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Abstract
Understanding flow traffic patterns in networks, such as the Internet or service provider networks, is crucial to improving

their design and building them robustly. However, as networks grow and become more complex, it is increasingly

cumbersome and challenging to study how the many flow patterns, sizes and the continually changing source-destination

pairs in the network evolve with time. We present Netostat, a visualization-based network analysis tool that uses visual

representation and a mathematics framework to study and capture flow patterns, using graph theoretical methods such as

clustering, similarity and difference measures. Netostat generates an interactive graph of all traffic patterns in the network,

to isolate key elements that can provide insights for traffic engineering. We present results for U.S. and European research

networks, ESnet and GEANT, demonstrating network state changes, to identify major flow trends, potential points of

failure, and bottlenecks.
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1 Introduction

Computer networks are engineered to cope with challenges

of traffic overhead, load-balancing, or prevent many

potential points of failure [1]. However, network behavior

is difficult to diagnose or comprehend, especially during

pivotal time points, e.g., when unexpected traffic flows

arise or an anomalous event or a burst of traffic occurs

through the network. By modeling network behavior as a

graph theory problem, one can characterize the flow data in

great detail and understand which nodes connect fre-

quently, how the addition or deletion of links affect net-

work performance, or how this information can help with

improving or building better networks. Studying network

traffic flow patterns can provide insights relevant for better

configuration and optimization of networks.

Using topological structure and historical flow data can

reveal past network congestion points that have been

resolved by updating routing table configurations [2, 3].

However, as networks grow and become increasingly

complex, it is very cumbersome to study their behavioral

patterns and make suggestions. Various techniques that are

commonly used in social network analysis, e.g., centrality

measures, connection degree, or community formations,

can help determine how flow patterns change over time in a

network. Such patterns provide us with a holistic network

view, enabling comprehensive characterization of regular

vs. non-regular or weekend vs. weekday patterns. For

example, certain users coming online at particular days of

times and an experimental detector running only some

times in the year can cause consistent network flow traffic.

When exploring a wide area network (WAN) setting, these

techniques can reveal more intricate insights on source-

destination movements that can help improve network

design and engineering.

Current approaches used for network performance

analysis fail to identify network states as a collection of

time-points [4]. Further, solutions for visualizing dynamic

graph changes are limited, due to change blindness. i.e., the
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difficulty to notice significant changes when similar images

are placed adjacently [5]; non-compliance of mental-map

preservation; and a lack of temporal visual scalability

[6, 7]. Current techniques are not sufficient for depicting

flow changes in network behavior patterns, e.g., new flows,

new sources of data, newly formed connections, or effects

on network bandwidth.

Our tool, Netostat, adapts network flow analysis tech-

niques for WAN networks based on flow graphs, with

nodes representing sites and edges indicating active flow

transfers. Our approach is based on community-detection,

similarity, and difference algorithms, making it possible to

detect flow patterns in the network or identify flow pattern

changes when a network state changes. Compared to the

Internet, research and education (R&E) WAN networks are

characterized by more unsystematic and erratic traffic

patterns behavior as proven many times [8, 9] because of

the high variability in files and users. Unlike the Internet

exhibiting periodic patterns [10], research networks depend

on the kinds of science experiments that are performed and

what devices are running, or which groups are involved and

what type of data transfers happen, varying from small to

very large transfers requiring minutes or hours [11].

Our approach focuses on analyzing dynamic patterns,

with state detection mechanism using difference graph

techniques, to determine major changes in time-varying

network flow data and identify topological flow changes.

We visualize this behavior by encoding differences

between current and adjacent time steps, by computing a

difference graph and mapping states to find the dominant

day and night patterns. Our analysis uses packet informa-

tion routed via UDP, TCP, and ICMP network flows,

captured by routers at network gateways. The data contains

the source IP address, destination IP address, file size, port

numbers, time sent, and relevant flags. The flows are time-

stamped, sometimes with flow duration and transfer size. In

this paper, our contributions support WAN flow analysis

using difference and similarity graphs. Our analysis is

based on dynamic graphs, allowing us to identify important

information about site connections, daily patterns, and

network growth as a consequence of sites starting (or

shutting down). To the best of our knowledge, no such

tools for WAN research network analysis exist.

