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Abstract:
Grid-based computational simulations often use hybrid unstructured grids consisting of various
types of elements. Most commonly used elements are tetrahedral, pentahedral (namely, square
pyramids and right triangular prisms) and hexahedral elements. Extracting isosurfaces of scalar
fields defined on such hybrid unstructured grids is often done using indirect methods, such as,
(a) subdividing all non-tetrahedral cells into tetrahedra and computing the triangulated isosur-
faces using the marching tetrahedra algorithm, or (b) triangulating intersection points of edges
of cells and computing the isosurface using a standard triangulation algorithm. Using the basic
ideas underlying the well-established marching cubes and marching tetrahedra algorithms, which
are applied to hexahedral and tetrahedral elements, respectively, we generate look-up tables for
extracting isosurfaces directly from pentahedral elements. By using appropriate look-up tables, it
is possible to process nearly all types of hybrid unstructured grids used in practical applications
without the need for indirect methods. We construct look-up tables for square pyramidal and

triangular prismatic cells with accurate topological considerations.

1 INTRODUCTION

Computer simulations of physical phenomena
often use hybrid unstructured grids with complex
geometrical structure. For example, these grids
are routinely used in computational fluid dynam-
ics (CFD) and finite element analysis (FEA). Per-
forming correct direct interpolation on such hy-
brid grids, e.g., in the context of direct volume
visualization or isosurface extraction, is central
to its analysis. The complex geometry and topol-
ogy, i.e. element connectivity, of such grids makes
its analysis more challenging.

A great deal of progress has been made in re-
cent years in the field of volume rendering using
ray-casting. However, research related to isosur-
face extraction from hybrid grids has not been
fully addressed for the entire spectrum of element
types, which are commonly used, apart from hex-

ahedra and tetrahedra. Some of the commonly
used elements, which we will be focussing on in
this work, are shown in Figure A). We have used
the following interpolation models with three lin-
early independent variables for these elements:

e Tetrahedron: Linear interpolation, often us-
ing barycentric coordinates, «, 3, 7, and
4, is used, where the following rule applies:
a+pf+y+0=1

e Square pyramid (Pentahedron): Bilinear in-
terpolation is used for the base quadrilateral
combined with linear interpolation from the
base quadrilateral to the apex, i.e. the oppos-
ing single vertex. (s,t) are used for bilinear
interpolation, and w is the parameter used for
linear interpolation along axis.

e Right triangular prism (Pentahedron): Linear
interpolation, often performed using barycen-
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Figure 1: (A) Different element/cell types: (a) Tetrahedron, (b) Pentahedron - Square Pyramid, (¢) Pentahedron
- Right Triangular Prism, and (d) Hexahedron. Using parametric representation based on the interpolation mod-
els, a point P in space with respect to each cell is represented as (a) P(a, 8,7,9), (b) P(s,t,u), (¢) P(a, 8,7, u),
(d) P(s,t,u). (B) Difference of isolines without and with triangulation: For extracting isoline for function value
3.5, (a) shows the approximation of isoline using bilinear interpolation-based contouring, (s, t) being the paramet-
ric representation; (b) and (c) show the two different isolines obtained when considering different triangulations
of the quadrilateral. Note that the isolines in (b) and (c) are still topological homotopes.

tric coordinates, is applied to the two opposite
triangular faces (bases) combined with linear
interpolation along the axis of the prism, i.e.,
in the direction from one triangular base to
the other. w is the parameter used for lin-
ear interpolation along the axis and («, 3,7)
are used as barycentric coordinates for the in-
terpolation within the triangular bases. The
barycentric coordinates follow the following
condition: a4 f+ v = 1.

e Hexahedron: Trilinear interpolation is used,
with parametric representation s,t,u, which
represent x-, y-, and z-coordinates respec-
tively.

All parameters of points interior to the cell satisfy
the property of being in the real interval [0, 1].
The models are popularly used owing to their
lower computational complexity. In addition to
these cell types, there exist several other types of
finite elements all having their own associated in-
terpolation functions. Nevertheless, those other
types do not occur in our specific applications.

