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ABSTRACT
We present ECoG ClusterFlow, a novel interactive visual
analysis tool for the exploration of high-resolution Electro-
corticography (ECoG) data. Our system detects and visu-
alizes dynamic high-level structures, such as communities,
using the time-varying spatial connectivity network derived
from the high-resolution ECoG data. ECoG ClusterFlow
provides a multi-scale visualization of the spatio-temporal
patterns underlying the time-varying communities using two
views: 1) an overview summarizing the evolution of clus-
ters over time and 2) a hierarchical glyph-based technique
that uses data aggregation and small multiples techniques
to visualize the propagation of clusters in their spatial do-
main. ECoG ClusterFlow makes it possible 1) to compare
the spatio-temporal evolution patterns across various time
intervals, 2) to compare the temporal information at varying
levels of granularity, and 3) to investigate the evolution of
spatial patterns without occluding the spatial context infor-
mation. We present a case study for real epileptic seizure
data aimed at evaluating the effectiveness of our approach.

Categories and Subject Descriptors
J.3 [Computer Applications]: Life and Medical Sci-
ences—Medical information systems; H.4 [Information
Systems]: Human factors—Human information processing ;
I.5.3 [Information storage and retrieval]: Information
Search and Retrieval—Clustering

General Terms
Design, Human Factors
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1. INTRODUCTION
The human brain is a highly connected, dynamic system

comprising specialized brain regions that coordinate and in-
teract in many complex ways for communication, producing
intricate patterns of system behavior [17]. Analyzing these
communication patterns can help us gain an understanding
of the normal functioning of the brain, how we learn or age,
and how neurological disorders develop or can be treated [17,
6]. Brain systems function across a large range of spatial and
temporal scales. Investigating how the connectivity patterns
vary across these different scales has provided new insights
into how low-level signals cause global brain state transfor-
mations [20]. To support such analysis and capture these
patterns comprehensively, data with high spatio-temporal
resolution and low signal-to-noise ratio is needed.

Recent advances in invasive monitoring technologies such
as electrocorticography (ECoG) have risen to this challenge
by recording high-resolution electrical signals captured by
electrodes placed directly on the cortical surface of the brain.
The correlation of electrical activity between these elec-
trodes yields a measure of functional connectivity between
them. As the derived functional network changes over time,
the topology and the attributes of the network vary as well,
making it difficult to analyze and visualize the network.

Developments in graph theoretical methods have made it
possible to simplify and characterize the data contained in
the connectivity network. For example, through community
detection methods, it has been determined that brain net-
works exhibit modular organization [16], i.e., they consist of
clusters, subsets of regions having strong inter-modular con-
nections and sparse inter-modular connections. These clus-
ters represent specialized behavioral systems such as higher-
order vision, or sensory-motor processing [25].

One way to explore how these behavioral systems inter-
act when performing a task or are impaired due to neuro-
logical disorders is to study how the modules evolve over
time [6]. This study involves identifying cluster evolution
patterns such as: spatial distribution, or a combination of
clusters; electrical activation or deactivation of a cluster; and
the birth and death of clusters. In the case of epilepsy, for
instance, visual analysis of the cluster data combined with
the electrical activity can help differentiate normal and ictal
(seizure) states of the brain. These patterns—when vali-



dated with statistical analysis—are crucial for a successful
treatment of the identified epileptogenic zones.

The spatio-temporal patterns in time-varying clusters op-
erate at different spatial and temporal scales. To capture
and analyze these patterns, it is important that the tempo-
ral scale of the analysis matches the temporal scale of the
patterns themselves [2]. For example, patterns such as spa-
tial distribution or combination of clusters are best captured
at a lower temporal scale while global transitions of brain
states are captured at a higher temporal scale. Analyzing
the patterns at varying granularity is crucial as appropriate
scales for evaluation are not obvious a priori and a single
optimal solution at a particular scale is unlikely to exist [2].

Existing approaches to visualize dynamic spatio-temporal
clusters operate mostly at a single temporal scale and do
not satisfactorily support the in-depth comparison and eval-
uation of the evolution patterns underlying the data. They
mainly focus on visualizing such data by directly depicting
all of the information through visual representations or using
computational methods to reduce and summarize the visual
data. While direct depiction methods suffer from scalability
issues, data reduction methods ignore the low-level details
that are important in explaining high-level patterns.