1. We present a difference analysis framework based on

social network analysis principles to identify growth

and decay of flow data across networks and recognize

potential points of failure ahead of time.

2. We develop a network visual analysis tool, Netostat,

that processes time-varying network flow information

to efficiently identify recurring day/night patterns, and

detect load imbalance in the network flow

infrastructure.

3. We apply our techniques to real WAN data sets—the

U.S. and European research networks—demonstrating

our method’s capability to highlight flow characteris-

tics and time-varying behavior that is hard to compre-

hend using existing network analysis techniques.

2 Background and motivation

In this section, we present key issues of network change

patterns and demonstrate motivating examples of devel-

oping techniques from social network analysis.

2.1 Network analysis and visualizations

Network monitoring tools can help model flow patterns,

such as using parallel coordinates [12] and network maps

[13] to understand overall network loads and topology [14].

Additionally, visualizing dynamic network patterns has

gained much attention in both industry and research

worldwide [15–17].

Network analysis methods have evolved to become very

sophisticated supporting easy investigation for scientific

and managerial purposes. For example, Erbacher et al. [18]

and Ball et al. [19] employed a detailed approach to ana-

lyzing connectivity patterns from the intranet level to

individual machines. Further, Goodall et al. [20] and

Lakkaraju et al. [21] utilized aggregation and filtering

mechanisms to reduce clutter and help users focus on

regions of interest. Other techniques aided scalable

exploration of data that involve sliders, dynamic queries

[22], brushing, and linking [23].

The aforementioned techniques can be categorized into

methods that utilize two or three-dimensional space.

Examples utilizing three-dimensional techniques mostly

require sophisticated interaction techniques such as

zooming, filtering, rotating, and more [13, 24, 25]. Such

methods increase the interaction load, cause occlusion, and

clutter. In contrast, two-dimensional methods such as

PortVis [26] provide an occlusion-free method to identify

major events in dynamic networks.

Other techniques like seeNet [27] use abstraction tech-

niques to identify and characterize major events in the

network flow data and the tool by Teoh et al. [28] focuses

on merging and utilizing multiple visualization views to

explore complementary aspects of the data. Visual methods

in other domains such as brain networks employ linked

visualization views [29, 30] and flow-based techniques

[31, 32] to better understand brain activity.

All of the mentioned systems do not satisfactorily focus

on temporal aspects of network flows and fail to create

situational awareness of network states. Netostat aims to
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automatically assess the topological effect of flow changes

to better mitigate critical network bottlenecks. Further,

graph-theoretical methods are used to model community

changes to summarize all information flow details [13].

2.2 Social network analysis with difference
graphs

Traditional dynamic graph visual analysis approaches

suffer from change-blindness, (a phenomenon that occurs

when we cannot recognize minute changes across two

similar images [33]); it is often the consequence of over-

drawing visual elements, therefore not conveying topo-

logical change effectively. Social network techniques such

as difference graph methods solve this problem by only

depicting the change between two-time steps. Given two

graph states, only changes (concerning edges and nodes)

are visualized [34]. The difference graph provides new

insights into analyzing flow changes.

To deal with problems of scalability in difference graphs,

Archambault et al. [35] used hierarchies to depict large areas

where the entire graph changes, just providing general over-

view patterns. Subsequent work by Bourqui and Jourdan [36]

analyzed edges having similar pathways to focus on structural

similarity. Further work by Rufiange andMcGuffin [37] used

a hybrid method to build small-multiples and animations, to

determine local topological changes between graphs.

Difference graphs alone, however, do not provide reasons

for graph changes between time steps. This missing infor-

mation can help fuel alerts and potentially network threats.

This limitation of the lack of contextual information can be

crucial for interpreting traffic patterns and low-level topo-

logical change over time. In our work, we go beyond tradi-

tional visual analytic methods by studying the context

changes between two given time steps to best identify the

change in centrality, community, and difference graphs.

We develop novel methods to help provide a difference-

centrality metric [38] to define important changes as

dynamic points, along with similarity for real WAN net-

work data sets.

