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Abstract We propose a new method using the dis-
tribution of extrema of Laplacian eigenfunctions for
two-dimensional (2D) shape description and matching.

We construct a weighted directed graph, which we
call signed natural neighbor graph, to represent a
Laplacian eigenfunction of a shape. The nodes of this

sparse graph are the extrema of the corresponding
eigenfunction, and the edge weights are defined by
signed natural neighbor coordinates derived from the
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local spatial arrangement of extrema. We construct
the signed natural neighbor graphs defined by a small
number of low-frequency Laplacian eigenfunctions of a

shape to describe it. This shape descriptor is invariant
under rigid transformations and uniform scaling, and is
also insensitive to minor boundary deformations. When

using our shape descriptor for matching two shapes, we
determine their similarity by comparing the graphs in-
duced by corresponding Laplacian eigenfunctions of the

two shapes. Our experimental shape-matching results
demonstrate that our method is effective for 2D shape
retrieval.

Keywords Shape retrieval · Shape matching · Shape
descriptor · Laplace operator · Signed natural neighbor
graph · Graph matching

1 Introduction

Two-dimensional (2D) shape retrieval is an important

problem in computer vision and multimedia processing.
Two major components of a shape retrieval algorithm
are shape description and shape matching. A good

shape descriptor should have the power of discrimi-
nating shapes from different classes. Besides that, a
descriptor should not only be invariant under rigid

transformations and uniform scaling, but also be in-
sensitive to minor boundary deformations.

A deformation-invariant shape descriptor can be

derived from the intrinsic properties of a shape. Since
geodesic inner distance is related to the intrinsic prop-
erty of a shape, geodesic inner distance is widely

used in describing shapes [11, 19]. A drawback of
this distance metric is that it is sensitive to local
topology changes [15]. The Laplace operator of a shape

is intrinsically determined by the shape itself, which is
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also an isometric invariant being independent to the

shape’s representation. Eigenvalues and eigenfunctions
of this operator are isometric invariants as well. Reuter
et al. [29] proposed a shape descriptor, which they

called ShapeDNA, as a vector consisting of a number
of normalized Laplacian eigenvalues of a shape. This
descriptor captures the major information of a shape

but does not determine a shape uniquely up to isometry
[8, 30]. Laplacian eigenfunctions provide insights into
the structure and morphology of a shape [17, 28], which

makes it possible to use these eigenfunctions to describe
a shape. However, two problems of working with eigen-
functions are: (i) two eigenfunctions that correspond to

close eigenvalues can switch their order for reasons such
as numerical instabilities or deformations of geometry
and (ii) the signs of the eigenfunctions are undefined

[27].

We consider two 2D shapes to be similar if they

have similarly shaped boundaries. The Laplacian eigen-
functions of a 2D shape are determined by the shape’s
boundary, which makes it possible to use the Laplacian

eigenfunctions to discriminate shapes with different
boundaries. We present a method using Laplacian
eigenfunctions for 2D shape description and shape

matching. We introduce a weighted directed graph,
which we call signed natural neighbor graph (SNNG),
to represent a Laplacian eigenfunction of a 2D shape.

The nodes of this graph are the extrema of the eigen-
function, and the edge weights are defined by signed
natural neighbor coordinates derived from the local

spatial arrangement of extrema. The spatial distri-
bution of the extrema captures global properties of
the shape, and the edge weights reflect local shape

features. We construct the SNNGs for a small number
of low-frequency Laplacian eigenfunctions of a shape to
describe it. This shape descriptor is invariant to rigid

transformations and uniform scaling, and insensitive
to minor boundary deformations. By assigning signs
to the edge weights, our method handles the sign

problem of the eigenfunctions. When matching two
shapes, we first compute a best one-to-one match
between the two shapes’ Laplacian eigenfunctions to

eliminate the ordering problem of eigenfunction. Based
on the best one-to-one match, our method computes
the dissimilarity between two shapes as the sum of

the dissimilarities between the SNNGs of these shapes’
corresponding eigenfunctions.

Boundary conditions are needed when computing
eigenvalues and eigenfunctions of a 2D shape’s Laplace

operator. Our method uses Neumann boundary con-
ditions because a small hole in the surface does not
change the spectrum resulting from these conditions rel-

ative to using Dirichlet boundary conditions [29]. The

Neumann boundary conditions that we are using force

the derivatives of these eigenfunctions in the normal
direction of the boundary curve to be zero. We refer to
the Laplacian eigenfunctions computed with Neumann

boundary conditions as Laplacian eigenfunctions.
The Laplacian eigenvalues cannot determine the

shapes uniquely as nonisometric shapes exist that are

also isospectral [8, 30]. However, there exist nonisomet-
ric, isospectral shapes whose Laplacian eigenfunctions
have different distributions of extrema. Our method

only depends on the Laplacian eigenfunctions, and it
is independent of the Laplacian eigenvalues except for
ordering.

The main contributions of this paper are: (i) in-
troducing a novel 2D shape descriptor that is in-
variant to rigid transformations and uniform scaling

and insensitive to minor boundary deformations; (ii)
presenting a method using Laplacian eigenfunctions for
2D shape description and shape matching that handles

the sign and ordering problems of eigenfunctions; (iii)
converting the function comparison problem into a
graph matching problem.

2 Related work

Many algorithms have been proposed in literature for
describing and matching the shapes of 2D objects.
These algorithms can be generally classified into two

categories: contour-based and region-based methods
[42]. Contour-based methods typically extract features
only from boundary information, while region-based

methods exploit all pixels within a shape. Contour-
based methods are more popular than region-based
methods as humans are thought to discriminate shapes

mainly by their contour features [33]. However, region-
based methods are more robust as they use the entire
shape information [33].

