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Abstract
We introduce an approach for the interactive visual analysis of weighted, dynamic networks. These networks
arise in areas such as computational neuroscience, sociology, and biology. Network analysis remains chal-
lenging due to complex time-varying network behavior. For example, edges disappear/reappear, communities
grow/vanish, or overall network topology changes. Our technique, TimeSum, detects the important topologi-
cal changes in graph data to abstract the dynamic network and visualize one summary representation for
each temporal phase, a state. We define a network state as a graph with similar topology over a specific time
interval. To enable a holistic comparison of networks, we use a difference network to depict edge and com-
munity changes. We present case studies to demonstrate that our methods are effective and useful for
extracting and exploring complex dynamic behavior of networks.
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Introduction

Representations and analysis of networks are impor-

tant to investigate the interactions between entities in a

variety of applications. For example, to investigate

teacher–student and student–student interaction pat-

terns in a classroom,1 social scientists use networks to

model behavioral patterns. In neuroscience, under-

standing network properties, with nodes representing

brain regions and edges representing functional depen-

dencies, is important to gain insight into the cognitive

functions of the brain. Visualization of connectivity in

such networks is crucial to extract insights concerning

global topology, local neighborhood patterns, and

overall community structure.

Networks are often large and time dependent, evol-

ving over several hundreds of timesteps. Network

changes are reflected through the addition or deletion

of edges, the birth or death of communities, or fluc-

tuations in modularity. In most cases, such dynamic

changes do not affect all the structures in a network,

and many core structures remain stable over certain

periods of time. We call such phases with similar topo-

logical structure as states of a dynamic network. If we

can detect and understand these states and core struc-

tures that remain stable over states, we will then be

able to answer questions related to their role in the

context of an entire system’s evolution. For example,

neuroscientists are keenly interested in such states to

comprehend interactions that relate cognitive func-

tions to the functional states; social scientists, studying

classroom interactions, are concerned about the
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correlation of communication patterns with their edu-

cational outcomes.

The complex dynamic behavior (within and

between states) of a network affects its overall topol-

ogy. Identifying the dependencies between these prop-

erties over time can provide us with high-level

information about the causes and effects of evolution

behavior. In other words, a minor change, such as the

addition or deletion of an edge, might explain an entire

global state change of a dynamic network. For exam-

ple, in a classroom social network, the removal of a

communication channel between two popular students

(who are linked to many other students) could explain

a major shift in social dynamics of the classroom.

Analyzing and depicting such data in a comprehen-

sible manner for large, dense networks remains chal-

lenging, as purely visual approaches become

inadequate and require algorithmic techniques to

meaningfully present and abstract the data without

actual information loss. Many existing approaches that

visualize dynamic networks and their community

structures depict an entire network and all its changes

for every timestep. Such techniques can lead to dupli-

cation of visual elements that represent nearly the

same information (due to temporal correlation).

Furthermore, they require large screen space for visua-

lization. For example, an electrocorticography

(ECoG) data array capturing neuronal activation pat-

terns of brain regions for just 1 h may need several

thousand copies of the original network, resulting in a

representation with several million nodes and edges.

Moreover, most current methods do not effectively

show changes in topology between timesteps or their

effects on the overall system. Analyzing these changes

are essential for understanding the time-varying phe-

nomena in dynamic social networks or neurodegenera-

tive diseases, for example, schizophrenia.

These challenges motivated us to devise a new

approach for detecting, visually representing, and

exploring summaries and differences concerning topo-

logical changes, including the use of depictions of

summary structures, that is, states, see Figure 1(c).

We summarize and represent underlying dynamic

behavior for each detected state by computing a

representative summary graph using unique glyph

designs, see Figure 1(b). To represent and explore the

topological changes between networks over states, we

have developed a network difference technique, see

Figure 1(d). Our main contributions are as follows

� A new approach for the visualization of dynamic

networks through detecting temporal states.
� Effective visual graph designs emphasizing similar-

ity and differences in topology over time.

Related work

We review related work in three areas: dynamic net-

work visualization, dynamic network simplification,

and the difference-graph framework.

Dynamic network visualization

Static network visualization techniques2 often use two

major views, that is, matrices or graphs (when a depic-

tion via a graph is possible), to understand the global

topology of the system. In dynamic graph representa-

tions, the major distinguishing feature is the temporal

aspect. Key challenges in visualizing such graphs con-

cern visual scalability of graphical primitives and com-

putational complexity of graph processing. Various

visualization techniques have been proposed to com-

municate changes effectively. The survey by Beck and

colleagues3,4 categorizes most existing work in

dynamic network visualization into two main meth-

odologies, that is, animations and small-multiples.

Through animation, major evolving patterns, such

as community changes, are shown by interpolating

smooth transitions between the underlying layout or

partitioning the rendering space into hierarchically

arranged blocks.5 Techniques proposed by Ghani

et al.6 explore various metrics for enhancing user

perception of the animation. The space to time map-

ping approach7 draws a sequence of graphs along a

timeline. Unlike animations, the space to time map-

ping technique enables easy comparison between

objects at discontinuous timesteps. However, for a

large number of timesteps, such views can be cogni-

tively overwhelming.

Other techniques include parallel edge splatting,8

where all the changes in edges between graphs across

timesteps are visualized to identify general trends in

the data set. Furthermore, alluvial diagrams model the

links between clusters in successive timesteps as split-

merge ribbons7,9,10 to enhance visual traceability of

important cluster evolution patterns. Techniques like

EgoNetCloud11 use an egocentric summarization

approach to analyze major events in a data set, while

GraphDiaries12 use animated transitions between

timesteps in a network to highlight changes. Further

work by van den Elzen et al.13 involves reducing the

time-varying network into interpretable timepoints,

giving the user an intuition to detect states within the

data set. Another work by Dal Col et al.14 further

detect connectivity patterns on large time networks

using wavelet transform methodology.