2.3 Understanding network flow behavior

Software-defined networking (SDN) aims to provide flexible

solutions to build agile networks, using active monitoring

and informed decision-making [39]. Google [40] used SDNs

to optimize link usage by doing ‘what-if’ scenarios to

schedule transfers.Google’s B4 [40] andMicrosoft’s SWAN

(Software Driven WAN) [41] have proposed manners in

which routers can greedily select routing patterns for arriving

flows globally, to increase path utilization. However, these

techniques require meticulously designed heuristics to cal-

culate optimal routes and also do not distinguish between

arriving flow characteristics. Studying network measure-

ments can simultaneously detect, identify, and visualize

attacks for anomalous traffic in real-time by passively

monitoring packet headers [4].However, reliably diagnosing

flow-level behavioral patterns and how these can be linked to

failures, improve routing paths, and develop better routing

algorithms is still largely unexplored.

Understanding complex network behavior as a function

of time in dynamic graphs can have an impact on network

design and decision-making. We leverage social cluster

analysis techniques for network flow analysis. The specific

goals targeted by our approach are:

1. Flow pattern recognition in large wide-area networks

Concerning time, transfer behavior can reveal how

much data is being transferred across sites and how

long connections last. This insight provides a better

understanding of network topology behavior.

2. Linking time changes with flow patterns Understanding

overall network behavior through flow changes

between sites, over time. This is achieved by visual-

izing topological differences between graphs.

3. Identifying similarity communities with temporal net-

work states Network changes can be viewed as

continuous structural changes where sites that con-

stantly engage can be grouped to form communities,

e.g., by recognizing permanent flow communication

between certain sites. This analysis can reveal normal

and abnormal patterns, thereby supporting the detec-

tion of potential security threats to a WAN structure.

3 Netostat methodology

The architecture 1 is based on a two-stage approach. The

first stage performs similarity analysis to identify com-

munities through community detection algorithms [42], as

well as temporal states and day/night patterns. The second

stage performs difference analysis and visualizes differ-

ence topologies across two timesteps for further detailed

topological analysis. Furthermore, in order to find and

explore the community detection and similarity results,

Netostat provides the ability to interactively tweak and

reiterate the metric and the community detection results.

3.1 Mathematical notation

Figure 1a shows a simple network mesh topology used and

flows simulated for three time steps t ¼ 0; 1 and 2. This data

is modeled as a graph G ¼ ðV ;EÞ, consisting of vertices

V :¼ fv1; . . .; vng and edges E � V � V :¼ fe1; . . .; emg.
The edges may be weighted, i.e., a value ew 2 R may be

attached to each e 2 E for a fixed time step.
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(A) Simple network mesh topology shown with traffic flows at timest = 0, 1 and 2. The thickness
of the edges represents the amount of traffic flowing between nodes.

(B) To identify temporal states in the network, a similarity matrix based on Equation 1 helps
identify communities for dominant communities.

(C) Difference graph between adjacent time steps, caused by addition or deletion of an edge.
The left half of the rhombus represents the community of the node for time step Gt and right
half for time step Gt+1. The sizes of the nodes depict the magnitude of change.

Fig. 1 Similarity and difference graph from a network flow topology. The graphs summarize topological behavior over time and depict low-level

topological patterns characterizing state change (Color figure online)
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3.2 Social cluster analysis

Sites that communicate frequently, can reliably be detected

as sub-networks using the Louvain algorithm [42]. This

algorithm uses a maximized objective modularity, mea-

suring the quality of communities, where each community

has dense intra-modular connectivity and sparse inter-

modular connectivity. This metric is defined as,

Q ¼ 1

2m

X

ij

Aij �
kikj
2m

� �
dðci; cjÞ ð1Þ

where Q is the modularity metric with values in ½�1; 1�, m
is number of links in the graph, Aij is the weight of the edge

between node i and j, ci and cj depict the communities that

nodes i and j belong to. The d function is equal to 1 if the

node communities i and j are the same, with ki and kj
depicting the node degrees of i and j, respectively.

3.3 State similarity computation

To better characterize day or night patterns, transient eve-

ning patterns, orweekly, daily patterns, we need ametric that

quantifies the amount of change. Netostat characterizes this

behavior by detecting topological change between graphs

and clustering similar time steps into a temporal state.

Using the metric introduced by Koutra et al. [43], first,

we identify the similarity value across all pairs of time

steps. Second, we transform similarity values into an

adjacency matrix. Third, we use this matrix as an input to a

community detection algorithm, Louvain [42], which

determines a cluster of graphs that have similar topological

behavior, i.e., day/night. Once the states are detected,

Netostat produces respective similarity and differences

graphs based on the dynamic graphs.

