dynamically when the
threshold for the connections changes. The following ab-
stract views support community mode:

• The community matrix supports detailed analysis of
outlier connections or connectivity trends within each
module. This view (Fig. 4) shows intra-modular con-
nections by coloring a cell cij based on its community
membership. The data is only visualized if it corre-
sponds to a connection within a community and has
a connection strength above a given threshold. To al-
low easy extraction of connectivity trends within mod-
ules, rows and columns of the matrix are contiguously
sorted [60] such that colored cells are squeezed along
the diagonal of the matrix view.
A larger number of colored cells in the community
matrix view indicate strong intra-modular connections.
For example, out of the twelve identified communities
shown in Fig. 4, only six are connected internally, i.e.,
have edges within the module. As the other seven
communities are single region communities, they do
not possess any colored cells in the community matrix
view.

• The community graph provides an overview of the
entire community structure of the brain network, en-
abling users for easy identification of inter-modular
connectivity patterns. This view supports a high-level
investigation of modules that are highly correlated or
anti-correlated with each other.

Fig. 4. The matrix view shows twelve communities identified by the
modularity optimization algorithm (Fig. 6). Six of the twelve communities
are connected internally. Color coded cells of the matrix view represent
intra-modular connections.

Nodes in the community graph (Fig. 6A) represent
individual communities and the edges thickness depict
inter-modular correlation. The inter-modular correla-
tion strength between two communities A and B is
computed as the mean strength of all edges that start
from nodes in community A and end at nodes in
community B.
To support visual correlation between community
graph view and graph view, we ensure that the mod-
ules are placed consistently in both views. Community
nodes are placed at the average node coordinates of all
the nodes in the original graph layout (Fig. 6A and 6C)
comprising their community.

The anatomical views color parcellates brain regions
according to the communities identified in the correspond-
ing abstract views. This coloring provides an anatomical
context for the detected communities, allowing users to
quickly investigate whether anatomically close regions are
also members of the same community.

4.4 Dendrogram View

Common hierarchical brain analysis tasks often require
qualitative analysis of correlation information of sub-
communities. The dendogram view not only supports in-
teractive exploration and analysis of modular information
at varying levels of hierarchy but also supports the investi-
gation of the structure of the modular hierarchy itself.

The Louvain method [3] outputs a hierarchy of modules
that we visualize in the form of a dendrogram. Nodes in the
lowest level of the hierarchy denote individual brain regions
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Fig. 5. The dendrogram view shows the hierarchical modular information
of a community corresponding to threshold value 3.309. Level 1 of
the dendrogram represents sub-communities formed when optimizing
modularity locally with the nodes in level 0; level 2 nodes represent the
final community emerging from the sub-communities identified in level
1.

while the nodes in the highest level denote the resulting
communities. The nodes that are neither of these denote
sub-communities.

We construct the dendrograms (Fig. 5) in our system
as follows: given the hierarchical modular information, we
maintain a tree-like data structure that maps nodes in the
dendrogram view to the nodes in the graph view. We
visualize the cluster data using a layout that places the
nodes in hierarchical order, i.e., it places nodes in the same
hierarchy level at the same height starting with leaf nodes
at the bottom and community nodes at the top. Changing
the threshold for community analysis interactively results
in an updated dendrogram view. The highly interactive
features of the dendrogram view are what makes the view
a significant feature for the modular analysis. For simplic-
ity, we assume that the modularity-optimization algorithm
provides us with three levels of hierarchy, i.e., higher-level
communities, mid-level sub-communities and lower-level
brain regions.

The leaf nodes and subcommunity nodes of the
dendrogram view are color-coded according to their
community/sub-community membership. All of the nodes
in the dendrogram view are ordered based on the hierarchi-
cal structure of the data.