In contrast, the approach introduced in our work,

uses a simplification algorithm to deal with networks

that evolve over a large number of timesteps and uti-

lizes summary and difference representations to reveal
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variabilities and complex dynamics underlying

dynamic networks.

Dynamic network simplification

One of the important problems in visualizing large-

scale dynamic networks is depicting the connectivity

information without substantial information loss.15

Several techniques have been published that deal with

the visual complexity problem. These approaches rely

on manual filtering of edges and nodes or deriving a

minimum spanning tree, when possible, preserving

connectivity. The path-oriented simplification16

method removes edges that do not affect the quality of

best paths between any pair of nodes. Approaches like

Structural Equivalence Grouping (SEG),17

Apostolico,18 and EgoNetCloud11 condense large net-

work information without sacrificing connectivity

information. Other approaches compress weighted

graphs19 or use motif-based methods for static

graphs.20 Methods presented by Sun et al.21 and

Eagle and Pentland22 use minimum description length

and Fourier transform analysis, respectively, to com-

press complex networks respectively.

In several applications, it is important to detect

states in dynamic networks, see for example, Rashid

et al.23 and Mutlu et al.24 In contrast, the abstraction

procedure in our method happens at the level of the

network, preserving the rich topological structure of

the individual state. Furthermore, we compute a sum-

mary and difference representation to explore the com-

plex dynamics underlying each state. Such methods

are essential for an in-depth comprehension of the

overall role of states in the context of system dynamics.

Difference-graph framework

A difference graph describes the changes between the

graphs of two timesteps. Given two graphs, only the

changes concerning edges and nodes are visualized.25

To handle large-scale changes in difference graphs,

Archambault26 used hierarchies to show where large

Figure 1. Our approach enables a holistic understanding of time-varying networks through two complementary
techniques, Summary (c) and Difference Graphs (d). (a) Control menu for selecting plot styles and visualization
parameter values. (b) Similarity plot showing magnitude of topological change between two graphs at adjacent
timepoints. Each of the five states is defined by a time interval corresponding to a stable topological structure. The brain
network possesses major topological changes through timesteps, 22, 32, 53, and 82. (c) Visualization of topology in the
summary form. States 1 and 2 are visualized for further analysis. Pie Glyphs represent nodes that change community
membership for each state, while squares represent stable, unchanging communities. (d) Difference Graph of network
states—Diamonds represent nodes that change community membership across time. Disappearance of an edge (from
brain region 11 to 18 and to 6) caused the community to change, indicated by the change from green to yellow from
nodes 18 and 6. (e) Visualization of original network with a traditional small-multiples method.

98 Information Visualization 19(2)



areas of a graph change. Bourqui and Jourdan27

described a method that visualizes edges having similar

pathways, focusing on structural similarity. Rufiange

and McGuffin28 used a hybrid method involving

small-multiples and animations to determine local

topological changes between graphs.

Our method focuses on changes in edges (constant

nodes) and community membership. We characterize

changes by defining the importance of each change in

a graph and visualizing the effect of the change on the

topology using a community-based difference graph.

Design goals

Based on existing literature regarding dynamic net-

work visualization,29 we identified primary design

goals to be met by our approach. We base our

approach on the following goals.

Simplification of temporal features

Topological patterns in dynamic networks often re-

occur, for example, brain network patterns. Methods

are needed that can aggregate data by considering and

taking advantage of similarity between graphs.

Support of effective visualization of topological
shifts

Visualizing series of large, dense graphs causes visual

information overload hindering data interpretation.

Due to the limited cognitive processing ability of

humans, techniques should detect and convey changes

in a visually comprehensible manner.

Interactive exploration capability for temporal
data

Networks function at multiple scales. To efficiently

derive insights at different scales, the methods must

allow a user to explore summary and detail informa-

tion on demand.

Motivated by major network analysis tasks covered

by Alper et al.,30 for example, we identified the follow-

ing important capabilities that our method should

address:

� Identify and characterize patterns defining tem-

poral states (T1).
� Analyze summary topologies that represent tem-

poral states (T2).
� Analyze topological variations within states (T3).
� Analyze local dynamics governing global commu-

nity and state changes (T4).

Method

Our computational framework incorporates algorith-

mic analysis with interactive visualization to extract

and summarize recurring patterns in graphs. As shown

in Figure 1, in the first stage, we use a similarity metric

to identify time intervals within the dynamic network

that possess similar network topology (Figure 1(b)); in

the second stage, using the detected interval points,

we run our summary graph representation algorithm

to compute the most common topology representing

the detected state, see Figure 1(c); in the third stage,

to allow a user to explore topological changes across

graphs, we compute the importance of each edge

change, to construct and visualize a difference graph

using novel visual designs, see Figure 1(d).

Throughout all the stages, we enable interactive filter-

ing, aggregation, and selection allowing users to inter-

actively explore major recurring patterns within the

graph.

To reliably generate summary graphs, our tech-

nique requires an understanding of temporal change

within the graph. To numerically quantify such a

change, we define a similarity measure. This measure

allows us to detect states (T1) having similar graph-

level properties. A well-constructed similarity metric

allows us to detect states (T1) having similar graph-

level properties.

Notation and definitions

Mathematically, we model a dynamic graph Gs as a

sequence of static graphs, denoted as

Gs = fG0,G1,G2, . . .g. We detect communities for

each timestep, where a community consists of a subset

of nodes within a particular timestep. All communities

between subsequent timesteps are matched using the

maximum overlap algorithm.31 We do not employ

temporal smoothing for communities as we assume

that the underlying connectivity is temporally corre-

lated. Most naturally occurring time-series show sig-

nificant auto-correlation.