Mathematically, we define the metric between graphs Gt

and Gtþ1 as, SðGt;Gtþ1Þ 2 [0, 1], where a 1 represents two

graphs being exactly the same with same edge-weights,

while a 0 represents two graphs being completely dissim-

ilar in its topology and edge-weight (flows). To determine

this value, we define a vector si per node i, si ¼ ½si;1:::si;n�,
where the influence scores start from ith node and end at nth
node. This vector can then be stacked as an n� n vector-

matrix S for every node in the graph. The similarity metric

[43] identifies the flow changes in the dynamic graph as,

S ¼ ½sij� ¼ ½I þ �2D� �A��1 ð2Þ

Here � ¼ 1
1þmaxðdiiÞÞ is a constant that captures the influence

between neighboring nodes, and D is a n� n diagonal

matrix, where dii ¼
P

j ai;j is the node degree. A is the

adjacency matrix, and I is the identity matrix. We compute

graph distance as,

d ¼ RootEDðS1; S2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

Xn

j¼1

ð ffiffiffiffiffiffiffi
s1;ij

p � ffiffiffiffiffiffiffi
s2;ij

p Þ22

vuut ð3Þ

The final similarity value of two graphs is defined as,

simðG1;G2Þ ¼
1

1þ d
ð4Þ

With the all-pairs similarity values (from Eq. 4) embedded

in an adjacency matrix, the detected time intervals states,

are then used to compute similarity graphs. The reduced

similarity graph (Fig. 1b) provides a summary of the

topology prevalent during a particular state, e.g., night

time. The nodes in similarity graphs possess the commu-

nity changes that happened during the state period while

the edges depict the mean edge weight.

3.4 Similarity graph computation

To better understand the major pivotal sites, evolution pat-

terns, and communities during temporal states, we devise a

methodology that can detect a graph, that provides a sum-

mary of a temporal state. For a given period, the similarity

graphs represent a simple abstraction of the graph-level

complexities within the time frame. The visual representa-

tions ([38]) of the similarity graph depict summarized

topological information, which includes the community,

node membership, and edges. We use the algorithm from

[38] to construct and depict the visual representation of the

summarized graphs.

3.5 Difference graph computation

While the similarity graphs (as defined in [38]) depict

general, overall trends within the dynamic network, lower

level topological trends are hidden within the metric. The

lower level patterns, like the addition/deletion of edges

across time steps is important to depict how states are

detected. Difference graphs [38] can help depict such

topological patterns effectively. To best characterize

change across time steps within a dynamic graph, we use

the following criteria for change:

1. Is there a change While comparing graphs, have the

edges been added or deleted?

2. The magnitude of change Given a change, to what

effect have the edges been changed?

3. Community membership change Have the community

membership of the node changed across timestep?

Note, we assume our networks have stable topology node

configurations, with only flow changes recorded as

dynamic edges. To analyze the changes in difference

graphs, we define the importance of edge-change through a
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metric known as Magnitude of Edge-Change. Furthermore,

in our difference graph visualization, we encode edge-

thickness, with the importance/magnitude of its chan-

ge w.r.t to subsequent time steps.

3.6 Visualizing change

For every difference graph, the topological change is

characterized by visualizing only the change happening

across two timesteps. This allows us to find core nodes that

govern the entire network operation, potentially being

vulnerable to caching or load-balancing. This metric is then

provided to the visual topology renderer to scale the nodes

based on the magnitude of change across two-time steps.

Magnitude of edge-change To better identify critical

nodes and potential sites of failure within a network, we

need a mechanism to quantify the amount of change across

time steps in a difference graph.

To visualize a particular edge-change, Ciðtk; tkþ1Þ
between two time steps tk and tkþ1 we define the metric

with edge-change Ciðtk; tkþ1Þ,
Ciðtk; tkþ1Þ / kðEk � Ekþ1; f ðNi;kÞ � f ðNi;kþ1ÞÞk ð5Þ

where Ei, Ni are the edge and nodes in time step k and node

id i. Equation 5 defines changes between two adjacent

timesteps tk and tkþ1. Ek � Ekþ1 is the edge-set in differ-

ence graph and f ðNkÞ � f ðNkþ1Þ is the difference in a flow

movement measures in the graph, where f(N) is a function

describing the nodes centrality or its betweenness centrality

for timestep k, and a nodeid l. Specifically, for e.g., the

change between Ciðt1; t2Þ is directly proportional to the

edge set of ðE1 � E2Þ and the f ðN1Þ � f ðN2Þ where f ðN1Þ
and f ðN2Þ are the centrality of the node, N1 and N2.