In order to provide an overview of interactions between
sub-communities, the tool allows the user to pick a level
in the dendrogram hierarchy and investigate how commu-
nities merge or split across the hierarchy. For example, in
Fig. 6A, the community graph visualizes sub-communities
formed by the modularity optimization algorithm at level
1. Highlighted sub-communities colored in yellow and pink
later merge into one community in the next stage of the
hierarchy.

4.5 Network Measure Table

Measures used in graph theory often convey useful in-
formation about connectivity profiles of individual brain
regions [16], [61], [62]. The graph theoretic measures that
we utilize in our tool include:

• Degree centrality: This measure captures the fraction
of nodes a node is connected to [63]. A high value
indicates that a node is a local hub that integrates
information from its neighbors.

• Participation coefficient: This measure reflects the dis-
tribution of links of a node with all the modules in the
network [64]. A high value indicates that a node acts as
a bridge between modules.

• Betweenness Centrality: This measure is the sum of
the fraction of the shortest paths from all vertices to
all others that pass through a node [65], [66]. A high
value characterizes nodes that enable rapid distribution
of information from one part of a network to another
part.

• Within-module degree z-score: This measure repre-
sents the connectedness of a node to other nodes in the
same module [16]. A high value indicates that the node
is a provincial hub within its module.

We present these measures in a table showing one row
per brain region, supporting the identification of anomalies
or patterns in brain networks. Tooltips provide additional
information regarding Z-score values and the relative rank
of the measure that is selected. A user can sort the table
using any network measure by selecting the table headers.

The table shown in Fig. 6E provides statistics for com-
munities identified for the threshold value 3.056, sorted
by descending centrality. Additionally, one can examine
the measures of brain regions that belong to a selected
community in the dendrogram view. For example, the brain
region RPreSMA has a centrality value of 0.19 and is ranked
fourth based on the sorting criteria. One can deduce that the
node has a relatively average participation index of value
0.49 and a low betweenness value.
Visualizing Graph Measures as Graph Properties: To
convey qualitative patterns that are not so obvious when
presenting network statistics alone, our tool maps visually
the network statistics to graph properties. Fig. 6C, uses node
size (a graph property) to represent centrality (a network
measure), where larger node sizes indicate higher centrality.

4.6 Linking and Interactivity

All views are coordinated and linked together with a rich
set of interactions enabling the users to gain multi-level in-
sights for community analysis. Interactivity combined with
various linking features in our tool allow the user to perform
in-depth exploration of modules/brain regions of interest
across the modular hierarchy.

Users can select a brain region of interest in a particular
view of interest and explore its representations in all the
other views. For example in Fig. 6D, the user selects a com-
munity in the dendrogram view and can simultaneously
examine its representation network measure table, overview
graph, and community graph view.

Brain Modulyzer supports three types of linking features
to analyze hierarchical relationships, these include:

• Leaf-node to brain region linking: Selecting leaf-nodes
in the dendrogram view highlight all the corresponding
brain regions and the connections belonging to the
selected community in all visualization views.
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Fig. 6. A) The community graph highlights the subcommunities associated with the community selected in the dendrogram view. B) Configuration
options provide various choices for interactivity, such as toggling hovering/clicking, choosing graph layout and varying the opacity of highlighted
nodes. C) The brain region graph displays highlighted nodes associated with selected sub communities. D) (While the dataset is same as Fig. 1F,
the threshold value for this visualization view is different) The dendrogram view displays the hierarchy of communities. The communities that do that
not have any edges emanating from them are grayed out. E) A table view lists important graph properties of the graph shown in Fig. 7C.

• Sub-community nodes to brain regions linking: Se-
lecting a sub-community node (e.g., in level 1), high-
lights not only the corresponding brain regions that
belong to the selected sub-community but also the
edges within the sub-community.

• Community nodes to brain regions linking: Picking a
community node (e.g., in level 2) in the dendrogram
view highlights all the associated sub-communities.
Highlighting a sub-community is similar to the sub-
community nodes to brain regions linking mechanism.