To support a comprehensive and detailed study of ECoG
data, we present ECoG ClusterFlow (Fig. 1), an interactive
system that supports the exploration, comparison and anal-
ysis of time-varying community evolution patterns at vary-
ing temporal granularity. Two major views of the system
include: 1) an overview summarizing the overall changes
in cluster evolution, where users explore salient dynamic
patterns; and 2) a hierarchical glyph-based timeline visu-
alization for exploring the dynamic spatial organizational
changes of the clusters using data aggregation [9] and small
multiples [36] methods.

These techniques allow users to gain insights at many lev-
els of temporal granularity, exploring globally evolving pat-
terns to observing small-scale spatial changes. In summary,
our main contributions include:
• A hierarchical multi-scale approach to visualizing tem-

poral modular changes in brain networks
• Unique glyph-based designs that explore spatial orga-

nizational changes of the dynamic cluster data
Furthermore, the specific design goals and capabilities of

our system were articulated in close collaboration with the
neuroscientists and the neurosurgeon on our team, ensuring
that our prototype improves the overall data exploration
process. Our system was repeatedly evaluated and tested
by the users, making possible the development of analy-
sis modules that help gain new insights into the data. We
present two case studies using synthetic and epileptic seizure
datasets to demonstrate the usefulness of our system.

2. RELATED WORK
Work related to ours falls into visualization of communi-

ties for dynamic graphs; and visualization of spatio-temporal
data:

2.1 Communities for Dynamic Graphs
When exploring communities in dynamic graphs, existing

techniques primarily use animation (time-to-time mapping)
or static timeline-based (time-to-space mapping) visualiza-
tion methods to depict modular changes over time.

In animations, the community structure of the network
is shown by color-coding the nodes or partitioning the draw-

ing space into sections [8] or nested blocks [29] (if the data
is hierarchical). Due to their reliance on short-term mem-
ory, animations increase the cognitive load during analy-
sis [5]. A way to mitigate this problem is to maintain the
‘mental map’ of the layout by minimizing node movement in
the animation [26]. An alternate approach to decrease the
cognitive load is that place multiple graph representations
along a timeline using small multiples [36]. However, this
multi-view approach leaves the user with the manual task of
assimilating and identifying changes.

To address this problem, several approaches utilize
timeline-based representations [31, 28], visualizing only
the evolution of clusters over time. In a timeline view, each
segment along the axis perpendicular (to the timeline) rep-
resents a cluster identified at that particular timestep. The
links between two axes represent the changes in the cluster
affiliation of the nodes. The arbitrary ordering of the nodes
in the vertical axis may increase link crossings between axes,
inhibiting easy comprehension of the evolution patterns. To
address this issue, Reda et al. and Sallabury et al. [28, 32]
employ sorting techniques to place active and stable com-
munities at the top of the vertical axis.

To further support the comprehension of transitions be-
tween communities, alluvial diagrams [30] model the links
between clusters in different vertical axes as split-merge rib-
bons [31, 37]. This approach enhances the visual traceability
of important cluster evolution patterns.

Most published methods either visualize the evolution of
clusters or their corresponding graph topology. Reda et
al. [27] visualize the spatial context and the evolution of
the time-varying clusters by linking a space-time cube (3D
spatial representation) with a timeline-based representation.

In contrast, our work provides the spatial context for dy-
namic evolution patterns in 2D. Furthermore, our technique
matches clusters through an overall match algorithm, ensur-
ing intuitive identification of dynamic community patterns.

2.2 Spatio-Temporal Data
Previous visual analysis methods for spatio-temporal data

utilize either integrated or separated views [4].
Integrated views visualize spatial and temporal data in

one view. Superimposing temporal graph data onto a spatial
view [3] and visualizing a 3D space-time cube timeline over
a 2D spatial view are two examples of integrated views [12].
Another hybrid 2.5D approach proposed by Tominski et
al. [35] displays temporal information on top of a 2D spa-
tial layout. However, for a large number of timesteps or
data points, these views can easily become cluttered and
occluded.

Separated views overcome visual clutter by using ded-
icated views to present different aspects of spatio-temporal
data. Plug et al. [23] link data in spatial and temporal do-
mains by using small multiples of maps, superimposing a
subset of temporal data on each of the spatial maps. Jern et
al. [18] utilize color to link spatial and temporal data. Other
methods [22] for static data use interaction techniques to
link data in both domains, requiring substantial and con-
centrated eye movements for visual analysis.