We assume that the number of nodes is the same

for every timestep and that edges are undirected and

weighted. Three major quantities for a data set

include, that is, time, number of nodes, and number

of edges. We denote the temporal state set as

St = fS1,S2,S3, . . .g, where each state Si contains a

range of continuous timepoints within the timepoints

in the data set.

State-based similarity measure

In order to detect topological change between graphs

and group them into states, we establish a means for
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identifying similarities and changes within graphs.

While general graph properties, such as degree distri-

bution and community membership, can be used to

characterize change in networks, they are too generic

to extract complex time-varying behavior in the graph.

We have adopted the similarity metric described by

Koutra et al.32 for similarity of network topology. It is

an accepted similarity measure for quantifying changes

in graphs, and, through discussions with domain

experts, we determined that this method is applicable

to our use cases. Based on the demands of a specific

application, we can include different measures in our

visual analysis system to reliably extract temporal

states that possess the most meaning.

We compute a similarity value Simi(Gk,Gk+ 1)
2 ½0, 1�, where a value of 1 implies that two graphs

Gk,Gk+ 1 are similar, and a value of 0 indicates that

two graphs are maximally dissimilar.32 To compute

such a value, we need to define the influence that any

node i has on all other nodes j, for all nodes within the

graph. To perform such an operation, we define N (N

being the number of nodes in a graph) column vectors

~si for every node i and arrange them in a matrix S,

with ~si being a column in S. Intuitively, for Koutra

et al.32 measure, influence scores, si, j , between nodes i

and j are higher when sum paths of the edge weights

are larger and are at most one hop away. The vector

matrix S, encompassing such score is defined as

S = ½sij �= ½I + e2D� eA��1 ð1Þ

Here, e= 1=(1+max(dii)) is a value used to capture

the influence between neighboring nodes, and D is an

n3n diagonal matrix, where dii is the degree of node i.

A is the adjacency matrix of the raw graph data for

each timestep, and I is the identity matrix. In order to

compute a distance between graph vectors, we use the

root-mean-square (RMS) measure, allowing us to

detect changes in graphs. Formally

d=RootED(S1,S2)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i = 1

Xn

j = 1

ð
ffiffiffiffiffiffiffiffiffi
S1, ij

p
�

ffiffiffiffiffiffiffiffiffi
S2, ij

p
Þ2

vuut ð2Þ

and the eventual distance value of two graphs is

defined as

sim(G1,G2)=
1

1+ d
ð3Þ

States defined by similarity matrix

To extract temporal states from the metric, a method

is needed to compute the time intervals belonging to

each state. Such a method must take into account the

similarity information for all pairs of timesteps, taking

into account reoccurring patterns across discontinuous

timesteps.

We define a distance matrix of size N3N, where N

is the number of timesteps, and matrix entry ci, j is the

similarity (equation (3)) of the graph structures at

timesteps i and j. The higher the value, the more simi-

lar the graphs i and j. As we are mainly interested in

the most common topological properties associated

with the state, we use a threshold that is large enough

not to ‘‘swamp’’ the matrix with moderately similar

entries—but not too large in order to capture signifi-

cant entries. We employ a modified change detection

mechanism proposed by Mutlu et al.24

I(Gi,Gj)=
Simi, j , if (Simi, j � (uG + d1 � sG)ø 0)
0, otherwise

�

ð4Þ

where uG and sG are the mean and standard deviation

of the values in the distance matrix and d1 is the

threshold coefficient for sG. We assume that equation

(4) relies on a normal distribution of the similarity val-

ues without a large number of outliers. Based on the

thresholded matrix, we use a connectivity-based clus-

tering algorithm33 to identify clusters with similar

graph structure to define states. An advantage of this

approach is the fact that the states obtained are based

on values of the entire time data set, rather than the

values based on a current timestep t and previous

timestep t +1.

Algorithm 1: Summary graph representation

Data: Sequence of similar graphs G1,G2,G3,.
Result: Representative summary graph GAv

1. Compute adjacency matrix of pairwise distance values
for time-steps tk to tk + w , using Eq. 3, where w is the
time-interval;

2. Perform standard change detection procedure, using
Eq. 4, to threshold the matrix;

3. Rank all graphs Gti
based on number and average of

non-zero values in column i, avgSimi;
4. Filter top k candidates for comparison based on a

threshold d2 for filtering the similarity matrix;
5. Pick most frequent community membership for each

node in GAv from k graphs—in case of a tie, use
membership from the graph with highest avgSimi value;

6. Intersect edge lists of the k graphs to obtain edge list
of GAv;

7. Set weights of edge lists of GAv , averaging over all k
graphs—ignore non-existing edges;
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Consensus-based state summary graphs

To understand dynamic network topology reflecting

state changes and reduce the amount of information

used for visual inspection, we derive a single represen-

tation for each state. The reduced graph shows overall

stability (community changes and edge changes) of

the network and variability and mean of important

changes, for the time interval of a detected state.

Our temporally reduced summary graph represen-

tation should satisfy the following design objectives:

� The graph representation must capture the most

common topological properties of the system.
� The graph representation must be indicative of the

overall community structure for the interval.
� The representation must highlight nodes that often

change communities.

We consider different approaches to generate a tem-

porally reduced summary graph in order to satisfy the

design criteria. One can accumulate the nodes over

time to form edges. However, one of the assumptions

is that the meaning of edges is ignored. The represen-

tation of such graphs depends on the lengths of the

time intervals considered. The larger the time-win-

dows, the higher the ‘‘density’’ of the graph.

An alternative approach identifies changes from a

pool of similar graphs and averages the weights over

the detected state-intervals. This approach treats all

edges equally and produces a dense network

representation, which may not be representative of the

most common topology.