There are many contour-based methods for shape
description and matching. Mokhatarian et al. [20] pro-
posed a descriptor that uses the maxima of curvature

zero-crossing contours of the curvature scale space
(CSS) image to describe a shape. This descriptor does
not work well for convex shapes as there is no curvature

zero crossing for convex shapes. Cui et al. [5] improved
the CSS descriptor and applied it to remote sensing
image registration. Adamek and O’Connor [1] presented

a multiscale convexity concavity (MCC) descriptor
using a 2D matrix to represent contour convexities and
concavities at different scales. However, the optimal

parameter of each scale is hard to determine. The
curve normalization (CN) method proposed in [15] uses
the second-order geometric moments and a number of

normalized curves to describe a shape, which captures
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both global and local features of the shape. The method

described in [7] represents the contour of a shape by line
segments, and matches two contours by aligning their
segments. Grauman and Darrell [9] presented a method

that represents a shape by a set of local features on
the contour of the shape and compares two shapes by
computing the minimum earth mover’s distance (EMD)

cost between the shapes’ features. Some methods use
geometric relationship between boundary sample points
to describe shapes. One method of this type is shape

context (SC) [2], which computes the distance between
two shapes based on matching their boundary sample
points. Ling and Jacobs [19] extended SC [2] to inner-

distance shape context (IDSC) by defining the inner
distance between landmark points within the shape
silhouette. A limitation of this method is that the

inner distance is sensitive to local topology changes.
The contour points distribution histogram (CPDH) [35]
descriptor represents a shape based on the distribution

of boundary points under polar coordinates. The dis-
similarity between two shapes is obtained by the EMD
metric between their CPDHs. Xu et al. [40] defined a
2D shape descriptor, named contour flexibility, which

depicts the deformable potential at each point on a
curve. This descriptor can extract both local and global
features of a shape. Isaacs and Roberts [12] proposed

a spectral method that describes a 2D shape based
on two metrics defined on the eigenfunctions of the
weighted diffusion operator of the shape’s contour.

They demonstrated the ability of this shape descriptor
to discriminate different shapes by clustering several
prototypical 2D shapes. Wang et al. [39] proposed

a method using a fixed number of sample points to
represent the contour of an object. Each sample point
is associated with a height function. This method is

invariant to geometric transformations and insensitive
to nonlinear deformations.

Many region-based methods have been proposed.
The shape descriptor proposed in [13] describes a shape
based on the magnitudes of Zernike moments (ZMs).

Taking both the magnitude and phase coefficients of
ZMs into account, Li et al. [18] defined a descriptor
called invariant ZM descriptor. Zhang and Lu [41]

proposed a generic Fourier descriptor that is extracted
from a spectral domain by applying the 2D Fourier
transform on polar-raster sampled shape image. This

descriptor captures a shape’s finer features in both
radial and circular directions. The method described
in [32] represents a shape as a graph implied by

its skeleton. A drawback of this method is that the
hierarchical relationships among parts of the shape can
be violated in the matching process. Ion et al. [11] used

normalized histograms of the eccentricity transform as

descriptor for shape matching. This descriptor is robust

to articulation because the eccentricity transform is
computed based on geodesic distance. Shekar and Pilar
[33] presented a decision level fused local morphological

pattern spectrum (PS) and local binary pattern (LBP)
approach for shape representation and classification.
The distance between two shapes is computed based

on the EMD metric. Laplace operator is an isometric
invariant that makes it possible to describe a shape
based on this operator. ShapeDNA [29], which is a

deformation-invariant descriptor, describes a 2D shape
as a number of the shape’s normalized Laplacian
eigenvalues. However, ShapeDNA cannot determine the

shapes uniquely as non-isometric but isospectral shapes
exist [8, 30].

3 Mathematical background

Let f be a twice-differentiable real function on Eu-

clidean space. The Laplace operator∆ for f is a second-
order differential operator,

∆f = div(grad(f)), (1)

with grad(f) being the gradient of f and div(grad(f))

the divergence of the gradient [3].
The Helmholtz equation [38], which is also known

as the Laplacian eigenvalue problem, is given as

−∆f = λf. (2)

The eigenvalues λ and eigenfunctions f represent the

spectrum of the operator and the natural harmonics
of a shape, respectively. The exact solutions to the
Laplacian eigenvalue problem (Equation (2)) are only

known for a limited number of domains, such as the
rectangular domain and the disk domain. We approxi-
mate the solutions by interpolating the eigenvectors of

a discrete Laplace operator defined at the vertices of a
triangulation of the domain.

Eigenvalues and eigenfunctions of the Laplace oper-

ator have some properties that make them interesting
for some shape processing tasks, like shape retrieval and
shape matching. These properties are as follows:

– The Laplacian eigenvalues and eigenfunctions are
invariant to rigid transformations of the shape. The

Laplace operator uses the trace of the Hessian ma-
trix [29] that is invariant to translation and rotation.
Accordingly, the Laplacian eigenvalues and eigen-

functions are invariant to translation and rotation.
Scaling a shape by a factor a uniformly results in
scaled Laplacian eigenvalues by the factor 1/a2 [29].

However, relative positions of the eigenfunctions’
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extrema are invariant to uniform scaling, and may

be utilized to construct an invariant descriptor.
Experiments discussed in [28] indicated that low-
frequency Laplacian eigenfunctions are relatively

insensitive to minor boundary deformations.
– There are n Laplacian eigenvalues for a triangle

mesh with n vertices. These eigenvalues are non-

negative that can be put into ascending order as
follows:

0 ≤ λ1 ≤ λ2 ≤ ... ≤ λn. (3)

The corresponding n eigenfunctions define n func-

tions over the mesh, which occur in order of in-
creasing frequency [37]. Low-frequency eigenfunc-
tions correspond to dominant large-scale features of

the shape while high-frequency eigenfunctions are
related to finer details [24]. For most applications
involved in spectral methods, eigenfunctions with

low frequency are sufficient. For eigenvalues and
eigenfunctions computed with Neumann boundary
conditions, the smallest eigenvalue is zero and the

corresponding eigenfunction is a constant function.

4 Method overview

The properties of Laplacian eigenfunctions introduced

in section 3 make it possible to use these eigenfunc-
tions to intrinsically describe a shape. We present
a method for 2D shape description and matching

based on characterizing and comparing low-frequency
Laplacian eigenfunctions of the shapes. To compare two
eigenfunctions, our method compares the distribution

of these eigenfunctions’ extrema. The distribution of
Laplacian eigenfunctions’ extrema is a good shape
descriptor because it is insensitive to minor boundary

deformations and captures important properties of the
shape and the eigenfunctions. In addition, comparing
the distribution of extrema is much easier than com-

paring two eigenfunctions directly. Fig. 1 shows the
flowchart of our method.

The input of our method is a 2D shape database.