Visual glyph designs that aggregate spatio-temporal at-
tributes not only reduce the size of the represented data but
also enable intuitive comparison of temporal data. Glid-
gets [19] depicts temporal changes by segmenting glyphs into
time slices, enabling the comparison of attributes over time.
Nan Cao et al. [7] and Erbacher et al. [10] aggregate tem-



Figure 1: Overview of the ECoG ClusterFlow pipeline. A. Raw electrical signals are statistically analyzed
to derive the dynamic network data. B. The data pre-processing step identifies and links cluster across
timesteps. C. Main modules of the visualization system. D. Users can investigate patterns in two major
visualization views. E. Users can perform various types of spatio-temporal analysis based on these views.

poral data to summarize the entire dataset with the overall
goal of detecting anomalous behavior in the network. ECoG
ClusterFlow utilizes some of the aforementioned concepts to
provide unique glyph-based designs and visualization meth-
ods that show the overall modular changes of the network.

3. CLUSTER DETECTION
Our visualization methods are based on sequence of com-

munities detected at each timestep. We call this sequence
of communities dynamic communities. Given the graph
at a particular timestep G = {N,E}, where N are the
nodes that represent electrodes and E are the edges that
represents the correlation between the electrodes, the com-
munity detection algorithm clusters the data into K non-
overlapping and exhaustive communities. A K-cluster par-
tition P, with communities Ci (where 1 ≤ i, j ≤ K ), is

defined as P = {C1, C2, C3, .., CK} such that
K∑

k=1

Ck = G

and Ci ∩ Cj = ∅, ∀i,j : i 6= j.
Derivation of time-dependent clusters is an essential task

in the analysis of time-varying brain network [33]. Two
main approaches [11] are commonly used: 1) A two-stage ap-
proach where the communities are derived at each timestep
and then tracked over time using different community track-
ing methods [13, 32]. 2) an evolutionary clustering approach
that takes into account the graph topology and the cluster-
ing results from previous timesteps. However, based on the
feedback from the neuroscientists on our team and other
existing work [32, 33], we choose the two-stage clustering
approach (described in detail in section 4.1.1) with consen-
sus clustering [21] as our primary detection algorithm. This
method produces a better quality of clustering results since
each timestep is clustered locally (determining the correct
number of clusters) [32], and combines the best outputs of
multiple runs of the K-means clustering algorithm.

4. SYSTEM OVERVIEW
We developed ECoG ClusterFlow in close collaboration

with neuroscientists (including neurosurgeons) to guide the
design of our analysis framework and to ensure that it would
be truly valuable as an exploratory tool.

Fig. 1 shows the pipeline of our system. The input to
our system is: 1) the processed electrical signal data orig-
inating from each electrode in the ECoG grid and, 2) its

Figure 2: Evolution of clusters for four timesteps. A.
The cluster evolution view shows clusters and tran-
sitions between them. he nodes have colors based
on their cluster membership. B. The K-cluster
heatmap on the bottom visualizes the likelihood of
a range of K values that determine the final number
of clusters for a particular timestep, for e.g. a clear
maxima is evident for 100ms (5) and 200ms (3).

corresponding pairwise dynamic correlation network. The
dynamic network data is pre-processed to derive dynamic
clusters. Visualization methods, such as data aggregation,
are applied to the cluster data in the pre-computation phase
and final visualizations are generated.

Based on our conversations with domain experts and the
network task taxonomy by Ahn et al. [1], we have identified
the following domain questions of interest:

Identify temporal brain states(Q1) What activation
patterns are consistent over a continuous period of time?

Identify transitions between brain states(Q2)
Given the brain states, what patterns characterize their
transition to another state?

Compare the evolution patterns associated with
different brain states(Q3): What patterns underlie the
brain states during normal versus diseased condition?

Assess changes in community membership(Q4)
Given a spatial region of interest in the brain, how do the
clusters belonging to these regions change over time?

These questions led us to establish the following system
design goals:



Figure 3: Comparison of tracking algorithms in ar-
tificial datasets. In image C the maximum overlap
algorithm assign C3,3 to C4,1, while in Fig. D the
globally optimal matching algorithm assigns C3,3 to
C4,3, qualitatively making communities more visu-
ally traceable in image D. The scalar values for the
links in image A and B are L1,1 = 11, L1,2 = 11,
L2,1 = 10, L2,2s = 2.