The primary reason for lack of efforts has
been that hybrid grids consist of elements or cells
whose basis functions are no longer purely linear
or trilinear. This leads to more complex inter-
polating functions which are more challenging to
analyze. However, recent increase in the availabil-
ity and accessibility of powerful computational re-
sources has increased use of hybrid grids for sev-
eral CFD and finite element method (FEM) appli-
cations, thus demanding more in-depth analysis
of such grids.

Existing isosurface extraction methods, such
as the commonly used marching cubes or march-

ing tetrahedra algorithms work well on hybrid
grids, subject to converting a given hybrid grid
first to a purely hexahedral grid or a purely tetra-
hedral grid, respectively. Converting the hybrid
grid, either by resampling the grid to a rectilin-
ear grid, or decomposing the grid elements into
tetrahedral elements, introduces additional ap-
proximation errors and is not a unique solution.
Additionally, the conversion approaches scale lin-
early with problem size, which may slow down
performance for larger datasets.

We attempted to use open source visualiza-
tion tools like ParaView (Moreland, 2011)), and
GMV (Ortega, 2011), on a large hybrid grid
dataset, whose size is of the order of 1 GB. How-
ever, loading such a large dataset into the sys-
tem memory and generating isosurfaces required
approximately 10 minutes in the serial imple-
mentation of ParaView. ParaView’s parallel im-
plementation showed slightly better performance
than the serial version. It was not possible to
obtain isosurfaces in real time for our specific
dataset, which motivated our research to perform
direct extraction of isosurfaces from hybrid grids.
Though our results do not show any significant
improvement in performance in the case of the
large dataset, our work conclusively analyzes the
various topological orientations of the pentahe-
dral cells so that we obtain a unique isosurface
for any given value.

The key contribution of our work is to pro-
vide look-up tables to extract isosurfaces di-
rectly from five-node (square pyramidal) and six-
node (right triangular prismatic) pentahedral el-
ements, which includes all topological configura-
tions, and the computations involved in determin-



ing body saddle points for specifically, the tri-
angular prismatic element. These look-up tables
enable us to obtain a unique solution for isosur-
face for a given function value. Additionally, we
have used a combination of look-up tables from
the traditional marching tetrahedra and extended
marching cubes, and our proposed tables for pen-
tahedral cells, to use the native elements directly
to compute isosurfaces.

2 RELATED WORK

The foundation of our work has been the
marching cubes algorithm, which has been ex-
tensively researched in the scientific visualiza-
tion community, for which (Lorensen and Cline,
1987), (Nielson and Hamann, 1991)), (Nielson,
2003), (Lopes and Brodlie, 2003) are some of the
representative papers, (Newman and Yi, 2006)
is a comprehensive survey of the variants of the
algorithm. Additionally, a great deal of work
has been done for both software- and hardware-
based approaches in volume rendering, for exam-
ple, (Williams et al., 1998), (Muigg et al., 2007)),
etc.

(Gallagher and Nagtegaal, 1989) extended the
marching cubes algorithm to hybrid grids con-
taining tetrahedral, prismatic and hexahedral el-
ements. (Takahashi et al., 2004) elaborated the
look-up table approach for octahedral elements.

In the visualization software GMYV, isosur-
face extraction from hybrid grids is implemented
by determining intersection points of isosurfaces
on edges of cells and triangulating these points
to generate a 2-manifold surface (Ortega, 2008|).
However, this method discards the information
provided by the grid during the triangulation
stage, which can lead to a different solution from
the one obtained when using an interpolation
function for each cell.

(Bhaniramka et al., 2004) presented an algo-
rithm for automatically generating case tables for
isosurfaces in cells containing hypercubes, cells
with 2% vertices in k-dimensional space. Their
algorithm creates look-up tables similar to that
of (Montani et al., 1994). This algorithm can be
extended to pentahedral cells, as it is applicable
to all topological homotopes of hypercubes in the
k-dimensional space.