Considering every shape in this database as a query,
our method orders the other shapes in the database
in ascending order of dissimilarity. To summarize our

approach on a high level, it consists of these major
steps:

Step 1. Triangulating the shapes in the database.
To approximate the Laplacian eigenfunctions, our

method first triangulates the shapes. To ensure a
high degree of numerical accuracy of the eigenfunc-
tions, a high-quality triangulation without skinny

triangles is needed. Our method uses the ”Triangle”

Fig. 1 Flowchart of our method. The boxes with light-gray
background indicate new components that are crucial for our
approach and represent innovations.

program [34], which is a quality mesh generator, to

triangulate the shapes.

Step 2. Computing the low-frequency Laplacian
eigenfunctions of the shapes. To compute the

Laplacian eigenfunctions with high accuracy, we use
the “ShapeDNA-tria” software [27, 29] to approxi-
mate the eigenfunctions with Neumann boundary

conditions using cubic triangular finite elements.
This approach is rather insensitive to the triangula-
tion of a shape, as long as (i) the number of triangles

used is sufficiently large and (ii) the angles in the
triangulation satisfy a specific angle criterion [29].

Step 3. Shape descriptor construction. We con-

struct a graph, which we call SNNG, to character-
ize the distribution of a Laplacian eigenfunction’s
extrema. We describe each shape as the SNNGs

derived from the shape’s low-frequency Laplacian
eigenfunctions. The extrema of an eigenfunction are
computed from a piecewise linear approximation

of the eigenfunction, which limits the locations of
extrema to vertices of the triangulation.

Step 4. Comparing the shapes. For each pair of

shapes, we compute their dissimilarity as the sum
of the dissimilarities between the SNNGs of their
corresponding Laplacian eigenfunctions.

Step 5. Computing the retrieval results for each
shape by ordering the other shapes in ascend-

ing dissimilarity.

Two most important components of a shape re-

trieval method are shape description and shape match-
ing, i.e., Step 3 and Step 4 of our method. Details
of these two steps are provided in the following two

sections.
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5 Shape description

Since Laplacian eigenfunctions are invariant to rigid

transformations and insensitive to minor boundary de-
formations, and the relative positions of their extrema
are invariant to uniform scaling of the shape, it is

possible to use these eigenfunctions to describe a 2D
shape. A finite number of Laplacian eigenfunctions
is sufficient to discriminate different shapes, because

low-frequency eigenfunctions are related to dominant
large-scale features of a shape and high-frequency
eigenfunctions correspond to finer details. Our method

uses the first k non-trivial eigenfunctions to describe
a shape. We construct a weighted directed graph,
which we call SNNG, to characterize the distribution

of an eigenfunction’s extrema. A function defined on a
shape has two types of extrema: maxima and minima.
The Laplacian eigenfunctions that we have computed

are all discrete functions in the sense that they are
defined at the vertices of a shape’s triangulation. For
a discrete function of this type, a vertex is called a

maximum/minimum when its function value is larg-
er/smaller than the function values of its immediate
edge-connected neighbor vertices.

Because our discrete representation constrains the
eigenfunction extrema to lie at mesh vertices, these

extrema may deviate from the true extrema given
by the corresponding continuous eigenfunction. To
estimate the error in position of the computed extrema,

we performed computational experiments with many
triangulations for the same shape, using different mesh
densities; the true positions of the extrema were es-

timated using a dense triangulation. Our experiments
indicated that the positional error is proportional to the
size of the triangles in the coarse mesh, which implies

that an arbitrary error tolerance can be achieved
by using a triangulation with small-enough triangles.
We also used different triangulation methods [34] for

triangulating a shape, ensuring that the resulting tri-
angulations had roughly the same density. It turned out
that the error in position of the extrema and the shape

matching results are largely insensitive to changes in
the triangulation.

The worst time complexity of extracting the SNNG
for a Laplacian eigenfunction is O(m×n3 log(n)), where
n is the number of vertices in the triangulation and m

is the eigenfunction’s number of extrema, see section
7.4. The density of a triangulation affects the time
required to extract the SNNG. We triangulated the

shapes shown in section 7 with approximately 3,500
vertices. Based on our experiments, the average error of
the locations of the computed extrema is smaller than

5.8% of the average edge length of the triangulation,

minimum
maximum

(a) (b) (c)

Pa

Pb

Pa

Pb Pc

Pd

PePf

Pg

Fig. 2 The seventh Laplacian eigenfunction of a starfish
shape. (a) The eigenfunction and its extrema. (b) The seven
cells Ca, Cb, . . . , Cg for the seven extrema Pa, Pb, . . . , Pg

defined by Definition 1 shown in different colors. (c) The
subcell Cab for the two extrema Pa and Pb defined by
Definition 2. The region shown in red is Cab, and the region
shown with the black polygon is the cell Ca for Pa.

and the matching results do not change at all when
using triangulations with higher density.

Let P = {P1, P2, . . . , Pn} be the extrema of a
function F defined over a planar shape S.

Definition 1 Following the definition of Voronoi cell
[22], we define the cell for an extremum Pi as

Ci = {X ∈ S : D(X,Pi) ≤ D(X,Pj), j = 1, 2, . . . , n}, (4)

where D(X,Y ) denotes the geodesic inner distance
between the two surface pointsX and Y , i.e., the length
of the shortest path between X and Y within the shape

S.

We used the algorithm described in [26] to compute
the cells associated with the extrema of a Laplacian
eigenfunction. This algorithm computes the cells based

on the geodesic inner distances between mesh vertices
and extrema. We computed these distances using the
toolbox described in [25]. This toolbox computes the

shortest path between two mesh vertices as a set of
mesh edges defining a polyline of minimum length.
Fig. 2(a) shows the seventh Laplacian eigenfunction of

a starfish shape. Minima and maxima of this eigenfunc-
tion are denoted by squares and triangles, respectively.
In Fig. 2(b), we use different colors to show the cells

defined by Definition 1 for these extrema.

Definition 2 Following the definition of a natural
neighbor [36], we define the subcell Cij for the extrema
Pi and Pj as

Cij = {X ∈ S : D(X,Pi) ≤ D(X,Pj) ≤ D(X,Pk),

∀k ̸∈ {i, j}}.
(5)

If Cij ̸= ∅, then we call the extremum Pj a natural
neighbor of Pi.

Definition 3 Following the definition of natural neigh-
bor coordinate [36], we define the natural neighbor

coordinate of the extremum Pi with respect to the
extremum Pj as

Nij =
|Cij |
|Ci|

, (6)
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where |C| represents the area of cell C. We note that

Nij ̸= Nji.