Timeline-based visualizations(G1) Support views
that display the time-varying cluster information on a static
display to take advantage of the user’s visual perception in-
stead of cognition (time-to-time mapping)

Multiple levels of detail and abstraction(G2) Sup-
port views that enable neuroscientists to explore the data at
multiple levels of granularity for analysis

Holistic visualizations(G3) Support visual designs
that combine multiple data attributes like cluster member-
ship and its electrical activation

These goals are addressed in our system by two major
views: the Cluster Evolution View and the Electrode View.

4.1 Cluster Evolution View
The cluster evolution view highlights the salient patterns

of the cluster evolution including the emergence, death, con-
traction, expansion, merging and splitting of clusters (Q2,
Q3, Q4). Through this view, analysts can compare and an-
alyze modular signatures (cluster evolution patterns) over
time and identify important time intervals and distinct brain
states. The cluster evolution patterns are represented us-
ing a flow-based visualization [30, 37] (G1) (alluvial dia-
gram), where the clusters metaphorically flow like a river
with split/merge tributaries from left to right.

Formally, at each timestep t on the horizontal axis, rectan-
gular blocks represent clusters Ct,i where the height of each
block represents the cluster’s size at that timestep. Flow-
based transition links Li,j , where i is the source commu-
nity and j is the sink community, connect clusters to show
changes in the community structure over time. We model
these links as Bezier curves, to generate a continuous rep-
resentation of the transition between successive communi-
ties [37]. Fig. 3 shows the evolution of dynamic clusters for
five timesteps. Furthemore, to easily assess the community
membership in dynamic clusters, we color communities us-

ing solid coloring, using N perceptually distinct colors from
a qualitative colorbrewer [15] colormap.

4.1.1 Cluster Tracking
To support the two-stage cluster detection approach, cor-

respondences between clusters in consecutive timesteps need
to be determined. Based on the input from neuroscientists,
we have investigated two approaches to compute this match-
ing: (1) maximum overlap tracking and (2) computing the
globally optimal match.

Maximum overlap tracking (Fig. 3A, C) is a greedy al-
gorithm that iteratively matches the two clusters in con-
secutive timesteps that share the maximum number of elec-
trodes. This process is repeated until no overlapping clusters
remain. This approach may not always produce an intuitive
correspondence between clusters. For example, in Fig. 3A
and C, clusters C1,2 and C2,2 have maximum overlap (of 11
electrodes) and are paired in the first iteration. This only
leaves C2,1 as possible match for C1,2 in the second iteration,
even though the overlap between C1,2 and C2,1 is relatively
small (only two electrodes).

To find the globally optimal assignment, our second ap-
proach picks the best overall match between all clusters in
consecutive timesteps. We define a similarity measure

sim =
|Ct,i ∩ Ct+1,j |∣∣Ct,i ∪ Ct+1,j|

∣∣
between clusters Ci and Cj in consecutive timesteps t
and t+1, similar to the approaches by Greene et al. [14]
and Sallabury et al. [32]. Next, we compute a similarity ma-
trix comprised of the pairwise similarity measures between
all possible cluster combinations. To avoid matching of clus-
ters with small overlap, we set to zero those similarity values
that are below a threshold θ. To match clusters, we consider
all possible cluster matchings between timesteps—by consid-
ering all possible permutations of clusters—and compute a
global similarity value as the sum of the similarity values
for all matched clusters. The overall best match is the per-
mutation that maximizes global similarity. While consider-
ing all possible permutations is computationally expensive,
we usually consider only upto a small number of clusters
(approximately seven) per time step, keeping this approach
tractable. Fig. 3D shows the best overall match for our ex-
ample, matching clusters C1,1 and C2,1 as well as clusters
C1,2 and C2,2, a more intuitive choice than the result ob-
tained by maximum overlap tracking. An implementation
of this approach for an artificial dataset with three dynamic
communities is shown in Figure 3. The two approaches differ
in the community results starting at timestep four.