Our approach

Our approach for defining a summary graph, see

Figure 2, produces informative summaries based on

salient patterns. We construct one representative visua-

lization of the state. Our problem definition can be

stated a follows: given N similar graph structures, how

should one depict the most representative graph? We

consider these main aspects for the representative

graph:

� Identification of the community membership of a

node in the graph.
� Determination of the presence of edges between all

pairs of nodes.
� Determination of the weight of an edge.

Algorithm 1 and Figure 2 describe the procedure

that constructs a summary graph from a set of similar

networks for a given temporal state. To determine the

quality and uncertainties associated with a graph gen-

erated by the summary algorithm, we use a metric,

Average Number of Edges Pruned per Timestep

(AEP), defined as total number of edges pruned by

algorithm per state between same nodes/time interval

of the state. This estimates the average amount of

dynamic edges (edges that frequently get added or

Figure 2. The algorithm used to construct the summary graph identifies the most common local and global topological
attributes from a set of similar graphs.
(a) Networks for a given time interval define the input. (b) Similarities between networks are computed which define the entries of a
similarity matrix. (c) Using a threshold d2, we pick the top k candidates for intersection of edge lists and computation of (d) summary
community memberships, characterizing the (e) summary graph.
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deleted within the state interval pruned by the algo-

rithm). This value provides us with insight into the

overall variability of the topologies within the state.

For example, states with edges exhibiting significant

variability (addition or deletion) have relatively high

AEP values. Such a metric allows us to determine

whether the sparseness of the graph is representative

of the underlying data or is the result of the dynamics

occurring within the state.

Visual representation of summary graph

The reduced graphs are a simple representation of a

complex dynamic phenomena occurring within the

represented time interval.

To facilitate understanding such data, we need

visual representations that not only depict the sum-

marized topological information but also depict var-

iances in the properties where there might be one.

Such depiction of dynamics is crucial to understand-

ing the cause and effect of the formation of the tem-

poral states. For example, in neuroscience, transient

nodes (brain regions) with more flexibility (frequent

community memberships changes) may be involved in

performing a wide range of cognitive functions and

may be particularly involved for changing global brain

states.34

To facilitate such a detailed exploration process in

an intuitive manner, we want to represent the follow-

ing quantities: (1) nodes with frequent community

changes, (2) stability of communities, (3) variability in

edge weights, and (4) mean value of edge weights.

We considered three visual designs for this purpose,

all following the data aggregation principles discussed

by Elmqvist and Fekete35 (Figure 4). In the first

design, to enable comparison between edges in the

same graph, we encode variance in edge weights using

color, and line thickness represents mean edge weight.

Outlier edges with high variances are shown as dashed

lines. Transient nodes that change their community

membership over time are represented as vertically

stacked bars with an enclosed circle. The length of a

bar represents longevity of a community in that node

for a given time interval. The second and third designs

use the same scheme for the edges; however, each

node is represented as a pie chart, where each slice

represents the longevity of a community in a particular

node. In the third design, based on the principle of

selective visual attention as described by Lavie and

Cox36 and to visually distinguish dynamic behavior of

transient nodes, we represent other stable nodes as sta-

tic rounded rectangles, with color representing com-

munity membership.

Overall, based on different trial runs, we found the

third design to express the changes in a visually clear

and concise manner. Particularly, the unique visual

outlines convey the changes in transient nodes more

effectively. We use this as our design for the summary

graph (Figure 3).

Difference graph framework

Analyzing every graph at each timestep and identifying

change is cognitively overwhelming. The problem

becomes more pronounced for large graphs with min-

uscule change occurring between timesteps. The ana-

lyst has to manually correlate changes from many

Figure 3. Our methods applied to a real brain network
data set. The summary graph in conjunction with the
difference graph depict similarities and differences in
topologies, respectively. (a) Summary graph involving four
nodes (glyphs) depict the frequent change in communities
during a particular time interval. (b) A difference graph
explaining the community change of ldFI, left dorsal
frontoinsula and lmdTha, mediodorsal thalamus, from
gray to pink.
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views, increasing context-switching costs associated

with every view.

Given two graphs, to enable assessment of the func-

tional difference between them, it is crucial that we not

only show the change but also show the importance

that change has on its overall topology. For example,

the disappearance of an edge causing a community

change is far more important than the disappearance

of an edge within a community and causing no change

in the global structure.

To address this issue, we propose a community-

based difference-graph approach to depict the

dynamics occurring over a set of similar graphs for a

given state.

Community-based difference graph visual
design

Since we do not deal with addition or deletion of

nodes, we define the nodes of the difference graph to

have the same meaning as the static graph. For edges,

we define three major types (in the order of decreasing

importance) (Figure 4(c)).

1. Modular edge change—defined as an event

involving addition or deletion of an edge when

comparing adjacent timepoints A and B. Such

type of a change always results in change of

communities, for example, at timepoint B.

Figure 4(c-1).

2. Inter-modular edge change—defined as addition

or deletion of edges between graphs across two

timepoints, unlike modular edge changes, such

edges connect between different communities and

transfer information over multiple communities,

Figure 4(c-2).

3. Intra-modular edge change—such change events

occur across two timepoints, causing no overall

changes in community, however decreasing/

increasing the overall connectivity within or across

a community, Figure 4(c-3).

We use thickness of the edge line to convey the

importance of these edges. The thicker the edge, the

greater is its importance. Based on previous studies in

a difference graphs,12,37,38 we use the colors red and

blue to indicate the addition and the deletion of edges

respectively. There are cases when a node in a graph is

becoming transient, that is, changing the community

membership. Such events are the pivotal timepoints of

nodes and are of utmost importance in its evolution.

We explored two designs to convey such dynamics

occurring in difference graph.