The maximum Pa of the eigenfunction shown in

Fig. 2 has six natural neighbors, which are the six
minima. In Fig. 2(c), the region shown with the black
polygon is Ca, which represents the set of points on the

shape that are closest to Pa. The region shown in red
is the subcell Cab, which represents the set of points
on the shape that are closest to Pa and second closest

to Pb. The natural neighbor coordinate Nab of Pa with
respect to Pb is the area ratio of Cab to Ca.

With the above definitions, we can now formally
define an SNNG for a function F .

Definition 4 The SNNG for a function F defined over
a 2D shape is a weighted directed graph. We use the
notation G(P ,W ) to represent this graph, where P is

the node set consisting of the extrema of F , and W
is the weight matrix with Wij being the weight of the
directed edge (Pi, Pj). There are two types of extrema:

maxima and minima. When comparing the SNNGs of
two eigenfunctions, we define the weight of an edge
as a signed number in order to avoid two extrema of

the same type (i.e., two maxima or two minima) in an
SNNG being mapped to two extrema of different types
(i.e., a maximum and a minimum) in the other SNNG.

For the directed edge (Pi, Pj), the following holds: If Pi

and Pj are both maxima or minima, then Wij = Nij ;
otherwise, Wij = −Nij . If Pi and Pj are not adjacent,

i.e., Nij = 0, then Wij = 0.

Compared with an unweighted graph, the absolute
value of the weight Wij denotes the connection strength
of a neighbor Pj relative to the other neighbors of Pi,

which can be indicative of local features of a shape. In
contrast to an undirected graph, there are two directed
edges between the nodes Pi and Pj , which are (Pi, Pj)

and (Pj , Pi). The weights of (Pi, Pj) and (Pj , Pi) are
Wij and Wji, respectively. The node Pj may be far
away from Pi relative to the other neighbors of Pi,

which results in a small value of |Wij |; whereas the node
Pi may be close to Pj relative to the other neighbors
of Pj , which results in a large value of |Wji|. By

using a directed graph we can capture such asymmetric
relationships.

The SNNGs for the shapes’ Laplacian eigen-

functions are invariant to rigid transformations
and uniform scaling and relatively insensitive
to minor boundary deformations. The Laplacian

eigenfunctions and the distributions of their extrema
are invariant to rigid transformations and relatively
insensitive to minor boundary deformations. The rela-

tive positions of the Laplacian eigenfunctions’ extrema

(a)

(b)

(c)

(d)

Fig. 3 Four shapes and the cell structures of their Laplacian
eigenfunctions with indices ranging from four to seven based
on Definition 1. The cells for the maxima and minima are
shown in different colors. The eigenfunctions’ cell structures
of the three starfish shapes ((b)-(d)) are similar and are quite
different from those of the pigeon shape ((a)).

are invariant to the uniform scaling of the shape. We

compute cells Ci, defined by Definition 1, and subcells
Cij , defined by Definition 2, for these eigenfunctions’
extrema, using the geodesic inner distance for their

constructions. As a consequence, the cell structures of
two isometric shapes’ Laplacian eigenfunctions are the
same. Further, the edge weights of the SNNGs and the

SNNGs themselves have the same invariance property.

Fig. 3 shows the cells for the Laplacian eigenfunc-
tions’ extrema defined by Definition 1 of a pigeon shape
(Fig. 3(a)) and three near-isometric starfish shapes
(Fig. 3(b)-(d)). The indices of these eigenfunctions

range from four to seven. We use different colors to
show the cells for the minima and maxima. Compared
with the starfish shape shown in Fig. 3(b), the shape

shown in Fig. 3(c) has more noise on the boundary, and
the shape shown in Fig. 3(d) has a small deformation.
Looking at Fig. 3, the three starfish shapes’ correspond-

ing Laplacian eigenfunctions have similar cell structures
that are quite different from those of the pigeon shape’s
eigenfunctions, which means it is possible to use the

Laplacian eigenfunctions to distinguish these shapes.

In Fig. 4, we show the Laplacian eigenfunctions
with indices ranging from four to seven and their
associated SNNGs of a pigeon shape and a starfish

shape, respectively. We use different colors to show the
edges connecting two extrema of the same type (i.e.,
both extrema are maxima or minima) and of different

types (i.e., the two extrema are a maximum and a
minimum). The width of a directed edge represents the
absolute value of its weight. The thicker an edge is, the

larger the absolute value of this edge’s weight is.
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(a) Shape (b) f4 (c) f5 (d) f6 (e) f7

(f) Shape (g) f4 (h) f5 (i) f6 (j) f7

max

min

minimum
maximum

directed edge between maximum and minimum
directed edge between two maxima or two minima

Fig. 4 Laplacian eigenfunctions with indices ranging from
four to seven and their associated SNNGs of a pigeon shape
((a)) and a starfish shape ((f)). Edges that connect two
extrema of the same type and different types are shown in
different colors. The width of an edge represents the absolute
value of the edge’s weight. The thicker an edge is, the larger
the absolute value of its weight is.

An important property of the SNNG is the fact
that the absolute values of the weights of a node Pi’s

outgoing edges sum to one:

n∑
j=1

|Wij | = 1. (7)

If Pi and Pj are not adjacent, then Wij = 0. The non-
zero weights of the edges are intended to reflect the
relationships between a node and its natural neighbors.

6 Shape comparison

Shape comparison is a crucial component of a shape
retrieval method. Our method compares two shapes by
comparing the SNNGs implied by the two shapes’ first

k non-trivial Laplacian eigenfunctions. The order of the
k SNNGs is given by the order of their corresponding
eigenvalues.

Our method compares two shapes by solving two
nested problems. The outer problem is concerned with
computing the best one-to-one match between the two

shapes’ k eigenfunctions using the Hungarian algorithm
based on a dissimilarity matrix Z of the eigenfunctions.
The total dissimilarity of the matched eigenfunctions

is the dissimilarity between the two shapes. The inner
problem is dealing with the issue of computing the
dissimilarity matrix Z, i.e., the pairwise dissimilarity

Zij of the SNNGs of a shape’s i-th eigenfunction and
another shape’s j-th eigenfunction. More details are
provided in sections 6.1 and 6.2, respectively.