4.1.2 Sorting and Ordering of Nodes
To enhance the visual traceability of the clusters, the node

layout of the graph should ideally minimize edge crossings
with optimal ordering of the nodes (clusters) at each ver-
tical axis. To determine such an ordering, we must take
all the timesteps into consideration. Several methods have
been proposed to compute such an ordering [37, 32]. Our
approach handles more timesteps by not considering the in-
dividual elements contained within clusters and dividing the
sorting procedure into N individual blocks of T timesteps.
To reduce the computational complexity—to achieve the
least start-up-time of 40-60 seconds and to scale to up to 60
timesteps—our heuristic solution (barycenter approach [34])
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Figure 4: Design choices for visualizing cluster mem-
bership along with brain electrical activity. A

sweeps horizontally across all the clusters over N blocks of
T timesteps (where NT is the total number of timesteps in
the data) in a front-to-back and back-to-front manner to op-
timize the order and position of these communities on the
vertical axis. This procedure results in a cluster ordering
that minimizes the link distance between the timesteps.

4.1.3 K-Cluster Heatmap
Cluster analysis results can be sensitive to noise and prone

to overfitting [21]. The K-Cluster heat map produces impor-
tant information for the evaluation of the uniqueness of the
number of clusters detected per timestep. Consensus clus-
tering uses a cumulative distribution function (CDF) to de-
termine an appropriate number of clusters K. In most cases,
the likelihood for a single value of K will be large compared
to the others, and the confidence that the chosen number of
clusters is correct is high. The K-Cluster heat map (Fig. 2)
shows the likelihood for a range of values of K for each time
step. Black denotes high likelihood and white low likelihood.
Using this heat map, analysts can identify timesteps where
multiple values for K are almost equally likely and where
confidence in the clustering results is low.

4.2 Electrode View
The electrode view shows cluster membership and elec-

trical activity in a spatial context (G3) (Fig. 6 A,B), en-
abling the user to identify important spatial cluster evolu-
tion patterns (Q1, Q2 and Q3). These evolution patterns
include 1) spatial cluster distribution, i.e., a cluster origi-
nally comprised of spatially adjacent electrodes splits into
disjoint parts, 2) spatial cluster combination, i.e., a cluster
consisting of disjoint regions becomes spatially coherent, and
3) spatial activation, i.e., the electrical activity of electrodes
increases over time. The electrode view places interactive
glyphs–representing electrodes–on a 2D subject-specific re-
constructed brain model to provide the spatial context.

To support exploration at multiple temporal scales (G2)
and effective comparison of cluster characteristics—i.e.,
cluster membership and electrical activity of the individ-
ual electrodes—over the spatial domain, our visualization
method aggregates N multiples of continuous timesteps on
each electrode view. Furthermore, interactive techniques
that can be applied to glyphs, make it possible for the user
to define the N multiples to be aggregated on each glyph.

The aggregation techniques provide the user with a de-
tailed overview of the underlying data while not being over-
whelmed by the entire data [9]. However, aggregated views
have a drawback: they can lead to cognitive information
overload. Nonetheless, for the multiples we consider, we
found that our visualizations are better suited for the tasks
performed by our collaborating neuroscientists.

4.2.1 Glyph Design

Figure 5: Varying the number of timesteps displayed
on our glyph design.

All our glyph designs display n user-defined timesteps per
individual electrode view, to save presentation space and
to facilitate comparison between timesteps. We considered
three visual designs for our glyphs, following some of the
data aggregation guidelines specified by Elmqvist et al. [9].
The first design uses vertically stacked bar charts. Each
bar represents one time step with its color indicating cluster
membership and its height corresponding to electrical activ-
ity (Fig. 4A). The second design uses a clock metaphor [19]
and subdivides each glyph into n equal slices. Each slice—
starting at the top in clockwise order—represents a time step
with its indicating cluster membership and its radius repre-
senting electrical activity (Fig. 4B). The third design is a
variation of the second design and uses slice opacity instead
of radius to represent the electrical activation level.

The first design depicts changes in cluster membership
intuitively, but requires a large amount of glyph space. In
the second design, the varying glyph sizes in the entire spa-
tial layout impede the neuroscientists to assess the relative
positions of the electrodes. Overall, our domain science col-
laborators preferred the third design where the glyph shape
remains constant and only color and opacity are used to con-
vey information. We use this design in our system and the
remaining discussion in this paper is based on it.