In the first design (Figure 4(b)), to depict a commu-

nity change at a given node, we subdivide the circle

into two equal parts, the left semicircle denoting the

community membership of the previous timestep and

the right one denoting the membership at the current

timestep. In our second design to further visually dis-

tinguish the most important change, we encode dashed

lines to depict deletion of edges and encode a diamond

with two sides to depict the change in community

membership for a given node. To enhance visual

clarity, we only show the nodes that are involved in

change. The size of the nodes in our graph represents

the amount of local change).

Different trials of various visual designs based on a

real brain network data set made it clear that the sec-

ond design showed variations in data more convin-

cingly. However, in cases where there is a lot of change

occurring, the user would have to analyze the original

raw graph to assess the change in the difference graph.

There is a switching cost involved in such operations.

Nonetheless, we found that this technique is better sui-

ted for our use-case. Furthermore, we utilize various

interaction techniques such as egocentric navigation

Figure 4. We investigate different visual designs to convey
uncertainty and variability in the dynamic network data. (a)
Summary graph representing stable nodes as rectangles
and nodes that change their communities as glyphs. (b)
Difference graphs representing deletion and addition of
edges as dashed blue and solid red lines, respectively. (c)
Visual encodings that depict the importance of each edge
change in the difference graph.
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(Figure 8), filtering (Figure 7), and focus + context

exploration (Figure 5) to steer through the complexity.

Case studies

We now apply our methods to generic domains to test

the generalizability of our methods. We note that

domain-specific studies require similarity measures

specific for the study at hand. For our case, as the

similarity has been proven generalizable for diverse

data sets, we apply our methods to a network flow and

social science data sets.

McFarland’s classroom data set

We have applied our visual analysis technique to the

publicly available ‘‘McFarland’s classroom’’ data

set.1,39 This data set contains information concerning

conversations between teachers and students in a

high-school economics class (11th and 12th grades).

We used the McFarland data set as a use-case for our

system to analyze how students and teachers inter-

acted in this class. We pre-processed the given data to

create a dynamic network data set, appropriate as

input to our system, consisting of 20 nodes (17 stu-

dents and 3 teachers) spanning 49 min (converted to

82 timesteps). We were able to identify evolving com-

munities, states, and a summary topology for each

state.

The state-detection algorithm found two dominant

conversation states in the data set, that is, a first state

where teachers did broadcast information to students

and a second ‘‘sociable state’’ where students inter-

acted with each other, forming multiple communities

(modular) (T1 and T2). The detected intervals in the

states have the following intervals, state one has associ-

ated intervals (1-2, 10-15, 37-42, and 49), and state

two has associated intervals (3-9, 16-36, 42-48, and

Figure 5. The two dominant states in the McFarland data set. (a) Red rectangles represent lecture sessions by the
teachers, and black rectangles represent states when the teachers are not lecturing. (b) Broadcasting edges from
teachers T1 and T2 depict lecturing student groups. (c) State change as a consequence of students forming groups and
teachers not lecturing.
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50-82), see Figure 5(a). The states identified by our

system are in agreement with those reported in a study

concerning this data set.1

Specifically, the class started with the teacher lec-

turing (state one, timesteps 1–2), followed by students

performing a group task (state two, timesteps 3–9).

The students in this state formed closely knit commu-

nities talking with each other over a few known social

groups. This state’s structure is dispersed as a conse-

quence of teacher intervention, defining the structure

for timesteps 10–15. The fluctuating state patterns

with consistent sparse and dense core connectivity are

captured by the summary graph, see Figure 5(b).

To understand the dynamics of state one, we

selected a sub-interval (10–15, within state one) and

visualized its corresponding summary and difference

graphs, see Figure 5(a) and (b). The broadcasting

edges emanating from teachers T1 and T2 represent

communication to all students over the entire interval.

During this interval, a community (light yellow)

involving student groups (S13, S15, and S18) can be

detected, possibly reflecting conversations among

these students during lecture (T3). The circles depict-

ing students S5 and S9 indicate that they potentially

have formed their own communities before listening

to the lectures of teachers T1 and T2. The summary

graph visualizes the consistent dense temporal beha-

vior in this interval.

The difference graph depicting topological change

(15–16), see Figure 5(c), contains many dashed lines,

that is, edges disappear, indicating that teachers have

stopped lecturing and assigned group tasks to stu-

dents.1 The relatively large number of rotated dia-

monds (seven) in the graph could be indicative of

student groups (S4 and S7) and (S8, S11, T3, and

S16) switching communities, which could have caused

a system state change (T3 and T4).

In conclusion, the summary graphs effectively

visualize consistent similar network structure over

time, where either teachers teach or students perform

group tasks, see Figure 5(b). The difference graphs

reflect the topological effects teachers’ pausing their

lectures, when students form their own communities.

Primary school data set

We also tested our method by applying it to an aca-

demic collaboration network, the Primary School data

set.40 The goal was to extract contact patterns of stu-

dents in a primary school. The data represent interac-

tions between 232 school children and 10 teachers for

five classes. The data were collected for period from

10:00 am to 12:00 am, Thursday, 1 October 2009.

Radio frequency identification (RFID) readers were

placed on the contacts to record conversations had in

the cafeteria, on stairways, on playgrounds or in class-

rooms. It is poorly understood how children interact with

each other during different times of the day in a school.

A better understanding of children’s interactions is

desirable from a pedagogical viewpoint. We have used

our system to better understand this school scenario.

To handle the size of this data set, we used force-

directed edge bundling, see Holten and Van Wijk,41

and placed nodes onto circles for each class. We have

explored the following issues:

� How do contact patterns evolve over time (within

the timeframe recorded)? Are they tightly knit or

modular? (T1)
� What are the communication patterns of students

during certain temporal states, for example, during

a break? (T2)
� How different are the communication patterns for

classroom time versus break time? (T3)
� What student communication patterns cause a

state change? (T4)

Figure 6(a) shows the different states detected by

our system. The summary and difference networks

were used to explore connectivity patterns underlying

the data set for the period from 10:00 am to

12:00 pm. Our tool helped with the identification of

four states with different connectivity structure.