6.1 Comparing two shapes

We order the Laplacian eigenfunctions using the order

given by their associated eigenvalues, ordered in in-

0.0000526 0.0001354 0.0001471 0.0002396

0.0000599 0.0001167 0.0001570 0.0002409

(a) Shape (b) f3 (c) f4 (d) f5 (e) f6

(f) Shape (g) f3 (h) f4 (i) f5 (j) f6

max

min

Fig. 5 Two near-isometric face shapes and their Laplacian
eigenfunctions with indices ranging from three to six. The
corresponding Laplacian eigenvalue of each eigenfunction
is shown below the eigenfunction. Compared with the
eigenfunctions of shape (f), the fourth and fifth eigenfunctions
((c) and (d)) of shape (a), the corresponding eigenvalues of
which are close, switch their order.

creasing magnitude. Since the first few eigenfunctions

of similar shapes tend to be similar, it is reasonable
to compare two shapes based on comparing their
corresponding eigenfunctions. However, a problem aris-

ing when working with eigenfunctions is that two
eigenfunctions of the same shape can switch their order
for reasons such as numerical error in the computed

eigenvalues or small geometry deformations [27]. Fig. 5
shows an example of this problem. The corresponding
Laplacian eigenvalue of each eigenfunction is shown

below the eigenfunction. Compared with the eigenfunc-
tions of the shape shown in Fig. 5(f), the fourth and
fifth eigenfunctions (shown in Fig. 5(c) and Fig. 5(d))

of the shape shown in Fig. 5(a), the corresponding
eigenvalues of which are close, switch their order. When
comparing two shapes, our method computes a best

one-to-one match between the two shapes’ Laplacian
eigenfunctions in order to eliminate this problem.

We compare two shapes by computing the dissim-

ilarity between them. We determine the dissimilarity
between two shapes as the sum of the dissimilarities
between the two shapes’ corresponding Laplacian eigen-

functions with indices ranging from two to k + 1. 1 We
compute the dissimilarity between two eigenfunctions
as the dissimilarity between their associated SNNGs.

Let A and B be two 2D shapes, the dissimilarity
between A and B is

Dis(A,B) =
k+1∑
i=2

d
(
Ai, BM(i)

)
, (8)

where M is the best one-to-one match that maps
the i-th Laplacian eigenfunction of shape A to the
M(i)-th Laplacian eigenfunction of shape B, Ai and

BM(i) represent the SNNGs of the i-th and M(i)-th
eigenfunctions of A and B, respectively, and d(X,Y )

1We do not consider the first Laplacian eigenfunction
because this eigenfunction is constant.
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denotes the dissimilarity between the two SNNGs X

and Y . Details about computing the dissimilarity d
between two SNNGs are provided in section 6.2, and
Equation (10) defines how to compute d.

Given two shapes A and B, the computation of
the best one-to-one match M between their Laplacian
eigenfunctions is a linear assignment problem [14]. The

goal is to find an optimal assignment M that minimizes
the sum of the dissimilarities between the matched
eigenfunctions. This sum is our measure for defining

the dissimilarity of A and B, see Equation (8).
The Hungarian algorithm solves the linear assign-

ment problem in polynomial time [14, 21]. Given an

n×n cost matrix Z with Zij being the cost of assigning
the i-th resource to the j-th task, the Hungarian
algorithm finds an optimal assignment, i.e., a permu-

tation π(1), π(2), . . . , π(n) of the integers 1, 2, . . . , n,
that minimizes the total cost

∑n
i=1 Ziπ(i). Our method

uses the Hungarian algorithm to compute the best

one-to-one match M between two shapes’ Laplacian
eigenfunctions. The input matrix Z of the Hungarian
algorithm is the dissimilarity matrix between the two
shapes’ first k non-trivial eigenfunctions, and Zij is the

dissimilarity between A’s i-th eigenfunction and B’s j-
th eigenfunction. The computed permutation defines
the best one-to-one match M , and the i-th eigenfunc-

tion of A is matched with the M(i)-th eigenfunction
of B. Since only the Laplacian eigenfunctions that
have very similar eigenvalues can switch their order,

we speed up our algorithm by enforcing that the i-th
eigenfunction of a shape can only be mapped to the
(i − 1)-th, i-th or (i + 1)-th eigenfunction of another

shape. If |i− j| > 1, we set Zij to a large value.

6.2 Comparing two Laplacian eigenfunctions

We compute the dissimilarity between two shapes as

the sum of the dissimilarities between the two shapes’
Laplacian eigenfunctions. It is difficult to compare two
functions defined on two different domains directly.

Our method compares two eigenfunctions based on
comparing the distribution of the two eigenfunctions’
extrema, i.e., the two eigenfunctions’ SNNGs.

The graph edit distance is commonly used to mea-
sure the dissimilarity between two graphs. It is defined
as the minimum cost of transforming one graph to

another [6]. However, the computation of graph edit dis-
tance is generally NP-hard. Inspired by the definition of
graph edit distance, our method greedily computes the

dissimilarity between two SNNGs in polynomial time by
solving three nested tasks. The outer task is concerned
with computing the two SNNGs’ dissimilarity based

on a heuristic mapping between the SNNGs’ nodes.

The middle task deals with the issue of computing this

heuristic mapping based on the dissimilarities between
the two SNNGs’ nodes. The inner task is concerned
with computing the dissimilarity between two nodes.

We define a feature vector for each node and compare
two nodes using the Hungarian algorithm based on the
dissimilarity matrix between the elements of the two

nodes’ feature vectors. We now discuss these tasks in
more details.

6.2.1 Computing the dissimilarity between two nodes

For a node in an SNNG, we use the weights of its
outgoing edges as its feature vector. According to
Equation (7), the sum of the absolute values of a feature

vector’s elements is one. Two nodes with neighbors
that are spatially similarly distributed have similar
feature vectors. Conversely, the feature vectors of two

nodes whose neighbors are not distributed similarly are
dissimilar. We compare two nodes in two steps. First,
we use zero padding to ensure that the feature vectors of

the two nodes have the same size. Second, we compute
the dissimilarity between the nodes by comparing
their feature vectors using the Hungarian algorithm

[14, 21]. In this case, Fij of the input matrix F of the
Hungarian algorithm is the absolute difference between
the i-th element of one node’s feature vector and the

j-th element of another node’s feature vector. The
corresponding total cost is the dissimilarity between the
two nodes. The time complexity of these two steps is

O(p3), where p is the number of neighbors of a node in
an SNNG. Typically, the value of p is small.