Timestep is defined as k, where k is anything from 1. . .M,

where M is the end of the dataset.

Specifically, Eq. 6 describes a measure of difference,

difference centrality across two time steps tk, tkþ1 for nodes

Ni;k and Ni;kþ1. This measure represents flow changes per

node with time, providing information about possible new

sites/nodes being vulnerable to link failures or needing

additional caching support.

DCðt;NiÞ / kð
XNn

j¼0

etki;j � f ðNiÞtkÞ � ð
XNn

j¼0

etkþ1
i;j � f ðNiÞtkþ1Þk

ð6Þ

Two major visual encodings can be used for depicting

the underlying visual information in the difference graph

and similarity graph, including the following,

– Changes in community membership.

– Edge weight deviation.

– Addition or deletion of edges.

This approach was inspired by the encoding method dis-

cussed in [38]. For similarity graphs we visualize every

node as a pie chart depicting the magnitude of different

communities present for a certain period for a site, while

the edges depict the standard deviation of the edge weight.

Beyond a certain threshold for edge weights, the edges

become dotted blue lines.

For difference graphs, the change in community mem-

berships are represented by a rotated rhombus (Fig. 1c),

where the left half depicts community membership of the

previous time step and its right half depicts community

membership for the current time step. The dotted blue lines

depict the deletion of an edge, and solid red edges depict

the addition of edges relative from the previous to the

current time step, Fig. 2. Further, the larger the size of the

node, the higher is the change in flow for that node across

time, according to Eq. 6.

4 Experimental WAN analysis

We have applied Netostat to two real-world WAN data sets

to understand dynamic behavior.

4.1 Datasets

4.1.1 U.S. Research Network—ESnet

The Energy Science Network (ESnet), a Department of

Energy (DOE) research network providing high-band-

width, loss-less, provides reliable connectivity to scientists

at U.S. national laboratories, universities, and other

research institutions. ESnet monitors network connections,

collecting statistics for bytes sent/received, and link per-

formance logs. One monitoring tool, ESxSNMP, collects

router-in and router-out bytes for every interface, every 30

s. The tool records the packets transferred between sites at

different times of the day. While physical network topol-

ogy is fixed, the virtual topology of data movement chan-

ges dynamically, depending on a site’s access to data.

To examine the evolution of communities over time, we

consider the traffic data collected for the 3 days from July

26, 2017, 12:00 pm PDT, to July 29, 2017, 8:00 pm PDT

for analysis, see Fig. 3. For the dynamic topology, we use

traffic flow data recorded as SNMP for 2 days collected for

15-min intervals, from 21 July 2017, 1:00 pm PDT to 23

July 2017, 5:00am PDT, consisting of 80 time steps for 33

sites. For site abbreviations, we refer to https://my.es.net/

sites/list. To handle the size of the data in the temporal

dimension, we use a threshold to model the data as a

dynamic graph. We use an undirected graph by averaging

the bi-directional links to the sites, see Figs. 2 and 4.
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4.1.2 European Research Network—GEANT

GEANT, a European data network for research and edu-

cation, has a connecting node in each European country,

transporting data between universities and laboratories. To

evaluate the effectiveness of our visual analysis system, we

decided to use the GEANT backbone network [44]. The

GEANT network includes 23 peer nodes and 120 undi-

rected links. We use 2004 traffic data, sampled from the

GEANT networks at 15-min intervals. From the 10,772

traffic matrices, we use the most relevant 80-time steps for

the analysis of our data sets. We discuss our results for this

network for the period from June 04, 5:00 pm GMT to June

05, 8:00 am GMT.