For the exploration of modular properties of the brain
networks, the interactive features include: (i) inter-modular
highlighting for between-module connections (Figure 6A),
(ii) intra-modular highlighting for within-module connec-
tions (yellow or blue community in Figure 6C, Figure 4).
Other interactive features include specifying the connection
strength threshold to filter edges in the connection graph,
see Fig. 6C, de-cluttering the connection graph, dynamically
recalculating the graph structure, graph-theoretical metrics,
and hierarchy of communities. Changing the connection
strength threshold re-orders the headers of the community
matrix and the leaves of the dendrogram such that commu-
nity relationships of entities are reflected by the placement
of their corresponding graphical primitives.

Our experience with tool showed that when analyzing
larger data sets, the matrix cells and the headers are no
longer appropriate for visually capturing all the salient
information of interest. In particular, to present a matrix
view with a large number of rows/columns., it becomes
necessary to omit row and column headers. While tool
tips can provide information as to which pair of regions

corresponds to a correlation value, this process becomes
tedious for larger subregions. To support these use cases,
our tool displays a subset of the data, i.e., a block of selected
matrix elements, in another view. Restricting the matrix to a
subset makes it possible to display row and column headers
for orientation. The matrix elements to be displayed in the
magnifier window can be based on any number of elements
in the matrix views.

5 RESULTS

Our team constitutes experts from visualization as well as
neuroscience groups, all of which contributed to the design
of the tool. The main research questions of our case studies
were: What insights did the neuroscientists gain from using
such a tool? How does the interplay of standard visualiza-
tion techniques help them arrive at the hypotheses?

The tool has helped the domain experts generate new hy-
potheses and research ideas to analyze neuro-degenerative
diseases such as Progressive Supranuclear Palsy and tasks
based on memory encoding and retrieval. We describe the
data acquisition process as well as the scientific insights
gained through the use of our tool by the domain experts.

5.1 Case Study 1: Progressive Supranuclear Palsy

Progressive supranuclear palsy (PSP) is a neurodegenerative
disease that typically begins around the age of 60 and causes
restricted vertical eye movement, balance impairment, axial
muscle rigidity, and cognitive-behavioral deficits. Patients
demonstrate atrophy of particular brain structures including
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the midbrain, cerebellum, thalamus, basal ganglia, and por-
tions of the prefrontal cortex. The disease course is rapid and
there is no available cure [67]. Previous work has identified
functional connectivity reductions in a network anchored
by the rostral mesothalamic junction (MTJ), connecting to
an array of regions which contribute to diverse functions
including oculomotor control, skeletomotor control, and
social/emotional processing [68]. In this study, 18 patients
with PSP and 36 age-matched healthy control (HC) subjects
received task-free (resting state) fMRI scans. A total of 27
specific regions of interest comprising this network were
used to calculate the pairwise functional connectivity of all
regions and define a 27 × 27 covariance matrix for each
subject. To summarize the network connectivity patterns in
patients with PSP and healthy controls, we calculated the
average connectivity matrices for the 36 controls and 18
patients.

As reported by Gardner et al. [68], the mesothalamic
junction (MTJ) is an epicenter of PSP disease-related pathol-
ogy, structural atrophy, and functional connectivity disrup-
tion. In that study, the MTJ node exhibited significantly
reduced total flow, a graph theory measure similar to the
nodal degree. In this study, we visualized the connectivity
of this node with other nodes in the MTJ network using
the Brain Modulyzer. As can be seen in Fig. 7, the right MTJ
node in control subjects (Fig. 7C; blue lines emanating from
selected node) shows higher connectivity to neighboring
nodes than it does in PSP patients (Fig. 7D). Furthermore,
the graph view (color-coded with communities) shows the
left and right MTJ fragmented as an isolated community
in PSP patients (Fig. 7D, right column, purple nodes). This
isolation can be simultaneously recognized in the matrix
view (Fig. 7A, right column) and the anatomical location
of these nodes can be seen in the anatomical view (Fig. 7B,
right). Finally, the graph view (color-coded with communi-
ties) illustrates the significant isolation that exists between
each community of nodes in PSP patients. Our previous
work had shown that connectivity was globally reduced in
this network.

