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Visualizing and Modeling
Scattered Multivariate Data

Working toward a con-
venient visualization
tool, we’ve developed
mathematical models
that let us view scat-
tered volumetric or sur-
face-on-surface data.
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In this article we concentrate on visualizing two types of scattered data—
volumetric data sampled in a 3D volume and surface-on-surface data sam-
pled on a3D surface. It would be convenient if scientific data were provided
on a uniform grid, but that isn’t always the case. Since measurements are
often sampled at discrete scattered locations, we developed mathematical
models that are defined over the entire domain and interpolate or approxi-
mate the given scattered data. We can evaluate the modeling function over
a grid, so we can use a conventional “off-the-shelf” visualization tool that
applies to data on a uniform grid. We can also compute volumes, gradients,
centroids, and other quantities from the model.

When dealing with volumerric data, we have a single dependent variable,
F, and three independent variables, x, y, and z. We can view the three
independent variables as representing a point p = (x, y, z) in a 3D space. In
mathematical terms, the modeling problem is to find a trivariate function,
F(p) = F(x, y, z), that approximates the relationship implied by a collection

of data values, (x; y; z; £7),i=1,..., N. We make no assumptions about the
disposition of the data sites p; = (x; y; z;),i=1,..., N except that they are
distinct.

Sometimes we associate the words “irregular,” “unstructured,” “arbi-
trary,” and “random” with scattered data. Examples include temperature
measurements at various locations in a furnace and mineral concentrations
measured at various depths at randomly located well sites.
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Figure 1. Views of the multiquadric interpolant to sampled data
on a planar domain.

Surface-on-surface data is similar to volumetric data, but the
data sites are located on one surface in 3D space. The domain
of the relationship is the surface denoted by D. In mathematical
terms the data (x; y; z; F;), where p;= (x; y, z;) € D, are given.
The problem is to find a function F(p) = F(x, y, z) defined on D
that approximates the relationship implied by this data.

Examples of surface-on-surface data include rainfall mea-
surements taken at various locations on the earth or pressure
measurements taken on the wing of an airplane. In the first
case, the domain is the earth’s surface and in the second, the
surface of the wing.

Even though these two kinds of data and their problems look
very similar in their mathematical descriptions, we solve them
by very different methods. We also visualize the various solu-
tions with methods that are quite different.

Modeling volumetric data

To begin, let’s discuss briefly the case of bivariate scattered
data. Here we have the data (x;, y, F;),i=1,..., N, with
independent data sites arbitrarily located in some planar do-
main. Scientists have studied the problem of bivariate scattered
data quite extensively. Franke and Nielson' described many of
the methods that solve this problem. One of the most effective
(and also one of the simplest methods to implement) is the
multiquadric method Hardy introduced.' The modeling func-
tion for the multiquadric method is

N
Fp)=>, aNlp—pi*+ R’

i=1

where R* > 0, p=(x,y),and llp —pI-II2 =(x - x,-)2 +(y- y[)z.
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In the case of interpolation, where it is required that F( p;) =
F,i=1,...,N, wecompute the coefficients ¢ by solving the N
x N linear system of constraint equations: Ao = F, where A =
(a7) = (Nlip; = pd* + R?), o= (011, 00, - - . , 0y)', and F = (Fy, F, ..
., Fy)'. Figure 1 shows a plot of this interpolant to 10 points,
denoted by boxes connected by line segments to the sampling
sites in the x-y plane. The optimal choice of the constant R*isan
open research problem, but Carlson and Foley” recently indi-
cated that the optimal choice depends almost entirely on the
dependent data values F; and only a negligible amount on the
number or distribution of the independent data sites p; = (x;, y;)-
In some cases, the dependent data indicate a smoothly varying
relationship. For this situation, a choice of this arbitrary con-
stantis R? = ¢V, where ¢ is a constant in the range 0.1 to 1.0 and
V is the area of the bounding rectangle for the independent
data. For rapidly varying F;, the parameter R’ should be rela-
tively small, for example ¢ = 107 or 10°°. The parameter R’
should also be small if the number of data points is large, be-
cause otherwise, the linear system of equations might be ill-con-
ditioned.