4.2.2 Hierarchical Exploration
Patterns in brain activity occur at different temporal

scales, where the appropriate scale may not be known a pri-
ori. To facilitate discovery of these patterns and scales, our
tool controls the timesteps that can be displayed in a single
electrode view. At the extremes, the method either displays
all timesteps in a single electrode view (low granularity at
the top level) or each time step in a separate electrode view
(high granularity at the bottom level). Between these ex-
tremes, different levels of aggregation are possible. Different
approaches exist to search for temporal evolution patterns.
Top-down analysis starts with all timesteps in a single view
and decreases aggregation until a pattern of interest is found.
A bottom-up approach starts analysis with each time step in
a separate view and increases aggregation until a pattern
is found. However, exploration may also start at mid-level,
in situations where the user already has a notion at what
temporal scale a pattern may be identified.

5. CASE STUDIES
We demonstrate the usefulness of our tool by using both

synthetic and real-world (seizure) datasets. The visual anal-
ysis approach greatly supports the comprehension of salient
spatio-temporal evolution patterns and provides insight into
the life-span of brain states and the clustering stability
of the classication algorithm. A video demonstrating our
tool in use can be found at https://www.dropbox.com/s/

icrm7pg1pr5r7hp/BrainKDD.mp4?dl=0

5.1 Synthetic Dataset

https://www.dropbox.com/s/icrm7pg1pr5r7hp/BrainKDD.mp4?dl=0
https://www.dropbox.com/s/icrm7pg1pr5r7hp/BrainKDD.mp4?dl=0


We generated a simple synthetic dataset to better under-
stand and evaluate our proposed methodology. In our data
generation model, the electrodes had three known modes
of normalized electrical activity, known intervals of activa-
tion patterns, and known likelihood values for the K-cluster
heatmap. The controlled parameters of the data allowed us
to investigate the the features of the visualization outside
the context of noisy brain recordings.

5.1.1 Spatio-temporal Analysis
We start our exploration with the evolution view, looking

for general evolution trends in the data. In this view, three
distinct clusters (colored in red, green and blue in Fig. 6)
emerge and remain stable throughout timesteps [0-9] (in
Fig. 6B). These clusters become randomly distributed at [10
to 19] to regain their stable configuration at [20 to 30].

To further examine the spatial configuration of these pat-
terns, we employed a top-down approach exploring various
temporal scales to identify a consistent activation pattern
(similar activation patterns in one electrode view) across all
electrode views. At a granularity of ten (ten-time points in
one electrode view, Fig. 6A), persistent electrical patterns
in each electrode view were found, e.g., glyphs in electrode
views one and three were fully activated and deactivated,
respectively. The electrode view two, on the other hand,
showed a combination of activated and unactivated patterns.

To explore the intricate low-level activational and mod-
ular patterns that caused the temporal state change from
unactivated to activated state, the granularity of the system
was reduced to one (Fig. 6B). When examining timesteps
[9, 10, 11], an emergent focal activation point (annotated in
Fig. 6C) in the lower-right corner of the electrode view was
evident. Further examination of subsequent timesteps re-
vealed the progressive dominance of the red cluster over the
region (Fig. 6C, views 9, 10 and 11). In summary, our com-
bined visual analysis approach helped us categorize temporal
states and identify low-level changes and their dependencies
with high-level state changes.

5.2 Epileptic Seizure Dataset
Epilepsy is a neurological condition where the normal

functioning of the brain is disrupted due to sudden bursts
of electrical activity emanating from a certain region of the
brain, i.e., seizure-initiating foci. This disruption is char-
acterized by changes in the brain’s modular organization
over time [24]. Exploring these differences may provide in-
sight into the genesis and development of the seizures over
time [24]. The neuroscientists on our team are primarily in-
terested in: 1) identifying the brain regions that are active
during various stages of the seizure and 2) identifying dis-
tinct spatio-temporal evolution patterns that characterize
the onset and propagation of the seizure.

Data: The raw signal data from the ECoG electrode ar-
ray was statistically analyzed to provide two spatio-temporal
graph datasets using different pre-processing steps: a high-
gamma dataset at a frequency ranging from 70 to 170
Hz, capturing multi-unit neuronal spiking, and a full-range
dataset, averaging all frequencies captured by the record-
ing device. We derived communities independently at each
timestep using the consensus clustering algorithm [21].