(Weber et al., 2003)) described a crack-free iso-
surface extraction algorithm using “stitch cells”,
specifically for grids subjected to adaptive mesh
refinement (AMR). These stitch cells could be

tetrahedra, pentahedra, or hexahedra. We have
used the interpolation functions that (Weber
et al., 2001) use.

While methods by (Gallagher and Nagtegaal,
1989), (Weber et al., 2003) and (Bhaniramka
et al., 2004)) work for our application, we are go-
ing a step further towards resolving the topolog-
ical configurations for pentahedral cells by us-
ing similar patterns that are found in hexahe-
dra. We follow the indexing for the configura-
tions used by (Nielson, 2003) for hexahedra. In
relation to our argument against subdivision of el-
ements, (Carr et al., 2006) have discussed various
artifacts that can be introduced while performing
simplicial subdivision of a hexahedral element.

3 DISADVANTAGES OF
APPROACHES BASED ON
TETRAHEDRALIZATION OF
HYBRID GRIDS

The marching tetrahedra algorithm is one of
the most convenient isosurface extraction algo-
rithms, devoid of the ambiguous cases which oc-
cur in the case of the marching cubes algorithm.
In the case of hybrid unstructured grids, ex-
tracting isosurfaces using the marching tetrahe-
dra algorithm requires an extra processing step
of subdividing the non-tetrahedral elements into
tetrahedral ones ensuring continuity of isosurface
across faces. Since tetrahedra are basic building
blocks, and all complex geometric shapes can be
broken down into tetrahedra, it is one of most
commonly used finite elements. However, one has
to be aware of the differences in interpolants that
occur when decomposing a hybrid grid to a tetra-
hedral grid.

A straightforward tetrahedralization can be
done without inserting new vertices in the grid.
However, this is not possible in certain cases. The
first step in tetrahedralization of cells is the sub-
division of its polygonal faces to triangles. In a
standard Lagrange finite element, a bilinear in-
terpolation function is used in the quadrilateral
face. Considering the parametric representation
of a function F on a bilinear surface, at any point
P(x7 y? Z)’ we get7 F(I7y7 Z) = f($7t) =
(1 — S) (1 —t)Foo +S(1 —t)Flo +StF11 + (1 - S)tF()l,
where (s,t) is the parametric representation
of the point P(z,y,z) in the quadrilateral
PO0P10P11P01, as shown in Figure (B)(a), and
F;; is the function value at vertex P;; for {i,j} =



{0,1}. On the diagonals (where s =t or s +¢ =
1), the interpolating function is quadratic in ei-
ther s or t, different from the linear interpolation
function used on triangulating the face. The dif-
ferent interpolation models used for computing
and visualizing the solution can lead to artifacts
in the isosurface as shown in (Carr et al., 20006).

Subdividing a quadrilateral face can lead to
two solutions as either of its two diagonals can be
used to triangulate the surface. Thus, different
possible tetrahedralizations can lead to different
results for isosurfaces. There will be differences in
the isolines generated for a quadrilateral face, de-
pending on the choice of triangulation, as shown
in Figure [T{B).

Additionally, in the case of large datasets, the
computational and storage overhead induced by
generating and using the additional elements may
cancel the gain of eliminating ambiguities and us-
ing linear elements. Minimally, a pyramid can be
decomposed to two tetrahedra, a prism to three
and a hexahedron to five. For example, in the
missile dataset we have used, for each time-step
we have around 24,800,000 tetrahedra, 17,700
pyramids and 4,207,000 prisms; which on tetrahe-
dralization would result in 37,456,400 tetrahedra,
a 30% increase in the number of cells. These addi-
tional tetrahedra also introduce additional mem-
ory overhead which can slow down performance
to a certain extent.