The multiquadric method easily generalizes to multivariate
data because it depends only on Euclidean distance, which ex-
tends naturally to higher dimensions. Figure 2 shows an exam-
ple of the 3D multiquadric method. We chose the independent
data sites p; = (x;, ¥, z;) at random in a unit cube and took the
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Figure 2. Shaded contour regions on planar slices of the actual
function G(x, y, z) (top image), and the multiquadric inter-
polants using N = 100 points (lower left) and N = 200 points
(lower right).

dependent values F; = G(p;) from a given function G(p) whose
formula appears in Foley and Lane’s work.’ By using an under-
lying function to produce the dependent data, we can see how
effectively the method reproduces certain shapes and behav-
iors. The top graph in Figure 2 is the actual test function G, the
bottom left is the multiquadric approximation based on 100
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Figure 3. We selected the 27 knots (boxes) to be close to the 125
data sites (pyramids).

data samples, and the bottom right shows the approximation
using N = 200.

When the number of data points is very large or if the depen-
dent data are noisy, then global methods of interpolation might
not be a practical way of modeling the data. An alternative is to
find an approximation by the method of least squares. For
multiquadrics, the modeling function is

M
F(py=Y, opllp—qiF+R?
j=1

where oy, . . ., oy are chosen to minimize

2

N M
Y 1Y, onNlpi—giP+R* - F,

i=1 |j=1

We can compute the unknown coefficients (o, oy, . . ., o) =
o by solving the linear system of equations, A’ Ao = A'F, where
F=(F,F, ..., Fy),A=(ay =Vlp;—qj*+R*is an Nx M
matrix and A’ is its transpose. This set of equations is often
ill-conditioned, so we’re usually better off to use the singular
value decomposition method applied directly to the rectangu-
lar system of equations Ao = F. To completely define the basis
functions, we must specify the knots g We can simply choose
these values and distribute them uniformly on a cuberille grid,
orvoxel grid. This type of grid is the 3D generalization of the 2D
rectangular grid. Or we can try to select the knots so that they
are distributed somewhat in the same fashion as the data sites.
To compute this type of distribution, we use a 3D analogue of
the 2D method Franke and McMahon proposed.’ This iterative
algorithm starts with an initial configuration of knots, then
moves these values to reduce the distance between the knots
and the data sites. We show an example from Dierks’ work® in
Figure 3.
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Visualizing volumetric data

Most of the visualization tools available today for volumetric
data assume that the data are given over a cuberille grid. This
means that the data have the special form
(i Yz Fig)  i=1,...,Nx,j=1,...,Ny,k=1,...,Nz
To obtain cuberille data from scattered data, we can simply
evaluate the modeling function to yield these data. That is, we
compute
Fie=F(x;, yj, 2x) i=1,...,Nx,j=1,....Ny,k=1,... Nz

Researchers have widely discussed two methods for visualiz-
ing cuberille data: the contour or isovalue surface methods and
a class of methods based on ray casting, often referred to as
“volume rendering” methods.*” Both types are covered in the
tutorial by Kaufman® and the proceedings edited by Upson.’
Volume-rendering techniques can reveal a great deal of infor-
mation about a trivariate relationship. Currently, the main
drawback to this class of methods is the tremendous amount of
computation required to compute each image. Because of this,

we cannot normally use these methods interactively. However,
recent developments in hardware and some new algorithms

Figure 4. Anisosurface plot of the trivariate multiquadric inter-
polant using /V = 200 points.

(developed by Foley, Lane, and Nielson') are changing this
situation.

Isovalue surface methods are the trivariate analogues of the
widely used topographical contour maps and choropleth tem-
perature maps associated with weather reports. Isovalue sur-
face plots, enhanced with transparency and other features, are
very useful for analyzing a trivariate relationship. We show an
example in Figure 4. The algorithm used for this plotis based on
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Figure 5. The tiny cubes method.

linear variation over tetrahedra rather than trilinear variation
over voxels as used by other methods. We decompose each
voxel into 5 (or possibly 6) tetrahedra. Except for certain de-
generate cases, a contour segment will consist of a triangle or a
planar quadrilateral that is then split into triangles. This yields
a surface consisting of triangle facets that we can render with
standard rendering techniques.

Interactive viewing of cuberille data

In addition to the volume renderings and isovalue surface
plots, we have found it useful to have a collection of interactive
methods for viewing the results. We designed and used a variety
of methods, but here we describe only a few of the most useful
ones.