Based on the temporal states, we explored and iden-

tified major shifts in student contact patterns. For

example, considering the (1-Similarity) plots shown in

Figure 6(a), one can identify timepoints indicative of

students moving to different rooms, and explore how

that movement affected communication. Timepoints

10:18 am and 10:50 am reflect major shifts in the

topology of the graph. Furthermore, based on the con-

nectivity data, the second state corresponds to student

interactions on the playground. The third state corre-

sponds to students going back to the classroom.

By examining topology when students were on the

playground, from 10:18 am to 10:50 am, we can see

that students started forming communities with their

grade peers, particularly third graders. This configura-

tion reflects how students interacted during breaks. As

annotated in the graph of third graders, some students

conversed with specific communities within first gra-

ders, light-green and light-red communities. We also

see that fifth graders talked less with students in other

grades. Second graders talked intensely, compared to

others, and formed diverse and rich communities

among themselves, see the large number of colored
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communities. Fourth graders kept a smaller group of

students working with them, compared to students in

other grades.

Our system allows one to observe consistent net-

work structure over time, for example, where students

performed group tasks within grades in our scenario,

see Figure 6(b). The summary graphs effectively cap-

ture emerging communication between third graders

and fifth graders. Approaches like small-multiples or

animations rely on the user to identify states or phases

in a data set, while our approach, together with a

meaningful distance metric, can identify and visualize

states automatically. Furthermore, inter- and intra-

community patterns, for example, are apparent in

graph-based analysis and visualization.

TimeSum used in neuroscience

To demonstrate the value of our approach, we applied

it to two brain network data sets. We performed the

presented case studies in collaboration with neuros-

cientists, co-authors of this article, who are experts in

brain network neuroscience. The studies concern

exploratory data analysis, where the goal was to visua-

lize global network dynamics and their relationships to

brain regions, with the purpose of generating scientific

hypotheses that would later be studied with rigorous

statistical methods. Neuroscientists use functional

magnetic resonance imaging (fMRI) to measure

whole-brain activity, which can be modeled as a set of

brain regions (nodes) connected by edges reflecting

Figure 6. Major states of primary school data set. The five circular node layouts represent students from first grade to
fifth grade. (a) Topological changes between adjacent timesteps. The state-detection method uses all pair similarity
values between nodes to identify highly similar states. (b) Summary graph depicting major communication patterns of
students on the playground.
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the correlations between their activities. Changes in

topology over time can be conceptualized as switches

between multiple quasi-stable functional states.42

Identifying the temporal intervals with similar topolo-

gical structure is important to understand the interac-

tion of behavioral systems when performing a task or

their impairment due to a disorder.43

Case study 1

The objective of this case study was to explore and

understand the dynamics concerning the salience net-

work44 of a healthy older adult. This network repre-

sents the correlations between regions in the brain

responsible for the monitoring of sensory, visceral, and

the reward or threat system. It consists of input nodes

in anterior insula (e.g. dFI and vFI) that gather sen-

sory information and output nodes in anterior cingu-

late (e.g. dpACC and vpACC) that initiate behavioral

actions. A major challenge in analysis is understanding

the dynamic fluctuations of connectivity profiles

between these two groups or nodes over time.

The processed time-varying data (pairwise time-

series correlations between 21 regions, 202 timesteps)

was used as input to our system to identify dynamic

communities, state-intervals, and abstract graph topol-

ogies. The system detected nine states with similar

graph-level properties. The modularity and (one-simi-

larity) plots, see Figure 7(b), convey the temporal

structure and the extent of the individual states in the

data set (T1).

We can clearly see consistent patterns for each state.

Two major structures are revealed, a sparse (highly

modular) structure (states 3 and 9) and a densely inte-

grated structure (states 1, 2, 4, 5, 6, 7, and 8) (T2),

which may correspond to existing studies in neu-

roscience.42 The state-detection method was able to

abstract variabilities within those two major categories,

Figure 7. (a) Local dynamics of nodes IsACC and IvpACC (1, 2) for timesteps 55–58. During timestep 55–56 IvpACC
changes from receive to transmit mode, see section ‘‘Case study 1.’’ (b) Global topological dynamic behavior during
timesteps 55–58, defining an important change of brain state from integrated to modular. (c) Summary graphs depicting
evolution of average topology, that is, from sparse to dense to sparse. Integrated states (1,2,3,4,5,6,7, and 8) are
energetically demanding, requiring increased blood flow,45 while modular states, for example, states 2 and 9, have
shorter edges, indicative of maintaining a stable structure (many squares).
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see Table 1. One also observes this phenomenon as a

large number of squares (stable communities) in the

summary graph for time 57–87, see Figure 7(b-3),

state 3. Most of the other summary graphs have

glyphs, representing regions that dynamically change

communities.

The more globally integrated and less modular

states had earlier been suggested to be more energeti-

cally demanding, requiring increased cerebral blood

flow, explaining the dense structure.45 States having

high modularity and high stability, like states 3 and 9,

require less overall ‘‘cost’’ (fewer/shorter edges) than

more globally integrated states. This could explain its

maintenance as a stable structure. When analyzing the

dynamics of state 3, see Figure 7(b-3), state 3, one

can quickly identify two brain regions right ventral

frontoinsula, that is, rvFI2 and right dorsal frontoin-

sula, that is, rdFI with flexible community member-

ship. This could suggest that these regions may have

switched their roles (T3).

To explore intrinsic structural change of the net-

work between states two and three, we drill down and

visualize the difference graphs from times 55 to 58,

see Figure 7(a-3). A drastic topological change is visi-

ble. The large number of diamonds at time 56–57

indicates the extent of community changes taking

place. In general, many regions lose their correlations

(dashed lines), which could explain the network’s shift

toward a higher degree of modularity (high Q in state

3) (T3).