Fig. 2 Flow routing patterns of central site, Washington (ESNet),

between July 21 11:30am PDT–July 21 11:45am PDT. Flow

increases between NASH and WASH, causing a state change in

NASH as the day progresses.The blue dotted lines (left graph)

indicate the reduction of packets reaching WASH; however, the

sudden increase in packets reaching NASH and CHIC results in the

change of community, causing the change from light purple to blue

color (Color figure online)

Fig. 3 Evolution of community

membership in ESNet, with two

major communities being

formed stable friendly and

dynamically changing

communities. The x-axis

represents time, and the y-axis

represents the ESNet sites. Each

cell in the matrix represents the

community membership for a

given ESNet site at a particular

time point (Color figure online)
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5 Result analysis

5.1 Visualizing topology information

Studying ESNet data sheds light on the inner workings of

this vast U.S. network. The nodes, or sites, and edges

depict the communication patterns between the sites.

The difference graphs are shown in Fig. 4 represent

changes across time points, 05:15 pm–05:30 pm, July 22,

and 05:30 pm–05:45 pm, July 22, respectively, showing

state-change from day to night patterns. The dashed lines

represent edges decreasing flow, while the solid orange

lines show an increased flow rate. The Louvain community

detection algorithm can identify group-like patterns in a

graph for a given time step showing friendly and non-

friendly sites in the network. Larger node sizes indicate a

larger change in overall topology in the node of interest.

Communities such as NSO, IAR, and LSVN form their

core community (dark blue) only consumed by the orange

community in the Northwest of the United States. One sees

that the communities forming are spatially co-located with

each other, implying that sites close to each other often

communicate due to proximity. For example, LIGO,

PNWG, and BOIS form an orange community. Another

example is LBL, forming communities with CERN (in

Europe) indicating distant experiment communication

during the day.

To explore friendly stable vs. dynamically changing

sites, we visualize community membership evolution by a

heatmap, see Fig. 3. The figure shows community evolu-

tion detected by the algorithm for SNMP data from July 26,

2017, 12.00 pm PDT, to July 29, 2017, 8.00 pm PDT),

showing groups, stable friendly communities, and dynam-

ically changing communities.

5.2 Detecting major patterns in U.S. network

Major evolving ESnet flow patterns need to be studied for

an efficient re-design of the network [45, 46]. For example,

network engineers can optimize network links and routing

behavior to best cater to different kinds of flows (large,

small) over sites during different times.

Specifically, questions like, what sites are friendly and

often collaborate? how do flow connections vary over

time? do such communication patterns reveal common

patterns between network sites? what are potential sites

that may cause disruptions or are prone to a targeted

attack?

Netostat can identify dynamic communities forming and

recognizing temporal states in the recorded period. Using

the approach in Eqs. 1, 2, 3, 4, one can find two types of

dominant network states corresponding to communication

behavior during day and night, relative to the PDT

timezone.

The similarity graphs and difference graphs, shown in

Fig. 5B and C, depict consistent topological and commu-

nity patterns for four periods, also shown in Fig. 5A:

1. State 1 ranges from 1:00 pm–5:30 pm, Jul 21.

2. State 2 lasts from 5:30 pm Jul 21–5:00 am Jul 22.

3. State 3 ranges from 5:00 am–5:00 pm PDT Jul 22.

4. State 4 ranges from 5:00 pm Jul 22–5:30 am Jul 23.

The similarity graph depicting an individual state, state 2,

(Fig. 5B) represents consistent evening-night-time opera-

tions in PDT time. During this period, three major com-

munities, green, orange, and purple are detected. While,

Fig. 4 Flow changes between 05:15 pm–05:30 pm, July 22, and

05:30 pm–05:45 pm, July 22. Large node size indicates large flow

change. Dashed blue lines show reduction in network flow, and red

lines represent addition of new flow. One can see a core structure

forming between IAR, LSVN, and NSO (Color figure online)
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geographically closer sites like LIGO, and PNNL form

communities, geographically far distant sites like BNL,

NERSC, and NSO also form their communities, indicating

experiments and interactions occur all across the network.

Site CERN forms communities with GA, LIGO, NREL

NSO, and ANL consistently although it is geographically

located far away (in Europe). Further, the similarity graph

in Fig. 5C, conveys the overall flow behavior during the

day and also indicates possible experiments/interactions

running across time zones. As a network administrator

considering a potential re-design of the network, one can

take into account such frequently interacting sites and their

Fig. 5 Similarity and difference plots for ESNet flow. A Plot of

similarity metric showing four states, indicating day/night patterns.