(Carr et al., 2006|) discussed on how minimal
subdivision of hexahedral cells causes cracks in
the isosurface and hence using a parity rule while
subdividing is essential for a crack-free isosur-
face. The parity rule ensures that a quadrilat-
eral face shared between two cells uses the same
diagonal for triangulation to ensure Cj continu-
ity of the isosurface across the face. In (Lasser,
1985)), continuity conditions for Bernstein-Bézier
functions defined over the types of volumetric
grid elements, which we are concerned with here,
were used for construction of gradient-continuous
spline approximations.

4 PENTAHEDRAL CELLS

Pentahedral cells are frequently used in con-
formal grids for “stitching” pure tetrahedral
and/or pure hexahedral grids. The five-node
(square pyramidal) and the six-node (right trian-
gular prismatic) pentahedral cells are very com-
monly used as “stitch cells” or filler cells in hybrid
unstructured grids.

4.1 INTERPOLATING
FUNCTIONS

The interpolation functions for a square pyramid
and right triangular prism depend on their respec-
tive orientation. For sake of simplicity, we assume
that the axis of the cell is along z-axis in its local
coordinates. This section shows that the inter-
polation functions in the case of the pentahedral
cells are not symmetric with respect to the basis
vectors, as are the cases with the tetrahedron and
the hexahedron. The interpolation functions that
we use for the pentahedral cells, reduce to a lin-
ear function at the edges and triangular faces, and
to a bilinear function at the quadrilateral faces.
Thus, our interpolation models ensure that the
resulting isosurface is C-continuous across ele-
ments.

4.1.1 Square Pyramids

The interpolation function for a square pyramid
is given by the following algebraic expression with
real coefficients:

F(z,y,z) = Co+ Crax + Coy + Cszy + Cyz

The simplest parametric representation of a point
in the cell using three linearly independent vari-
ables is by using: (a) parameter u representing
position in the z direction, and (b) (s,t) for the
parametric representation of the point on a bilin-
early interpolated surface in a quadrilateral slice
containing the point as shown in Figure [2(A).
(u = 0) and (u = 1) represent the quadrilateral
base and the apex, respectively; (s = 0), (s = 1),
(t =0), and (t = 1) represent the four triangular
faces of the pyramid, respectively.

Let the cell be defined with vertices Py at the
apex and Pooo, Pl()(), P1107 and POlO at the base.
The function value at Py, is given by Fs.,, and
coordinates are given by (Zstu, Ystu, Zstu). Every
point P(x,y,z) in space can be represented as
p(s,t,u) with respect to this cell, and the func-
tion value at P, F(x,y, z) is interpolated using:
F(x,y,z) = f(s,t,u) = uFoo1 + (1 — u)Fjy,
where, Fo; = (1= s)(1 —t)Fooo + s(1 — ) Fio0 +
StFMO + (1 - S)tFOlO

For any point in the interior or on the bound-
ary of the cell, 0.0 < s,t,u < 1.0.

Any permissible value of u defines a quadrilat-
eral slice formed by vertices at a ratio of u : (1—u)
along the edges from apex to base. To determine
(s,t,u) for a given point, P(z,y, z), we perform
the following steps:

1. For a planar base, we use the following values



to determine w:

(a) For the base PyooPiooP110FPo10, the normal
vector 7 and its plane equation, Ax + By +
Cz+ Dy = 0, where 7 = {A, B, C}T.

(b) At the apex Pyo1,

Dy = —(Axo + Byo + Cz).

(¢) u(w,y,z) = —ALEpuECEEDo,

2. Using u, we determine the quadrilateral slice
PiooPiooPi10Pf1 containing P, and represent
P using bilinear interpolation on the slice
using two-tuple (s,t), determined using the
three equations implied by the three coordi-
nates of a point, i.e., P = (1 —s)(1—t) Py +
s(1 =) Poy + stP{1o + (1 — 8)tPly,-