To understand integral node dynamics of brain

regions during state transitions, we hover over and

interact with the brain region ventral pregenual ante-

rior cingulate cortex, that is, IvpACC, see Figure 7(a-

2). The change of local neighborhood of the node is

clearly visible, that is, changes in the lvpACC’s connec-

tivity from the vFI and dFI, its main input nodes, to

the dpACC, one of its main output nodes. The node

lvpACC eventually changes its membership (T4). One

explanation of this highly flexible node configuration is

that the region oscillates between receive (input) and

transmit (output) modes. A detailed fMRI analysis

would be necessary to test this hypothesis.

Case study 2

Exploratory visual analysis in dynamic networks is key

to observe general trends, explore temporal variability,

and understand higher-level organization of the net-

work. This case study involved a domain expert who

was able to construct and articulate hypotheses on-

the-fly, during interactive data analysis process. The

goal was to understand the dynamics of the resting

state brain network connectivity and its impact on

individual nodes and their connections. Specific ques-

tions were as follows: What are the major topological

changes (spontaneous global dynamics) (T1) in the

data set? How do they relate to local changes in the

network (T4)?

We used a whole-brain, high-temporal resolution

(TR = 720 ms) resting state fMRI data set46 and

extracted time-series from a 36-node functional par-

cellation. Using multiplication of temporal deriva-

tives,42 we were able to calculate 1200 time-varying

network matrices. To remove noise, we smoothed the

data set with a 14 times (volume) sliding window.

Based on initial plots (1-similarity and modularity)

of the full 1200 volume time-series data set, we filtered

a 140 times (400–560) window containing consistent

similarity patterns, visible as peaks in the similarity

plot. Using this data set as input, TimeSum identified

time-varying communities, state-intervals, and sum-

marized topology. Two major classes of network states

were identified: one with relatively high density and

low modularity (times 42–54, 96–120); one with low

density and high modularity (times 0–40, 60–96, and

Table 1. The table statistically compares the properties of the detected states.

States Time C Q ED AEP

State 1 0–40 0.79 0.32 0.30 2.56
State 2 41–56 0.77 0.19 0.30 6.4
State 3 57–87 0.83 0.38 0.28 3.2
State 5 100–119 0.78 0.14 0.40 8.3
State 6 120–133 0.74 0.16 0.53 5.21
State 7 134–146 0.72 0.12 0.44 6.94
State 8 147–182 0.84 0.16 0.31 3.14
State 9 183–202 0.74 0.56 0.19 7.03
Data set 0–202 0.79 0.29 0.22 NA

We generally find two major types of states, with low modularity and high density or with high modularity and low density. We further
find that the difference in modularity is drastic from state 2 to state 3. C: average temporal correlations (average of equation (4)); Q:
modularity; ED: edge density; AEP: average number of edges pruned.
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121–140), see Figure 8(b) (T1). This behavior may

correspond to the results from a previously performed

statistical analysis of the data, which had identified

tight, integrated and modular, segregated states.42

To better understand network changes driving

dynamic behavior, we drilled down into a time sub-

interval (42–54), investigating a state transition, see

Figure 8(b). Our domain expert focused on visualizing

the dynamics of node 4, encompassing brain region

posteromedial cortex, one of the most connected areas

of the human brain. As shown in the summary graph

in Figure 8(a), posteromedial cortex exhibited diverse

connectivity with multiple flexible regions (frequent

community changes) within the state, (i.e. nodes 27,

28, 30, and 31) (T2 and T4). Interestingly, node 4

(posteromedial cortex) itself does not change its com-

munity during this time, and this relative stability

matches previous research done regarding the

dynamics of this brain region.42

Within the selected sub-interval, the similarity plot

suggested large changes of network structure during

time 50–52. Visualization of these changes using a dif-

ference graph, see Figure 8(b),(T3 and T4), only for

node 4, may provide an explaination of the relatively

large shift in global network structure (visible in the

similarity plot), driven by changes in few edges and

shifts in community structure. Additional research and

rigorous statistical analysis is needed to validate the

network dynamics inferred by TimeSum.

To summarize, our domain experts could easily

identify major topological shifts in the data sets used

for the presented case studies. The case studies

demonstrate that our approach has great potential for

rapidly formulating initial hypotheses for different

types of applications requiring complex network

analysis. Traditional approaches used to visualize such

data use small-multiples or animations. Such methods

do not effectively depict major topological patterns,

like birth or death of communities or transient nodes,

see Figure 8(b), node 27.

Discussion

Traditionally, analysts use their expert knowledge,

experience, and perceptual skill to identify and glean

core topological structure of the network and its

dynamic behavior. TimeSum, based on its algorithmic

and visual methods, is able to characterize important

changes happening in a network and compute the core

network structure characterizing a state.

Domain expert feedback

Our domain expert (neuroscientist) has used our tool

and is convinced of its value. He was quickly able to

identify higher-level topological network changes and

identify trend behavior in the connectivity profiles of

the nodes. He stated,

The interactive visual techniques introduced, enabled an

intuitive understanding of the systems we study. For

example, the summary graphs provided high-level over-

views of network structure and how it changes. The differ-

ence graph allowed me to get a sense of variability within

each state and comprehend the dependence between

dynamics across timepoints. It would be great to add

more layout techniques to understand modular structure

better.’’ He added that ‘‘there haven’t really been any good

ways to visualize time-varying network data in a way that

facilitates detailed and intuitive understanding. TimeSum

Figure 8. (a) Exploration of posteromedial cortex, node 4, in an integrated state from timesteps 42–54 through the
summary graph. (b) Detailed exploration of changes in local topology of node 4 through difference graph for timesteps
50–52. (c) Plots for 1-similarity and modularity of the identified state. Filtering within-state variability for timesteps 50–
52.
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allows me to perform the kind of deep data exploration

that is likely to help substantially for gaining new insights.