B Similarity visualization for period from 21 July, 5:30 pm, to 22

July, 5:00 am, detecting six nodes dynamically changing community.

C Interaction patterns between CERN and other sites during day

(Color figure online)
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routing behavior to reserve network resources and improve

the underlying routing policies governing the network.

Figure 6 shows two contrasting patterns, pattern A,

Fig. 6, and pattern B, Fig. 6 representing day and night flow

patterns for site SNLL respectively. During the day, site

SNLL plays a central dynamic role in transferring flow to a

wide variety of geographic locations, SNL, SNLA, and

SRS. Further, NGA-SW transitions from an orange to a

dark-purple community, indicating its frequent dynamic

collaboration with SNLL, SNLA, and SRS, suggesting a

potential point of failure within the network. Pattern B, in

Fig. 6, on the other hand, depicts relative stability between

selected sites, SNLL, SNLA, and SRS, characterized by

green squares.

In summary, visualizing the time-varying flow behavior

with Netostat makes it possible to determine stable and

unstable time-varying connectivity behavior. It is possible

to understand temporal data by automatically identifying

similarities and differences supporting intuitive pattern

identification. The similarity graphs show consis-

tent friendly communication patterns over time, while the

difference graph shows the underlying low-level flow

changes causing the major state change. Such patterns can

further be statistically explored in detail to construct

alternative routing paths to better transfer information

across sites.

5.3 Analysis over larger periods of time

For evaluation of system usability and determining limi-

tations, we perform analysis over larger time periods. We

analyze network data from June 22, 2017, 4:00 am to June

27, 2017, 6:00 am for a period of about 203 time steps with

an interval of 30 min. We want to better understand long-

term patterns that are dominant across network sites. We

explore these questions: What are the routing signatures for

weekend and weekday patterns? What are potential points

of failure during a state transition from weekday to

weekend?

The metrics plot provides insight into the two major

states established by the method, i.e., weekend states and

weekday states. Three temporal states are determined, state

1: June 22, 2017, 4:00 am–June 24, 2017, 1:00 am; state 2:

June 24, 2017, 1:00 am–June 26, 2017, 2:00 am; and state

3: June 26, 2017, 2:00 am–June 22, 2017, 6:00 am. Fig.7B

shows the topological differences across the network dur-

ing a weekend (top) and during the transition phase from

weekend to weekday (bottom). A pattern can be seen

clearly when comparing the left and right difference

graphs: The left graph is a more sparse graph indicating

less topological variation during the weekday, while the

transition phase difference graph, shown on the right,

indicates the dynamic routing nature of the transfer of

packets across sites.

Specifically, the sites INL, IARC, NSO, and DOE-GTN

dynamically route and manage multiple paths, causing

changes of the communities they belong to during the

transition period phase. Different behavior is shown by

sites like GA, SLAC, and NERSC—not participating. Red

edges in the graph indicate traffic slowly building up in the

network, potentially causing bottlenecks around INL,

PNNL, and PANTEX. Additional statistical analysis would

make it possible to further investigate the findings of our

method in more quantitative detail.

5.4 Flow visualization in a European Network

We also performed a detailed analysis of flow patterns in

the GEANT data sets using Netostat. By primarily identi-

fying day, evening, and night patterns, one wants to

determine inherent changes in flow patterns and find out

whether these patterns support a better understanding of

Fig. 6 Similarity plots for ESNet network flow for SNLL. Overview of different states detected via corresponding similarity topology. Nodes

SNLL and SRS switch communities frequently during this period and are stable during the night time interval (Color figure online)
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Fig. 7 Metrics plots and difference topology of network flow in

ESNeT network over a larger time window. A Evolution of

modularity metric for period June 22, 4.00 am–June 27, 6.00 am
PDT. The method detects three major states pertaining to weekend

and weekday temporal states; B Difference graphs, during weekend

state (top) and state change from Sunday to Monday, weekend to

weekday (bottom). Nodes IARC, NBO, SRS, OSTI change their

community memberships often, in relation to other nodes that remain

stable throughout. During weekday, the difference graphs have fewer

connected nodes within them compared to the transition difference

depicting multiple changes, including changes in the sizes of packets

being transferred across sites (Color figure online)
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potential network failure points. The data used is a 24-hour

open data set available online with flow information. The

time is GMT.