6.2.2 Mapping the nodes of two SNNGs

Having computed the dissimilarity between each pair of
nodes of two SNNGs, we compute a mapping between

their nodes. We assume that the two SNNGs have m
and n nodes, respectively, where m ≤ n. There are n×
(n−1)×. . .×(n−m+1) possible mappings. It would be

time-consuming if one enumerated all the mappings to
pick the mapping that minimizes the cost to transform
one SNNG to the other. We use a greedy algorithm to

find a heuristic mapping where the nodes mapped to
each other have similar adjacency relationship.

Let G(P ,W ) and G′(P ′,W ′) be two SNNGs. If the
nodes Pi in P and P ′

j in P ′ are mapped to each other,

then some neighbors of Pi and some neighbors of P ′
j will

also be mapped to each other. We compute the mapping
between the nodes in P and P ′ using the following

steps:
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Step 1. We compute the most similar pair of nodes

(Pi, P
′
j) with Pi ∈ P and P ′

j ∈ P ′, and map Pi and
P ′
j to each other.

Step 2. We insert all possible pairs of nodes (Ps, P
′
t )

into a min-heap H, where Ps and P ′
t are neighbors

of Pi and P ′
j , respectively, and both Ps and P ′

t have
not yet been mapped.

Step 3. We delete the most similar pair of nodes
(Px, P

′
y) from the min-heap H. If both Px and P ′

y

have not yet been mapped, we map Px and P ′
y to

each other and insert all possible pairs of these two
nodes’ neighbors to the min-heap H. We repeat this
step until the min-heap H is empty.

Step 4. When all the nodes in P or P ′ have been
mapped, we stop. Otherwise, we compute the most
similar pair of nodes (Pi, P

′
j), where Pi ∈ P , P ′

j ∈
P ′ and both Pi and P ′

j have not yet been mapped.
We map Pi and P ′

j to each other, and we repeat
Step 2 through Step 4.

In each iteration of the third step, the greedy algorithm
finds the most similar neighbors of the nodes that
have been mapped and maps the found neighbors.

We restrict this search to neighbors of mapped nodes
in order to better preserve adjacency relationships
between corresponding nodes.

Algorithm 1 Computing the mapping between the
nodes of two SNNGs
1: Input: Two SNNGs G(P ,W ) and G′(P ′,W ′)
2: Output: A mapping M between P and P ′

3: D ← CompareNodes(P ,P ′) ◃
D(Pi, P ′

j) represents the dissimilarity between the nodes
Pi and P ′

j , where Pi ∈ P and P ′
j ∈ P ′

4: repeat
5: (U,U ′)← (Pi, P ′

j), where D(Pi, P ′
j) = min(D)

6: Insert the node pair (U,U ′) into M
7: For all V ′ ∈ P ′, D(U, V ′)←∞
8: For all V ∈ P , D(V, U ′)←∞
9: repeat
10: For all Ps ∈ NU and for all P ′

t ∈ NU ′ , insert
(Ps, P ′

t) into the min-heap H ◃ The
set NU consists of the neighbors of the node U . The key
of (Ps, P ′

t) in the min-heap H is D(Ps, P ′
t).

11: For all V ∈ NU , delete U from NV

12: For all V ′ ∈ NU ′ , delete U ′ from NV ′

13: (U,U ′)← the root (Px, P ′
y) of H

14: Insert (U,U ′) into M; Delete the root from H
15: For all V ′ ∈ P ′, D(U, V ′)←∞
16: For all V ∈ P , D(V, U ′)←∞
17: Delete (X,X′) from H, where X = U or X′ = U ′

18: until H = ∅
19: until min(D) =∞

Algorithm 1 shows pseudo-code for this approach,
i.e., for computing the mapping between the node

sets P and P ′. The procedure CompareNodes(P ,P ′)

computes the dissimilarity between each node pair

(Pi, P
′
j), where Pi ∈ P and P ′

j ∈ P ′. The worst case
of Algorithm 1 occurs when all nodes of two SNNGs
are isolated nodes, which is impossible. In this case,

the time complexity of the procedure described in lines
4 through 19 is O(m2 log(m)), where m is the number
of the eigenfunction’s extrema. Since the eigenfunction

with eigenvalue λi has at most i nodal domains [4] and
we compare two shapes based on comparing their first
k non-trivial eigenfunctions, the value of m is small,

usually smaller than 12.

6.2.3 Computing the dissimilarity between two SNNGs

Having computed the mapping between two SNNGs’

nodes, we obtain the mapping between the edges of the
SNNGs. We determine the dissimilarity between two
SNNGs based on the cost of transforming the SNNG

with larger number of nodes to the other one. In order
to perform this transformation, we need two groups of
operations: modifying an edge’s weight and deleting a

node.

To compare two SNNGs, we use Algorithm 1 that
maps the nodes Pi and Pj of an SNNG to the nodes

P ′
u and P ′

v of another SNNG, respectively. Let Wij and
W ′

uv be the weights of the edges (Pi, Pj) and (P ′
u, P

′
v),

respectively. To transform (Pi, Pj) to (P ′
u, P

′
v), we need

to modify Wij to W ′
uv, and the corresponding cost is

|W ′
uv −Wij |.
Since two SNNGs can have different numbers of

nodes, we might need to delete some nodes when

transforming one SNNG to another. When deleting a
node, we also delete the edges incident to this node.
The cost of deleting a node is zero. We explain this cost

by considering the situation of comparing two similar
shapes, A and B, where A has a missing part when
compared with B. Let SB be the subregion of B that

can be mapped to A, and B − SB be the remaining
region. When transforming an SNNG of B to an SNNG
of A, one needs to delete the nodes located in B−SB. As

the frequencies of the Laplacian eigenfunctions increase,
the number of extrema located in B − SB increases.
If the cost of deleting a node is non-zero, then the

dissimilarity between the SNNGs of the two shapes’
corresponding eigenfunctions will go up by the increase
in the eigenfunctions’ frequencies, which will result in

a large dissimilarity between A and B. In order to
compute a meaningful dissimilarity between A and B,
we define the cost of node deletion as zero. The cost of

transforming an SNNG of B to an SNNG of A can be
viewed as the dissimilarity between the subgraph on SB

and the SNNG of A. We use this cost to estimate the

dissimilarity between the two SNNGs based on the area
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ratio of the mapped subregion SB to the whole region

of B.