5.2.1 Spatio-Temporal Analysis:

We now discuss some of the major insights obtained with
our system by our collaborating neuroscientist and the neu-
rosurgeon on our team through our tool:

Detection of brain states: Using the bottom-up ap-
proach, around a temporal scale of ten, neuroscientists found
consistent progressive seizure activation patterns across all
electrode views (Fig. 7C). Based on these patterns, the neu-
roscientists categorized the electrode views into four major
distinct brain states, i.e., before-seizure, early-seizure, mid-
seizure, late-seizure.

Detection of transitions between brain states:
Based on the gradual changes in activity patterns (2200-
2600ms in Fig. 7A), the seizure initiation zone (2200ms,
Fig. 7A) (likely cause for state change from before-seizure
to early-seizure) was found. The neuroscientists stated, “the
activated region is referred as Lateral Temporal Cortex
(2400ms in Fig. 7A, and 2400ms in Fig. 8A). Through the
glyph designs, activity patterns emerging from this point dy-
namically propagate to other parts of the brain (3000ms-
5000ms in Fig. 7C).”

Compare and contrast the evolution patterns gov-
erning different brain states: The signatures of clus-
ter evolution at three distinct brain states (before-seizure,
transition-state, late-seizure) were of interest to our users.

1) 800-1100ms: Evolution patterns here appear to be sta-
ble and organized (highly confident clusters with a clear
maxima in the K-cluster heatmap), with the same number
of elements in each community (Fig. 8A, B). The spatial
organization of clusters at 900ms (Fig. 8A) are scattered
over the biological layout and are unactivated. The neuro-
scientist added, “this distribution of clusters might indicate
normal activity of the brain where specialized modules coor-
dinate to perform a task.”

2) 2400-2700ms: Evolution patterns from this point on-
wards seem to become irregular. There is a noticeable acti-
vation of certain electrodes in spatial view and reduction in
number of clusters. The neuroscientist commented, “The
transitions in the cluster evolution view seem to have a
mix of irregular distribution of thin and thick links between
timesteps. For example, the brown cluster in Fig. 8A and
Fig. 8B seem to have comparatively less redistributions of
electrode elements over time.”

3) 5200-5500ms: In the cluster evolution view, a domi-
nant orange cluster (starting at 4000ms) emerges with few
isolated small sized communities. The zero likelihood in the
heatmap (interval 5500-6000ms) is caused as the algorithm
produces only identity (1) values in the consensus matrix,
showing no progressive change in the cumulative density plot
(section 4.1.4), eventually picking the K value to be one.

Assess changes in community membership: In
Fig. 7C, when evaluating the last electrode view, there also
seems to be a dominance of a single orange cluster over a
significant period of time and space.

When comparing the evolution patterns of the high-
gamma and full-range pre-processed datasets (Fig. 8A and
Fig. 8B), the domain experts revealed that, “In general, the
full-range dataset exhibits larger number of communities in
all three sampled intervals (A,B,C). Although a single orange
cluster is emergent in both datasets, it is only clearly visible
in the high-gamma dataset. This pattern may be due to the
high spatial locality and the high specificity of the frequency
(70 to 170 Hz) used for the pre-processing of the data.”. The
neuroscientist further added that “The combination of time-



Figure 6: The figure shows evolution patterns underlying our generated dataset which we use to test and
evaluate our approach. Color indicates the cluster configuration at each timestep and the opacities of the
glyphs its electrical activity. A. Categorizing different temporal states, i.e., unactivated (view 1), transitional
(view 2), activated (view 3). B. Evolution of the cluster assignment changes through the cluster evolution
view, stable cluster configuration from timestep intervals [0-10] and [20-30], and, random unstable assignment
over timestep interval [10-20]. C. Detailed analysis of a time interval selected in the cluster evolution view,
activation patterns can be seen in the lower-right corner of the views for the timestep interval [10,11].

Figure 7: Hierarchical exploration of the seizure dataset at varying levels of granularity revealing th various
brain states and associated cluster characteristics. Four major brain states are found at C. Upon further
examination of their detailed evolution patterns in B and A, provides insight into seizure genesis and the
initiation phase. The green cluster (in seizure initiating focii, i.e., ‘Lateral Temporal Cortex’) in A seems to
play a prominent role in the seizure initiation phase (2200ms-2500ms).
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varying community structure characterization and the hier-
archical multi-scale exploration approach has enabled these
multi-part observations for the ECoG spatiotemporal data”.