Netostat identifies dynamic communities forming three

major temporal states. Shown in Fig. 8A are for following

time periods:

– State 1: 5:04 pm, June 4–12:19 am, June 5, 2004. State

1 represents evening;

– State 2: 12:19 am, June 5–12:49 am, June 5, 2004. State

2 a transient state;

– State 3: 12:49 am, June 5–8:03 pm, June 5, 2004. State

3 is night state.

Figure 8C shows similarity graphs. One can see the dif-

ferences between evening and night patterns. As a general

trend, the transient nodes 7, 8, 3, and 0 change their

community memberships often (pie circles). Communica-

tion patterns during the night are quite stable when known

sites and communities talk to each other without changing

their community memberships (square glyphs).

The difference graph shown in Fig. 8B shows the time

point when the network transitions from a transient state to

a night state. As a general trend, the visualization shows an

overall reduction in the number of links in the graph. Few

nodes, for example, 9, 8, 21, and 4, and 3, change their

community memberships. An apparent difference is the

size of node 11, where, despite not having changed its

community, the large size indicates that it is the informa-

tion hub of transfers during this transition.

The other difference snapshot depicted in Fig. 8B shows

the relative stability of the network during the middle of

the night. The modularity metric depicted in Fig. 8A rep-

resents the relative change in modularity during the tran-

sient state at 12:15 am.

A simple analysis of the data provides important infor-

mation to network administrators, e.g. node 11, although

not changing community, being a hub during state transi-

tion. Considering the similarity graphs, for example, nodes

16, 1, and 11 are always engaged in overall network

operation, indicating that it might be advisable to improve

bandwidth links or deploy additional infrastructure to avoid

network congestion.

A preliminary analysis provides sufficient insight for a

subsequent, more rigorous statistical analysis to determine

and ensure overall network robustness. The growth of the

GEANT network could, for example, indicate the need for

providing additional resources to specific high-in-demand

nodes.

5.5 Comparing Netostat with other techniques

We briefly compare our methodology with other existing

methods used for graph visualization and analysis methods

for dynamic networks and explain the conceptual advances

of our approach.

Traditionally, existing network analysis tools use a

hybrid version of animations and small multiples to visu-

alize dynamic graph data. While a breadth of insights can

be gleaned with such methods, users often cannot notice

major topological differences between two adjacent graphs

since recognizing changes is perceptually challenging. The

identification of such patterns is important to effectively

detect the onset of major community evolutionary or

topological changes.

With techniques like small multiples, large changes with

similar graphs can be relatively hard to find due to change

blindness. Through animation, it may be even harder to

keep track of changes, both sudden or minuscule changes

due to limitations of our short-term memory. Our tool

addresses these issues by explicitly showing the exact

differences across time steps and providing a summary

version of the dynamic graph that could not fit

perceptually.

Further, Netostat supports the identification of stable and

constantly evolving sites; it makes possible the exploration

of the relationship of evolving graph topology and com-

munity membership that can be easily identified through

the application of difference graphs over time.

6 Conclusions and future work

Identification of potential failures and understanding net-

work evolution day and night is crucial to construct robust

operating networks. Computing and visualizing these pat-

terns over different periods helps inform, prevent, and

diagnose any network alerts that reach a network admin-

istrator. For example, visual analysis capabilities used

when diagnosing load-balancing issues, e.g., traffic con-

gestion at a particular link due to network topology,

improve the overall understanding and operation of the

network. Visualization tools help network administrators

understand the cause-and-effect relationships of network

problems occurring over time.

Netostat uses principles from social network analysis to

visualize flow communication patterns for time-varying

networks. Our approach extracts the major differences in

communication flows over time, identifying states within

networks, and visualizes important changes. When apply-

ing Netostat to two R&E networks, it is possible to rec-

ognize day/night patterns helping network engineers to

quickly identify unexpected communication patterns and

provide visual insights into the operation of the network.

Concerning potential future research, the similarity and

difference graphs can be employed as part of machine

learning algorithms to help identify new network states that
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(A) Modularity Graph

(B) Difference Graphs

(C) Similarity Graphs
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are unexpected and potential security threats. These states

can also be selected to identify new communication pat-

terns that can train a machine learning model to predict

possible future bottlenecks. The bottlenecks describe the

links that are badly designed with less capacity that

becomes heavily loaded due to the traffic surges.
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