We now consider the situation of comparing two
SNNGs,G(P ,W ) andG′(P ′,W ′), having n andm, n ≥
m, nodes, respectively. Let Ḡ(P̄ , W̄ ) be the subgraph of

G induced by the nodes that are mapped to the nodes
of G′. We reorder the nodes in P̄ to make the node P̄i

of Ḡ and the node P ′
i of G′ mapped to each other. Let

cost(G,G′) be the total cost of the operations needed
to transform G to G′, i.e., let cost(G,G′) represent
the dissimilarity between the subgraph Ḡ and G′. We
compute cost(G,G′) as

cost(G,G′) =

m∑
i=1

m∑
j=1

|W ′
ij − W̄ij |. (9)

The dissimilarity between G and G′ is

d(G,G′) =
cost(G,G′)

r
, (10)

where r is the area ratio of the geometrical region
defined by Ḡ. We compute r as

r =

∑m
i=1

∣∣C̄i

∣∣
|G|

, (11)

where |C̄i| is the area of the cell C̄i associated with the

node P̄i in Ḡ, and |G| is the area of the geometrical
region defined by G. Since m ≤ n, it holds that
r ≤ 1. For m < n, we obtain r < 1, and we use

the dissimilarity between the subgraph Ḡ of G and G′,
cost(G,G′), to approximate the dissimilarity between
G and G′ based on r. For m = n, we obtain r = 1 and

d(G,G′) = cost(G,G′).

When deleting a node from an SNNG, it is possible
that the feature vectors of the neighbors of this node are
affected. When comparing the SNNGs of two similar

shapes’ Laplacian eigenfunctions, the deletion of the
nodes only affects the feature vectors of a small number
of other nodes. This is explained by the fact that we

always delete the nodes in the region of a shape that
corresponds to the missing part of the other shape.
In addition, we compute the mapping between two

SNNGs’ nodes by first considering the most similar pair
of nodes. Therefore, the deletion of nodes generally does
not affect the mapping between the SNNGs’ nodes of

two similar shapes’ Laplacian eigenfunctions.

Let G1, G2, G3 and G4 be the SNNGs defined by
the fourth Laplacian eigenfunctions of the four shapes
shown in Fig. 3. Fig. 6 shows the mappings between the

nodes of some of these SNNGs. Fig. 6 (a) illustrates the
mapping between the nodes of G1 and G2. The nodes
O1, O2, O3 and O4 in G1 are mapped to the nodes

P1, P6, P4 and P3 in G2, respectively. Let C2
i be the

G1 G2 G4 G2

O1

O2

O3
O4

P1

P2 P3

P4

P5P6

P1

P2 P3

P4

P5P6

Q1

Q2 Q3

Q4

Q5Q6

(a) Mapping between G1 and G2 (b) Mapping between G4 and G2

Fig. 6 The mapping between the nodes of the SNNGs
of the fourth Laplacian eigenfunctions of (a) the pigeon
shape (shown in Fig. 3(a)) and the starfish shape (shown
in Fig. 3(b)), (b) two near-isometric starfish shapes (shown
in Fig. 3(d) and 3(b)).

cell of the node Pi in G2. The dissimilarity between

G1 and G2 is d(G1, G2) = cost(G1, G2)/r1,2, where
cost(G1, G2) is the dissimilarity between G1 and the
subgraph induced on G2 by the mapped nodes (P1, P6,

P4 and P3), and r1,2 = (|C2
1 |+ |C2

3 |+ |C2
4 |+ |C2

6 |)/|G2|.
Since P2 and P5 in G2 do not have corresponding
nodes in G1, the value of r1,2 is smaller than one.
Fig. 6 (b) shows the mapping between the nodes of G4

and G2. The dissimilarity between these two SNNGs
is d(G2, G4) = cost(G2, G4)/r2,4. The value of r2,4 is
one because these two SNNGs have the same number

of nodes. We compute cost(G1, G2) and cost(G2, G4)
using Equation (9), and we find that cost(G1, G2) >
cost(G2, G4). Therefore, d(G1, G2) > d(G2, G4), which

means G4 is more similar to G2.

Some Laplacian eigenfunctions of a symmetric shape

can have symmetric structures, i.e., the distributions
of these eigenfunctions’ extrema are symmetric in the
functions’ domains, which results in symmetric SNNGs.

In Fig. 6(b) both starfish shapes are symmetric and
both G2 and G4 are symmetric SNNGs. The absolute
values of the weights of the edges in each SNNG are

similar, which means that the node Q1 in G4 can
be mapped to the node P1 or the node P4 in G2.
When mapping Q1 to P1 and P4, respectively, the

corresponding dissimilarities between G4 and G2 are
similar. In other words, the symmetry of the SNNG
does not affect the quality of the mapping between the

SNNGs’ nodes.

7 Results, comparison and discussion

Experimental results are described and discussed in this

section. For each shape in a shape database, our method
orders the other shapes in ascending order of dissimi-
larity. We have tested our method for several standard

shape databases commonly used to evaluate 2D shape
retrieval methods: the Kimia-25 [32], Kimia-99 [31] and
Kimia-216 [31] databases. By testing using different k

low-frequency non-trivial Laplacian eigenfunctions to
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(a) (b)

[29]

Fig. 7 (a) The Kimia-25 database. (b) The retrieval rates
per class obtained by our method and ShapeDNA [29] for the
Kimia-25 database. For all the classes, our method performs
better than ShapeDNA.

compare the shapes, we found that our method could
get good retrieval results when k was about 10. For the
experimental results shown in this section, the value

of k is 10. We implemented the ShapeDNA method
proposed in the literature [29] 2, and compared our
method with ShapeDNA and some recent methods for

2D shape retrieval.

7.1 Kimia-25 database

The Kimia-25 database [32] consists of 25 shapes group-

ed in six classes: five classes (rabbits, greebles, fish,
airplanes and tools) with four shapes each, and one
class (hands) with five shapes, as shown in Fig. 7(a).