The first is based on placing in the domain volume objects
whose color is determined by the value of F at the location of
the object. The objects can be almost anything, but spheres and

Figure 6. The vanishing cube method.
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cubes most readily come to mind. We use cubes for this discus-
sion. The user specifies three resolution parameters: Nx, Ny,
and Nz. There will be a total of Nx - Ny - Nz color coded cubes
displayed. In addition, the user specifies a value for the param-
eter M, which controls the amount of open space and conse-
quently the size of the cubes displayed. We let the width, length,
and height of each cube be denoted by (Dx, Dy, and Dz). The
lower left front corner of each cube is given by the coordinates
Xi=xo+({—-1)Dx(M+1), i=1,....,Nx, Y;i=yo+ (j—1)Dy(M +
1),j=1,...,Ny, Zy=z9+ (k—-1)Dz(M +1),k=1,...,Nz, where
(X0, yo, 20) is the lower left front corner of the whole domain and
Dx = (Xmax — Xmin)/ (Nx(M + 1) — M), with Dy and Dz being
similar. The function value Fj; and the particular color table
used will determine the color used at each vertex. The faces of
the cubes are then Gouraud shaded. Each graph of this type
requires the display of 6(Nx - Ny - Nz) rectangles (of which half
are visible). We show example images in Figure 5. Figure 5a
illustrates the case where Nx = Ny = Nz =5 and M = 1; Figure
Sb, the case where Nx = Ny = Nz = 8 and M = 2; and Figure 5c,
the case where Nx=Ny=Nz=5and M =3.

Similar to the previous method, the next interactive method

In addition to the volume renderings
and isovalue surface plots, we
have found it useful to have a

collection of interactive methods
for viewing the resullts.

associates a color with each data location (x; y;, zx). This color
is based on the value of the dependent variable Fjj and the
particular color table used. Once we have a color for each ver-
tex, we can entirely color any of the planes parallel to the axes
by using linear (Gouraud) shading on each of the rectangles
that comprise the plane. Nx - Ny - Nz rectangles are perpendic-
ular to each axis for a total of 3(Nx - Ny - Nz) rectangles to be
displayed. Of course, if we directly display these rectangles, we
will see those on the outer faces. To “see in” we compute an
image based on a simple model of transparency for the rectan-
gles. We sort the rectangles by distance from the viewpoint,
then display them from back to front using a transparency o-
buffer. Marshall Long provided the data for the example in
Figure 6. It represents gas concentrations from an acoustically
driven forced flow. In Figure 6a, Nx =8 and t=0.5. In Figure 6b,
Nx =8 and ¢ = 0.95. An aspect of this method not exhibited by
these images is that users can vary the transparency factor dy-
namically so that they can see different levels of the volume of
data.

In another method of viewing cuberille data, the user can
simultaneously display three rectangular grid data sets, each
obtained by taking a slice through the domain by holding one of
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Figure 7. The surface projection method.

the independent variables fixed. In function notation terms, we
simultaneously display some type of graph of the three bivari-
ate relationships, Fi(y, z) = F(x; y, 2), Fi(x, z) = F(x, y; z), and
Fi(x,y) = F(x, y, z«). The user is allowed to interactively vary the
fixed (but arbitrary) point (x; y; zx). An example of this type of
graph appearsin Figure 2. In Figure 7 we show another version,
one where we used a smooth shaded surface to display the three
rectangular grid data sets. These three sets of surfaces could be
located anywhere in the image, but we have found it convenient
to have each of these graphs located on the face of a cube. We
scale the values so that a point on the cube represents the
minimum value; the maximum value is one unit in the direction
normal to this plane. Also, we have found it useful to use differ-
ent colors for each of these graphs and to display information
indicating the value of (x, y, z) for the display graphs. We ac-
complish this by displaying three mutually perpendicular
planes with colors associated in the proper manner.

Figure 8. Sequence of curves from convex to nonconvex.
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Volume interrogation techniques

Sometimes a relationship is smooth or varies slowly. This
makes it difficult to detect certain qualitative changes using
standard graphs. As a consequence, we have developed some
volume interrogation techniques. To explain these techniques,
we describe some methods that have been successful on lower
dimensional problems. Figure 8 contains a sequence of curves
where the bottom curve is clearly convex and the top curve is
clearly nonconvex.

As you can easily see, it is difficult to determine which of the
intermediate curves is convex or not based solely on their
graphs. In the right image of Figure 8, the curvature has been
graphed. From this you can easily determine when this se-
quence of curves goes from convex to nonconvex. We can ex-
tend this idea to surfaces. We can use Gaussian curvature as a
texture image. The Gaussian curvature of a parametric surface

CAGD
ASU

Figure 9. Gaussian curvature used as a texture.

S(u, v)=(X(w, v), Y(u, v), Z(u, v)) at a point, p, is k = k1k, where
ki1 and k, are the principal curvatures at this point. The principal
curvatures are the maximum and minimum curvatures of
curves lying in planes passing through p and containing the
normal at p. An example appears in Figure 9. Not only does the
magnitude of the Gaussian curvature reveal quantitative geo-
metric information about the surface, but the sign of this value
reveals some interesting qualitative information about the sur-
face. Positive, negative, and zero curvature correspond to ellip-
tic, hyperbolic, and parabolic shapes. This implies that in a local
region of positive curvature, we can reorient the surface so as to
hold water, butin a region of negative curvature this is impossi-
ble.