The visualization tool clarified that the major conse-
quence of reduced connectivity was progressive isolation of
the three modules in this network: the subcortical (Fig. 7B,
left, blue), frontal (Fig. 7B, left, red), and parietal (Fig.
7B, left, green) modules. The cognitive symptoms of PSP
include bradyphrenia, an impairment of concentration, and
loss of mental flexibility, both of which are components of
what has been called a subcortical dementia [69]. These
symptoms are thought to reflect impaired interaction be-
tween cortical regions and subcortical regions including the
basal ganglia and thalamus [70].

The visualization tool makes simultaneously apparent:
(i) the reduced degree centrality of the basal ganglia (RBG
and LBG nodes) in PSP as compared to HC (purple lines in
Fig. 7D, right in PSP compared to right in HC, Fig. 7C) and
(ii) the substantial isolation of the subcortical module from
the frontal module (blue nodes to red nodes in Fig. 7C, right,
vs cyan nodes to red nodes in Fig. 7C, right).

This combination of community detection, nodewise
graph theory metrics, anatomical rendering of community
membership, and the ability to assess nodewise connectivity
edges enables complex, multipart observations that are not

otherwise easy to synthesize. Here, this disconnection of the
basal ganglia in the face of cortical-subcortical isolation is a
candidate mechanism for bradyphrenia in PSP that has not
previously been explored in a network context.

5.2 Case Study 2: Memory Encoding and Retrieval
Fifteen healthy young subjects participated in an episodic
memory encoding and retrieval task (unpublished data).
Subjects were asked to learn the associations between im-
ages of different famous faces and famous places that in-
volved first studying the pairs of faces and places to be
remembered, then immediately afterwards receiving a task-
free (resting state) fMRI scan. The following day, subjects
returned and performed a memory test to assess how many
of the studied pairs they could accurately recall from the
previous day. Memory performance was measured in order
to relate it to functional connectivity as observed by the
pre-encoding and post-encoding fMRI scans. We hypoth-
esized that subjects with superior memory would show
elevated connectivity between memory and visual regions
in the post-encoding scan, indicative of more active memory
consolidation. Subject fMRI scans were parcellated into 199
brain regions spanning the cortical gray matter, subcortical,
and brainstem regions. The pairwise functional connectivity
between these regions was calculated to derive the 199×199
connectivity matrix for each subject. A behavioral correlation
matrix matrix was obtained by calculating the correlation
of each subject’s performance on the memory task with
their functional connectivity between region A and region
B, then repeating this procedure for all pairs of regions.
This 199 × 199 groupwise behavioral correlation matrix
can be thought of as a network representing successful
memory consolidation. The memory consolidation network
(MCN) was analyzed for community structure to determine
if particular regions became more central hubs in the post-
learning network, when memory consolidation was occur-
ring for the subjects with superior memory performance.

Community assignments were visualized in the Brain
Modulyzer both in abstract and anatomical space. The mod-
ules in this network can be recognized as known intrinsic
functional connectivity networks—the default mode (Fig.;
green), visual/sensory (red), executive control (cyan), and
motor networks (purple). The anatomical view is essential
for identifying the spatial topography of these networks.
For example, in Fig. 8A and B, the default mode network
(green) can be recognized based on its layout in medial
frontal, medial parietal, lateral inferior parietal, and tem-
poral lobes. The executive control network (blue) can be
recognized in dorsal lateral prefrontal and superior parietal
areas. The axial, sagittal, and slice views, along with the
3D surface view, all provide complementary information.
While the spatial pattern of nodes in the same module can
be useful for recognizing the system, the anatomical view
provides little information about the network interactions
within and between these different modules. A graph view
is a valuable tool for discerning how the different modules
interact. The ability to simultaneously observe this network
in linked anatomical, graph, and matrix views enables a rich
navigational experience, unlike any currently available tool.