4.1.2 Right Triangular Prisms

The interpolation function for a triangular prism
is given by the following algebraic expression with
real coefficients:
F(z,y,z) = Co+ Crx+Coy+ Csz+ Cyxz+ Csyz
Any point in the cell can be represented para-
metrically by using four parameters: (a) a pa-
rameter u representing the position of a triangu-
lar slice containing the point, with respect to any
of the three edges not belonging to the triangular
bases (referred to as azial edges), and (b) three
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Figure 2: Determining parametric representation of
an interior point P(z,y,z) in: (A) a square pyra-
mid: (s,t,u) three-tuple parametric representation is
used for points. With respect to the quadrilateral
slice PjooPiooPi10Pb10 containing P being parallel to
base face PyooP1ooP110Po10, u is the parameter in the
z direction; (s,t) is the two-tuple parametric repre-
sentation of the point in the slice, which degenerates
to a single point at the apex Pooi. (B) a right tri-
angular prism: («, 8,7, u) four-tuple parametric rep-
resentation is used for points. With respect to the
triangular slice, Pj{o00Ps100P%010, containing P and
the azxial edges, namely, P100()P1()01, P01()0P()101, and
Poo1oPoo11, u is the linear parameter along one of the
three axial edges; («, 3,7) gives the barycentric coor-
dinates of P in the slice.

barycentric coordinates, («, 3,7), of the point in
the triangular slice, as shown in Figure B).
(u = 0) and (u = 1) represent the two trian-
gular bases, respectively, and the three quadrilat-
eral faces are represented by (o = 1), (8 = 1),
and (y = 1), respectively.

Let the cell contain vertices, Pigoo, FPoioo,
Poo1o on one triangular face and Pigo1, Poio1,
Pyo11 at the other end. The function values at
Pogyu, are given by F,3,, and coordinates are
(ZaByus YaByus Zapyu). Every point P(z,y, z) in
space can be represented as p(«, 8,7, u) with re-
spect to the cell. Suppose the triangular slice
P00 Pb100Fb010 containing P has its vertices with
parametric representation u with respect to the
axial edges. The function value at P, F(z,y, 2)
is interpolated using the formula:

F(x,y,2) :f(oz,/a’,%u)
=(1 — u)(Fro00a + Fo1008 + Foo107)

+u(Fioo1a + Foi018 + Foo117)
(1)
For any point in the interior to or on the boundary
of the cell, 0.0 < u,a, 5,7 < 1.0 and a+5+7v = 1.
Due to linear dependence of «, 3, and v, we can
reduce the parametric representation to a three-
tuple, (a, 8, u) to represent the set of linearly in-
dependent variables. However, to maintain the
ease of representation, we continue to refer to the
four-tuple parametric representation (a, 677,u),
in the interpolation function.
To determine (o, 3,7v,u) for a given point
P(z,y, z), we perform the following steps:

1. The parameter u defines the triangular slice
(PloooPo100F0010) containing P.
Piy00 = Prooo + u(Proo1 — Prooo)
P00 = Po1oo + w(Po1o1 — Po1oo)
Pio10 = Pooto + u(Poor1 — Pooo)
If the two triangular bases are parallel, we ob-
tain u the same way as in the case of square
pyramids. We determine the following:

(a) For the base PioooPo100F0010, the normal
vector 7 and its plane equation, Ax + By +
Cz+ Dy =0, where 2 = {A, B, C}T.

(b) For the opposite triangular face
P1001P0101P0011, the corresponding value
of D; using one of the three vertices in the
face as (z,y,2): D1 = —(Ax + By + C=z).

(c) We determine the parameter

_ Ax+By+Cz+Dgy
u(z,y, z) = —SEH R0

However, more generally, the value for w is the
solution of the cubic equation in u given by:
(Plogo — P) - (Por00 — P) % (Pogr0 — P)) = 0.



In the case of a right triangular prism, we get
a unique real value for u, which satisfies the

condition 0.0 < u < 1.0.

2. Using u, we determine the triangular slice
(P00 Pb100Pdo1o) containing P, and deter-
mine the barycentric coordinates («, 3,7) of

the point in the triangle.