How do we extend this idea to volumetric data? In the case of
a surface given as (x, y, F(x, y)), we can compute the principal
curvatures, k; and k», as the eigenvalues of the 2 x 2 matrix:
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Gaussian Curvature

Exponential Fur

Figure 10. Volume interrogation tool with graph of original
function on the left and Gauss-Kronecker curvature on the
right.
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where N =1 + F3 + F; and the notation F, and F,, represents
partial derivatives. This approach to Gaussian curvature allows
an immediate extension to trivariate functions and volumetric
data. We can compute the three principal curvatures, ky, k>, and
ks, as the eigenvalues of the 3 x 3 matrix:

1 Fx.\' ny F,\‘: 1+ F% FYE F X FZ
G :N Fyx Fyy Fyz. Fny 1+ F% Fsz
sz Fzy F:' FzFx FZF), 1+ Fg

Curvature'"'"? for a trivariate relationship is now defined as K =
kikoks. Figure 10 illustrates the possibilities of this new interro-
gation tool. The left image is a graph of the function F(x, y, z) =
exp(—0.5(x" + y* + z7)). We know a qualitative change takes
place for this test function at the surface of the unit sphere. We
cannot easily discern this from the graph of the original func-
tion, but the graph of our extension to Gaussian curvature re-
veals this qualitative change quite nicely.

Modeling 3D surface domains

Let’s consider the case where the domain is a surface, D, and
we have the data (x; y; z;, F;), where p; = (x; y;, z;) € D. One of
the most useful and interesting instances of the surface-on-sur-
face problem occurs when the domain surface is a sphere. The
multiquadric method has a natural extension for this. You can
simply take the standard Euclidean distance and replace it by
geodesic distance on the sphere. Unfortunately, this “natural
extension” does not work well because the first derivatives of
the basis functions have discontinuities at points antipodal to
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Figure 11. The left image displays data sampled on a sphere and
the right image is the transparent surface graph of the modified
multiquadric interpolant to this data.

the knots. Toremedy this situation, Foley' used basis functions
where the corners have been “rounded off.” This leads to a
rather effective technique called the modified multiquadric
method. Pottmann and Eck'* described another approach, a
spherical multiquadric method based on Hardy and Goepfert’s
work."” Pottmann and Eck used amodeling function of the form

N
F(p)=, aN1+R*~2R(p, p)

i=1

where (p, p;) represents the scalar or dot product of the points p
and p, that are points on a unit sphere. These two methods yield
similar results on many test data sets, with the spherical multi-
quadric having aslight edge in accuracy and simplicity of imple-
mentation. We compute the values o; by solving a linear system
of equations so that F(p;) = Fifori=1,...,N. The left image of
Figure 11 is a visualization of the given data p; and F; on a
spherical domain. The lengths of the radial line segments are
proportional to F;, and the segments originate at the sample
points p; on the sphere. The transparent projected surface in the
right image of Figure 11 represents the graph of the interpolant
Foley described," using the visualization techniques discussed
below. Since we can visualize the graph of the function F(p) as
asurface over the domain surface, we often refer to the problem
as the surface-on-surface problem.

Researchers have developed very few techniques for the
more general situation, when the domain D is an arbitrary
closed surface. Foley et al.'® recently developed a domain map-
ping method. In a nutshell, their method involves mapping the
surface domain D to a sphere, solving a corresponding interpo-
lation problem on the sphere, then mapping back to D for a
solution. The surface domain D does not need to be convex, but
they assumed that it is topologically equivalent to a sphere.
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Figure 12. We applied contour curves and shaded contour re-
gions on the apple-core domain of the domain-mapping inter-
polant to the data denoted by the small boxes.

With the exception of implicitly defined surfaces, a closed sur-
face D is generally defined by a mapping B(p) from a simpler
domain A onto D. Foley et al.'® gave special attention to the
situation where A is a planar rectangle and B(p) is a periodic
parametric mapping, and the case where A is a sphere and B(p)
is aradial projection. They also considered what happens when
only discrete points on D are given and D is not known explic-
itly. In this case, users can form interpolants to data sampled on
implicitly defined surfaces. Users can also easily apply the do-
main mapping technique to any domain D that is a trivariate
deformation of the previous cases, assuming that the deforma-
tion is a one-to-one and onto transformation.