Our method was designed primarily to address the

temporal scalability problem arising in time-varying

network data analysis. Through our experiments, we

determined that our system can be used as an interac-

tive, near-real-time system for data sets consisting of

240+ nodes, 4,608,400 edges, and 200+ timesteps.

The processing time required for interactive filtering

and switching views is negligible. As all abstraction

algorithms are executed online, the system requires

approximately 5–6 s to start up.

Scalability

For larger data sets, our technique demands more

screen space and computational power. Nevertheless,

our method produces intuitively understandable

results when graphs exhibit temporal correlation and

inherent modular structure. Many naturally occurring

networks have such properties. While scalability of

computational aspects of our approach is important,

we believe that ‘‘perceptual scalability’’ is perhaps even

more important, and perceptual scalability was the

main focus of our research. Our approach provides an

effective means for visualizing similarities and differ-

ences between graphs, while avoiding visual clutter

and greatly reducing edge crossings. Reduction of

complexity can be achieved by sampling using central-

ity, for example, aggregating nodes of lower impor-

tance. Furthermore, methods like semantic zooming,

providing additional details on demand further deal

with visualizing large number of nodes. However, our

method focuses on the complexity of temporal beha-

vior. Other methods, such as edge-bundling or meta-

node reduction, could be used in conjunction to deal

with perceptual scalability.

Tuning parameter values

The threshold used for the computation of summary

graphs affects the computation of topology. A resulting

graph will be sparse if the algorithm finds similar topo-

logical behavior between dissimilar graphs in a state.

For example, AEP, see section ‘‘Consensus-based state

summary graphs,’’ is an indicator one can use to deter-

mine the reliability of the summarization algorithm.

Our technique requires a user to specify the values of

several parameters, for example, d values used as

weights to define similarities, threshold values for

summary graph generation and state detection, and so

on. Proper choices of values depends on the particular

data set to be analyzed and the questions to be

answered.

Comparison with other techniques

Domain experts commonly use small-multiples or ani-

mations to understand the dynamics and evolution of

graphs over time, see Figure 9. We compare our

approach to common methods and explain the con-

ceptual advances our technique offers. Figure 9(a)

shows two graphs (101 and 102) in the same state

(timestep interval 100–105), with nodes being colored

by the dynamically changing community membership.

Figure 9(b) and (c) shows the difference and summary

network computed by our technique.

Considering small-multiples, to identify (T1) states

and analyze summary topologies (T2), the method

relies on a user’s visual perceptual skills to identify

commonalities in the behavior of similar graphs.

Generally, a user must manually inspect a large num-

ber of views. To understand such variations in topology

(T3) and comprehend complex local dynamics (T4) in

dense graphs, finding differences is a cognitively over-

whelming and extremely time-consuming task. Users

often fail to notice major differences between two adja-

cent graphs since recognizing changes can be percep-

tually challenging.

Animations

The use of visual animations, which is limited to a

user’s short-term memory, is often ineffective for the

analysis of complex time-varying networks. A user

must remember changes in community membership,

deal with unstable layouts necessary to classify states

(T1), and mentally determine commonalities (T2).

Furthermore, identifying small-scale changes in the

topology of dense graphs is a complex and cognitively

demanding task (T3 and T4). Tasks like identifying

major events like growth or death of communities is

challenging through animations due to its constantly

fluctuating and dynamic feature of the visualization.

To support efficient state analysis of complex time-

varying networks, our method automatically computes

an unchanging network topology and its corresponding

time interval, see Figure 9(c). This approach reduces

redundancy in visual representations used to depict the

same information. It also increases visual comprehen-

sion of common connectivity patterns (T1 and T2)

through abstraction and reduction of visual clutter.

With our approach, small-scale changes in topology-

causing community changes can be identified quickly

via community-based difference graphs, see Figure

9(b), depicting a community change of node 15 (T3

and T4). The combination of these views supports a

user substantially to understand similarities and differ-

ences in toplogy and communities. Without our sys-

tem, such a detailed analysis of a time-varying network
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would require a user to spend a significant amount of

time for manual inspection of a much larger number of

views and develop an instinct to find the common

topological structure.

Conclusion and future work

We have presented TimeSum, an approach for explor-

ing dynamic networks and presenting their

complex topologies via effective abstractions. We have

introduced a unique set of algorithms to identify time

intervals related to similar topological network

properties, allowing one to comprehend global trends

in a network data set. TimeSum is a powerful tool for

dealing with the temporal visual scalability problem,

greatly reducing the need for time-consuming manual

network analysis steps. With the help of our tool,

experts could comprehend rapidly the causes and

effects of topological changes occurring in networks,

which, using commonly available methods, would

require cumbersome off-line data processing.

We plan to focus on the crucially important aspect

of scalability for effective network data processing and

visualization. As data sets become larger, in terms of

Figure 9. Our technique reduces the time-varying data set into summary graphs. Difference graphs convey the causes
and effects of topological changes. Here, the small multiples technique (a) is compared with the summary graph (c) and
difference graph (b). Considering the summary graph, we can identify the nodes that often change community
membership. The addition of the edge from node 0 to node 15 causes nodes 15 and 20 to change their community (gray).
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nodes and timesteps, methods are needed that can dis-

play large data meaningfully. We plan to consider com-

bining temporal and spatial network information by

leveraging dynamic techniques, such as orchestrating

changes in node appearance (e.g. semantic zooming).

Furthermore, it is possible to improve our exploration

approach by enabling difference graph computation

with not only adjacent timepoints but also time-

discontinuous timepoints.
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