4.2 LOOK-UP TABLES

Config- Pyramid Prism
uration Cases Cases
0 0, 31 0, 63
1 1, 30 1,2, 4,8,
16, 31, 32, 47,
55, 59, 61, 62
2 2,4, 8, 15, 3,5, 6, 15,
16, 23, 27, 29 | 23, 24, 39, 40,
48, 57, 58, 60
3 6,7, 12, 13, 9, 18, 27,
18, 19, 24, 25 36, 45, 54
4 10, 11, 20, 21 | 10, 12, 17, 20,
29, 30, 33, 34,
43, 46, 51, 53
5 3,5,9, 14, 14, 21, 28,
17, 22, 26, 28 35, 42, 49
6 - 11, 13, 19, 22,
25, 26, 37, 38,
41, 44, 50, 52
7 - 7, 56
Table 1: Classification of all cases into base

configurations of a pentahedral element: six for
square pyramid and eight for triangular prism

cells.

c1

c

Bl &)

(A)

B)
Figure 3: Base configurations of a pentahedral ele-
ment: (A) Six of a square pyramid; (B) eight of a right
triangular prism. Black points and circles indicate
vertices whose function values are larger or smaller
than the isosurface value, respectively.

Just as in the marching cubes algorithm, we
represent the cases of pentahedral cells using a
bit-string where each bit corresponds to a spe-
cific vertex of the cell. For a k-node cell, thus,
there can be 2% cases. However, these cases can
be reduced to unique base configurations using
mapping based on mirroring, rotation and com-
plementation. Thus, 32 cases of square pyramid
reduce to six unique configurations; and 64 cases
of right triangular prisms reduce to eight. Fig-
ure [3| shows the unique base configurations of
both cell types; and Table [I] classifies all cases
according to their respective base configurations.

4.2.1 Resolving Ambiguities

Quadrilateral faces in the pentahedral cells can
lead to ambiguities which are resolved using the
asymptotic decider (Nielson and Hamann, 1991)),
as done in the marching cubes algorithm. As
shown in Figure [(A), configuration 4 of the
square pyramidal cell contains a single ambiguous
face, ABCD. Subconfigurations 4.0 and 4.1 occur
when ABCD is “separated” and “connected”, re-
spectively. As shown in Figure [4{ B), configura-
tions 4 and 5 of the right triangular prismatic
cell have been resolved. Configuration 4 contains
a single ambiguous face, ABDC; while configura-
tion 5 contains two, namely, ABDC and CDFE.
Subconfigurations 4.0 and 4.1 occur when ABDC
is separated and connected, respectively. Subcon-
figurations of 5 occur with possibilities of ABDC

Figure 4: Subconfigurations of pentahedral cells re-
solving ambiguities: Blue lines help to show if the am-
biguous face is connected or separated. (A) Square
pyramidal cells: In 4.0 and 4.1, ABCD is separated
and connected, respectively. (B) Right triangular
prismatic cells: In 4.0 and 4.1, ABDC is separated
and connected, respectively. In 5.0 and 5.3, ABDC
and CDFE are both separated and connected, re-
spectively; in 5.1 and 5.2, which are complementary,
the isosurfaces require additional vertices, namely the
body saddle points, indicated by green vertices.



and CDFE being separated and connected. Thus,
we have subconfigurations 5.0 and 5.3 with both
faces being separated and connected, respectively.
5.1 and 5.2 are complementary: in 5.1, ABDC is
separated and CDFE is connected; and in 5.2,
vice versa.

In the prismatic cell, the configurations 5.1
and 5.2 require tangent points to obtain accu-
rate topological representation of the isosurface,
as the isosurface assumes the behavior of topolog-
ical type A.2 (Lopes and Brodlie, 2003). Gener-
ally, for configuration 5, the tangent at the body
saddle point of the isosurface will be parallel to
the single non-ambiguous face, hence, the tangent
point coincides with the body saddle point. The
computation of body saddle points for right tri-
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Figure 5: Isosurfaces, with topological considerations
for: (A) all seven configurations of the square pyra-
midal cells; (B) all twelve configurations of the right
triangular prismatic cells.

angular prisms is discussed in the Appendix.