In Figures 12 and 13 we show different visualization tech-
niques (described in the next section) of the domain mapping
technique with the modified reciprocal multiquadric method on
a spherical domain."” The apple core-shaped surface in Figure
12 is the domain D. The two plots contain contour curves and
color-blended contour regions. A color-blended graph depicts
additional information in that the color varies linearly with the
value of the function from one contour to the next. We show a
graph of the interpolating function F( p) by projecting the
transparent surface radially in the right image of Figure 13. We
projected it in a direction normal to the domain D in the left
image of Figure 13. The line segments connecting the domain D
with the transparent surface indicate the sample locations p; on
the domain and the relative magnitudes of the values F;.

Visualizing 3d surface domains

We can visualize the graph of a function defined over an
arbitrary surface domain by drawing contour or isovalue curves
on the surface (see the example in Figure 12). We based our
approach to computing these contours on a triangulation of the
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Figure 13. Transparent surface graphs of the interpolant con-
toured in Figure 12. The leftimage uses a normal projection and
the right image uses a radial projection.

domain surface D. In the case of the domain mapping method,
this triangulation is inherited from a triangulation of the unit
sphere. We evaluate the modeling function at each vertex of the
triangulation and assume linear variation over each triangle,
which implies that the contours for each triangle will be line
segments. The collection of all of these line segments yields
piece-wise linear approximations to the contour curves. By in-
creasing the resolution of the triangulation of the surface do-
main, we can achieve asmoother and closer approximation, but
this also increases computation and display costs. We can use
another graphical approach and render the regions bounded by
contours with a distinct color.

Contour plots, although often effective, are not always the
best way to analyze a function because they do not clearly
indicate its geometric shape. Standard methods for graphing
univariate and bivariate functions use distance to indicate the
value of the dependent variable. We can use the same idea for
asurface-on-surface graph. We caninterpret the surface graphs
in Figure 1 as projecting a distance F(x, y) perpendicularly from
the point (x, y) in the plane. Likewise, the transparent surface
graph in the left image of Figure 13 results from projecting a
distance proportional to F( p) in a direction perpendicular or
normal to p in the surface domain. Unfortunately, for non-
convex domains this type of surface graph can have self-inter-
sections, which makes it difficult to obtain very much
geometrical information about this function. In the right image
of Figure 13, we used a radial projection from the center of the
domain. In general, however, for convex surface domains we
prefer the normal projection. We computed the transparent
surface graphs in Figures 11 and 13 as the 3D points

F - Fmin
G(p)=p+N(pL [‘;mp - j
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Figure 14. A hypersurface projection graph.

where p varies over the surface domain D, L is a positive scale
factor, Fi,, and Fy,. are the minimum and maximum values of
F(p), and the direction of the projection at p is the unit vector
N(p). The direction vector N(p) for the normal projection in the
leftimage of Figure 13 is the outward normal vector to D of unit
length at point p. The radially projected transparent surface
graph in the right image of Figure 13 uses N(p) = (p — ¢)/lp —cl,
where cis the center of the bounding box containing the domain
D. For the surface-on-surface graph on the sphere in Figure 11,
both of these techniques yield the same results.

Another visualization tool for surface-on-surface data is a
method we recently developed. We call it the hypersurface pro-
Jjection graph. (Some of our ideas for this method came from
discussions with Helmut Pottmann and Hans Hagen.) We
based this graph on the following: The graph of a bivariate
function F(x, y) with some planar domain D consists of the
collection of 3D points (x, y, F(x, y)), where (x, y) isin D. We
often render this graph by displaying a network of 2D lines
based on the projection of the 3D points (see Figure 1). In the
case of surface-on-surface data, we have a graph consisting of
pointsin4D space, (x, y, z, F(x, y, z)), where (x, y, z) € D. When
we project these points (or their rotated versions) to 3D space
using a parallel projection, we obtain points on a 3D surface.
We have found it useful to simultaneously display three differ-
ent projections:

* (F(x, 5 2),) 2)
* (x, F(x, y 2),2)
* (%) F(x, 2))

We show an example of this method in Figure 14.

Remarks

For the most part, we have only covered one type of basis
function for the mathematical model, namely, the multiquadric.
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Although the multiquadric method generally produces excel-
lentresults on smooth test data, we suggest that you apply other
methods to the data and compare the results. (Franke and
Nielson discussed many other methods.') We are currently
comparing and evaluating a number of methods for interpolat-
ing volumetric, scattered data. We’ll report on this later. We are
also developing new methods that take advantage of some
structure in the data, such as data sampled at varying depths in
arbitarily located wells. a
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