In a short period, the neuroscientists could quickly iden-
tify various patterns of interest in the complex high-
resolution dataset.These patterns are promising to reveal
relevant insight into seizures, both their overall characteri-
zation and especially their genesis.

6. DISCUSSION
Neuroscientists analyzing and visualizing spatial-temporal

graph data commonly use juxtaposed small-multiples or an-
imations of node-link diagrams with a corresponding spatial
view (brain maps). We have compared our approach with
these baseline visualizations methods and point out how we
gain new insights through our interactive system.

Small-multiples of brain maps: To identify low-level
community membership changes of a node over time, infor-
mation in each discrete timestep and its corresponding brain
map must be examined. Such static multi-view approaches
make it difficult to quickly assess the stability of nodes over
a local spatial region of interest. Furthermore, to identify
brain states with consistent activation patterns and inves-
tigate the global cluster lifetime phenomena, nodes have to
be mentally grouped and compared based on their data at-
tributes, further increasing the cognitive load for analysis.

Animations of brain maps: Animations are effective
in capturing low-level spatial changes of communities over
a small period—a change in community membership or ac-
tivation is denoted by a sudden change in color. However,
the frequently changing data attributes make it challeng-
ing to infer meaningful evolution patterns over long time-
scales. This complication is due to its reliance on short-term
memory that requires users to remember previous static
views and then manually identify and compare the relevant
changes. The same holds true for identifying brain states or
global cluster evolution patterns.

Our approach: The identification of community mem-
bership changes of a node can be achieved by choosing an
appropriate level of granularity and visually analyzing it over
one static view (Fig. 7B and C). The analysis is reduced
to finding the changes in the color of the consecutive slices
in the glyph. Furthermore, the split-merge links in the clus-
ter evolution view ensure that the nodes do not need to be
re-identified at each timestep (small multiples) or remem-
bered from previous timesteps (animations). Compared to
these methods, interactive techniques in our approach help
filter, select, zoom, pan and increase or decrease the level
of granularity, helping gain a thorough understanding of
the significant spatio-temporal patterns in the data. Un-
like the small-multiples method, our method significantly
reduces the visual scalability by aggregating temporal data
over the spatial electrode view.

We now summarize our major findings resulting from ex-
ploring and analyzing ECoG data with our system.

Timeline-based representations enhance percep-
tion: The tightly integrated layout mechanism, where a
consistent global timeline between the cluster evolution view
and the electrode views is maintained, allows neuroscientists
to correlate evolution patterns across the spatial layout and
functional organization of the brain network. Furthermore,
the side-by-side placement of the views on a timeline helps

the scientists compare and contrast salient patterns of inter-
est for discontinuous timesteps.

Bottom-up analysis versus top-down analysis: The
neuroscientists prefer different approaches for different tasks.
The bottom-up analysis approach (Fig. 7, A-B-C) is cho-
sen over the top-down approach (Fig. 7, C-B-A) for tasks
relating to Q1 and Q2. As the bottom-up exploration
method generates views with increasing complexity, rela-
tionships between evolution patterns at various scales can be
seen clearly. In contrast, the top-down exploration method,
which displays fewer electrode views with high levels of ag-
gregation, can be cognitively overwhelming.

7. CONCLUSIONS AND FUTURE WORK
We have presented ECoG ClusterFlow, a hierarchical

multi-scale approach for visualizing spatial and functional
cluster evolution patterns. Our approach has allowed neuro-
scientists to investigate the major cluster evolution patterns
over space and time. Through our approach, it is also pos-
sible to examine whether the major evolution events were a
result of noise or a sudden change in functional or spatial
properties of the network. Furthermore, we have discussed
major neuroscience-driven data analysis tasks and design
choices that led to the entire design of the system (done
in close collaboration with neuroscientists) that helped gain
insights for spatial cluster evolution data.

We plan to perform an evaluation concerning the use-
fulness of spatio-temporal clustering, i.e., a clustering al-
gorithm that takes both the spatial as well as the tem-
poral attributes into account. When utilizing both these
attributes, interesting research questions arise, such as, “is
the resulting visualization an accurate representation of the
data? How can we consistently compare such types of visu-
alizations with a different dataset?”. Moreover, we also aim
to support scalable visual analysis methods for visualizing
evolution patterns with more than 500 time steps
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