The surfaces computed from our interpolation
models for all the configurations for both cell
types are shown in Figure [5]

5 DIRECT ISOSURFACE
EXTRACTION FROM
HYBRID MESHES

As explained in Section [3] for direct isosurface
extraction from hybrid grids, we use the respec-
tive look-up tables for each element type.

5.1 Gradient Approximation

Gradient interpolation is required for comput-
ing normal vectors which are used for light-
ing purposes during rendering the isosurface.
We implemented per-vertex gradient approxi-
mation using a preprocessing step. We use
a least squares procedure (Anderson and Bon-|
lhaus, 1994)), which computes unweighted gradi-
ents in two-dimensional space by solving an over-
determined system of equation, which we ex-
tended to the three-dimensional case using the
equation: f; = fo + fuo(zi — 20) + fyo (Yi — vo) +
[z (zi — 20), where f; and fy are the values of
the function f at points P; and Py, and P;, for
i = 1,2,..., N have edges with Py. The gradi-
ent at Ny is fé = (faos fyo» f,). This leads to an
N x 3 system of equations:

Azy Ay Az fi—Jfo

Az Ay Az [ fo—fo
: : : foo (= :

AZ‘N AyN AZN = fN — fo

For solving this over-determined system of equa-
tions, we computed

N
Tab = E (ao - ai)(bO - bl)? where a, be {:L'aya Z}
i=1
Tor Taoy Taz wrE T; — Xo
Y _
Toy Tyy Tyz Wi =1 ¥ — Y
Tez Tyz Taz W¢? Zi — 20

We solved for the weights W7, WY and W7 using
Cramer’s rule, and approximated the gradient us-
ing:

fao = Zfil Wia(fi - fO), where a € {x,y,z}.



6 RESULTS

We implemented our algorithm on a visualiza-
tion cluster, Colt, at TACC, with the following
specifications: 2 Intel Xeon quad core E5440 pro-
cessors (8 cores total), 16 GB of RAM, nVidia
Quadro FX5800 graphics card with 4 GB mem-
ory.

We tested our method for a synthetic dataset
consisting of 1,331 nodes, containing all prisms;
and decomposed it to a purely tetrahedral grid.
We extracted isosurfaces from the original prism
and the tetrahedralized grids, as shown in Fig-
ure [f] We used a blue-to-red colormap to map
the quality measure of the triangles from 0 to 1,
for which we used the incircle to circumcircle ra-
dius ratio (Pébay and Baker, 2003). The time
taken to render the isosurfaces in the prism grid
and tetrahedral grid are 0.01 and 0.03 seconds,
respectively, for the value 0.305.

We applied our method to hybrid grids defin-
ing (a) a wind-tunnel model from NASA, shown
in Figure [7] with 442,368 hexahedral, 721,413
tetrahedral, and 13,824 pyramidal elements; (b)
a missile, shown in Figure [§] with 6,378,506
nodes, 2,479,668 tetrahedra, 17,691 pyramids and
4,207,433 prisms. The results of our direct iso-
surface extraction method are tabulated in Ta-
ble |2l Our timing measurements for reading the
file and preprocessing gradients did not show any
improvement compared to our experiments using
ParaView, and hence, we have not included them
here.

7 CONCLUSIONS

Figures [0} [7] and [§] show that our method gen-
erated results comparable to those from standard
methods. As expected, our method generated
fewer triangles compared to applying the march-
ing tetrahedra algorithm on a tetrahedralized grid
owing to the lower number of elements. However,
our method being a marching method does not al-
ways produce good quality triangles in the mesh,
as can be seen in Figure[6] Owing to lower trian-
gle count, our method performs better in regions
with lower surface curvature and worse in regions
with higher surface curvature, in comparison to
the marching tetrahedra method on the tetrahe-
dralized grid. Our method is comparably compu-
tationally efficient, especially for larger datasets.
The gradient computation requires O(n) time for
n being the number of nodes in the dataset. The

gradient estimation step needs to be performed
just once as a preprocessing step, which makes
real-time generation of smooth isosurfaces effi-
cient. However, in case of the missile dataset,
we did not see a significant improvement in per-
formance owing to the fact that dataset consists
of 85% tetrahedra.