In the network under examination here, the executive
control network lies between the default mode and vi-
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Fig. 7. Functional connectivity of the mesothalamic junction (MTJ) network in 36 healthy controls subjects and 18 PSP patients. A. Matrix views of
the MTJ network in controls (left column) and PSP patients (right column); the top row shows the connectivity weights as a heat map with the right
MTJ nodes row highlighted in blue, while the bottom row shows connections above the selected weight threshold as solid colors corresponding to
the community they belong to. B. Anatomical views of the nodes comprising the MTJ network, colored according to their community membership
in controls (left) and PSP patients (right). Spring-embedded network views of the control C and PSP patient D group mean networks, illustrating
connectivity strength from the right MTJ (left column) and the community structure of the networks (right column). Right MTJ connections are shown
as blue edges in all networks. Right basal ganglia connections are shown as purple edges in the right column.
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C D

Fig. 8. Anatomical and graph views of the memory consolidation network (MCN). A. Planar (top row) and 3D surface (bottom row) views of the
199 regions of interest in the network, overlaid on the anatomical template brain. Node colors correspond to modules as determined by the Brain
Modulyzer. B. Network aggregate community graphs (top) and Louvain modular hierarchy dendrogram (bottom). The left network shows the four
communties at the top level of the hierarchy while the right network shows the eight subcommunities at the second level of the hierarchy. C.
Whole graph view of the network, showing all nodes with the color corresponding to module membership as in A and B at the top level of the
hierarchy. Highlighted are all connections within the default mode network module nodes (green). D. Whole graph view of the network, showing the
connections of the posterior hippocampus/fusiform cortex (green node) to its most strongly connected neighbors (r > .25; bottom). Node colors
respresent the correlation strength to the selected node.

sual/sensory networks (Fig. 8B, top left). The default mode
and visual/sensory networks have extremely sparse direct
connectivity to one another, as can be seen by the weak
inter-modular connectivity in Fig. 8B, top left, and the nearly
perfect separation of the green and red nodes in the spring
embedded network in Fig. 8C. From this observation we

can generate the hypothesis that during successful memory
consolidation, the executive network plays a pivotal role
coordinating between these networks, potentially by allocat-
ing resources for attention and multimodal sensory binding.
One node played a particularly critical role in connect-
ing multiple modules, the posterior hippocampus/fusiform
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cortex (Fig. 8D, green). This node exhibited the highest
combination of degree centrality, participation coefficient,
and betweenness centrality of any node in the MCN. This
suggests that this node plays an important role binding
information from communities supporting memory encod-
ing (default mode; green), visual/sensory processing (red),
executive function (blue), and motor function (purple).

6 CONCLUSIONS AND FUTURE WORK

We have presented a visualization tool for exploration and
analysis of modular functional brain connectivity data. The
innovative capabilities of our system make it possible to
apply visualization techniques to all relevant data represen-
tations and use automated analysis methods for detailed
exploration of brain network data. Our tool provides fo-
cus+context and detail+overview visualizations supporting
an interactive, in-depth analysis of hierarchical commu-
nities. We have used our system to visualize community
hierarchies in real-time for datasets up to 200 brain regions.
The tool has already proven to be a valuable resource for the
neuroscientists in our collaborative team. Since other groups
have voiced a strong interest in our tool, we plan to make it
publicly available for download.

While already useful in its current state, numerous ex-
tensions of our system are possible. For example, currently
the tool supports analyzing one graph at a time. We plan to
add the ability to read several connectivity matrices, e.g., a
resting state network and a network after performing a men-
tal task and display graphs that highlight the differences in
an intuitive way. We also plan to expand our framework to
more effectively combine statistical and visual data analysis.
Since these two modes of data analysis complement each
other, it will be worthwhile to explore whether statistical
insights can inform the visualization process and whether
visual presentations can also lead to refined statistical anal-
ysis.
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