Furthermore, we have covered all the ambigu-
ous configurations possible that can occur for
pentahedral elements, i.e., our look-up tables are
complete. We have found that computation of
body saddle points in a triangular prismatic ele-
ment is similar to that of the hexahedron.

Our method can be further enhanced with
the optimization strategies which are used in the
marching cubes method.
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APPENDIX

Computation of body saddle points in tri-
angular prisms for configurations 5:

As explained in Section the combined
interpolation model uses three linearly indepen-
dent variables, («, 8, u). The quadrilateral faces
of the prism can be represented as either (o = 1),
(8 = 1), or (y = 1), respectively. In Fig-
ure B), the face P0100P0101P0011P0010, corre-

(A) (B)

Figure 6: Isosurface for same value extracted
from a grid consisting of 1331 nodes, with: (A)
2000 triangular prismatic elements; and (B) 5220
tetrahedral cells. The isosurface consists of: (A)
478 triangles, and (B) 888 triangles. The color of
triangles shows its quality mapped from worse to
better, corresponding to blue-to-red colormap.

(A) (B)

Figure 7: Isosurfaces of function In(c || & — 2o ||,),
for constants ¢ and %o, in hybrid grid of a wind-
tunnel model for values: (A) 13.0464 and (B)
12.1772. The red surface is generated by using
look-up table for tetrahedra, the blue surface by that
for hexahedra and green surface by that for pyramids.

(A) (B)

Figure 8: Isosurface from the missile dataset for den-
sity in compressible flow for values (A) 1.167 and (B)
0.62. The blue surface is generated using our new
look-up tables for prisms and pyramids, and the red
one is generated by that for tetrahedra.

sponds to (a = 1). Here, we describe the com-
putations for the case where (oo = 1) is the non-
ambiguous face, which can be appropriately ex-
tended to the cases when (8 = 1) or (y = 1) is
the non-ambiguous case. The body saddle point
occurs at a point where, for an isosurface of value
1, the following conditions are satisfied:

1' F:F(xay)z)7I:f(a7'7/37'777',u7')

2. 28 =F,=0

3.8 =F,=0

—I=0

We use the following notations for simplifying al-
gebraic expressions:

D(a,0) = F1000 — F0010; D(a,1) = Fro01 — Foo11;
Do = D(a,0) = Dia,1)

We use similar notations in the case of 8: D g,
D(B,l)a and Dﬁ.

Differentiating F' with respect to «,
Fa = (1 - uT>D(a,O) + UTD(a,l) (2)

After applying the condition F,, = 0 in Equa-
tion [2| and simplifying, one obtains:

_ D(a,l) D(a,O) (3)

1—u, N _
Ur N D(a,o) = Da

On substituting for v, = (1 — a, — 8;) and u,
from Equation 3] in Equation [I] the coefficient of
a reduces to 0. Hence, on applying the condition
F' =0, one obtains:

3. = (Do - I + Fioo1 - Fooro — Fiooo - Fooi1)
" (D(a,0) " D(,1) = Dia,1) - Dis0))

Differentiating F' with respect to u,
Fy, = — (Fio000r + For006- + Foo1o0v+)

5
+ (Fioo1ar + Fo1018+ + Fooi1yr) ®)

After applying the condition F, = 0 in Equa-
tion 5| and v, = (1 — @, — 8;); and simplifying
using 3, from Equation [4] one obtains:
Foo1r — Fooro) D
e B =Rl Do\
Do, D.,

Using the interpolation model from Equation
the values for parameters from Equations [3] [
and @ and substituting v, = (1 — a; — 3;), the
tangent point is computed as:
PT(‘rﬂJv Z) = p(aﬂ 67‘7 Yrs U.,-)
=(1 — ur)(arProoo + Br Po1oo + ¥+ Poo1o)
+ ur (s Proo1 + B7 Poto1 + V- Poo11)