For a query, we call a retrieved shape a correct match
when this retrieved shape and the query belong to the
same class of shapes. Suppose that this class has x

shapes, then there are x−1 correct matches (excluding
the query itself). We compute the retrieval rate by
counting the number of correct matches within the

first x − 1 retrieved shapes. The retrieval rate for a
class of shapes is the average of the retrieval rates
for the shapes within this class. Fig. 7(b) shows the

retrieval rates for each class of shapes generated by
our method and ShapeDNA [29]. The retrieval rate
for each class obtained by our method is higher than

that generated by ShapeDNA, and our method retrieves
correct matches of 100% for the rabbits, tools and
hands. Using every shape in this database as a query

shape, Fig. 8(a) and 8(b) show the retrieval results
obtained by our method and ShapeDNA, respectively.
The first element of each row shows a query shape, and

the remaining elements of that row show the first three
or four retrieved shapes. The retrieved shapes shown
with light-green background represent bad matches.

2For the results generated by ShapeDNA that are shown
in this paper, we tested using different numbers of Laplacian
eigenvalues to do shape retrieval and chose the best results.

Comparing Fig. 8(a) and 8(b), our method performs

better than ShapeDNA for this database.
We consider each shape from the Kimia-25 database

as a query, and rank the retrieved shapes in ascending

order of dissimilarity. The retrieved shape at the r-
th ranking position is the r-th closest shape retrieved.
The comparison between the retrieval results on the

Kimia-25 database generated by different algorithms is
obtained by counting the number of the correct matches
(excluding the query itself) at each ranking position r

(r = 1, 2, 3). The highest possible score for r is 25, i.e.,
there are at most 25 correct matches at each ranking
position r. Table 1 lists the comparison of performance

between different algorithms. The results show that our
method performs better than the first four methods,
ShapeDNA [29], ECCobj2D [11], Sharvit et al. [32]

and Gdalyahu et al. [7]. Though the total score of our
method (score = 70) is lower than those of SC (score
= 71) [2] and IDSC+DP (score = 74) [19], our method
is slightly better than these two methods at the second

ranking position.
The precision-recall curve is a common measure

used to evaluate the performance of a shape retrieval

method. Precision for a query is defined as the fraction
of retrieved shapes that match the query, and recall
is defined as the fraction of matching shapes that are

retrieved. A precision-recall curve is defined by consid-
ering a number of points. The i-th point corresponds
to the average recall and precision of all the shapes

obtained by considering the first i retrieved shapes.
Most shapes in the Kimia-25 database have three
matching shapes. We plot the precision-recall curve

based on the average recall and precision corresponding
to the first one, two and three retrieved shapes, see
Fig. 9. Fig 9 indicates that our method performs better

than the first four methods and better than the last
two methods when considering the first two retrieved
shapes.

Our method uses the first k non-trivial Laplacian
eigenfunctions to compare the shapes. To determine the
value of k, we tested using different k to retrieve similar

shapes for every shape in the Kimia-25 database.
Fig. 10 shows the retrieval rates corresponding to
different k. We compute the retrieval rate by recording

the correct matches among the first four retrieved
shapes for all the 25 shapes.3 The highest retrieval
rate (96.25%) is obtained when k = 9, 10, or 11,

and the retrieval rates corresponding to k with values

3The six shape classes from the Kimia-25 database consist
of different numbers of shapes, and the largest number is five.
For convenience, we compute the retrieval rate for the whole
database by counting the correct matches among the first four
retrieved shapes for all the 25 shapes.



12 Dongmei Niu et al.

(a) Retrieval results of our method.

(b) Retrieval results of ShapeDNA [29].

Fig. 8 The retrieval results for the Kimia-25 database generated by (a) our method and (b) ShapeDNA [29]. The first element
of each row shows a query, and the remaining elements of that row show the retrieved top three or four closest matches
(excluding the query itself). The retrieved shapes shown with light-green background represent bad matches.

Table 1 Comparison of retrieval results for the Kimia-
25 database obtained by different algorithms for 2D shape
retrieval (our method being highlighted in bold). The number
of correct matches at each ranking position r (r = 1, 2, 3)
is counted, and the highest possible score for r is 25. Our
method performs better than the first four methods, and is
slightly better than SC [2] and IDSC+DP [19] at the second
ranking position.

Approach r=1 r=2 r=3 Total

ShapeDNA [29] 17 19 14 50

ECCobj2D[11] 22 20 17 59

Sharvit et al. [32] 23 21 20 64

Gdalyahu et al. [7] 25 21 19 65

Our method 25 25 20 70

SC [2] 25 24 22 71

IDSC+DP [19] 25 24 25 74

around 10 have minor differences. Besides that, the

experimental results show that using more Laplacian
eigenfunctions does not improve the retrieval rate
but may result in a decrease in the retrieval rate.

A reason is that similar shapes may have similar
global features but different boundary details, and high-
frequency Laplacian eigenfunctions are related to fine

details of the shapes.

7.2 Kimia-99 database

The Kimia-99 database [31] consists of nine classes of

shapes with 11 shapes per class, as shown in Fig. 11.
From top to bottom, the shapes shown in rows are
the images of the airplanes, quadrupeds, rabbits, men,

greebles, hands, fish, rays and tools. Fig. 12 shows the
retrieval rates for each class generated by our method
and ShapeDNA [29]. The retrieval rate for each class

obtained by our method is higher than that generated

[29]

[11]

[32]

[7]

[2]

[19]

Fig. 9 Precision-recall curves for the Kimia-25 database.
Each precision-recall curve is based on the average recall and
precision of all 25 shapes that are obtained by considering the
first one, two and three retrieved shapes.

Fig. 10 Retrieval rates obtained by our method using
first k non-trivial Laplacian eigenfunctions for the Kimia-25
database, k = 1, 2, . . . , 14. The retrieval rate is computed
by considering the correct matches among the first four
retrieved shapes for all the 25 shapes. The highest retrieval
rate (96.25%) is obtained when the value of k is 9, 10 or 11.

by ShapeDNA, and our method can retrieve correct
matches of 100% for two classes, the rabbits and rays.

Table 2 lists the number of the correct matches
(excluding the query itself) at each ranking position

r (r = 1, 2, . . . , 10) for all 99 shapes obtained by
several different algorithms for 2D shape retrieval. The
highest possible score for r is 99. Our method performs

better than ShapeDNA and some recent methods (e.g.,
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Fig. 11 The Kimia-99 database. Shapes shown in
a row belong to a class.

[29]

Fig. 12 The retrieval rates per class obtained by our method and
ShapeDNA [29] for the Kimia-99 database. For all the classes, our
method performs better than ShapeDNA.

Table 2 Comparison of retrieval results for the Kimia-99 database obtained by different algorithms for 2D shape retrieval
(our method being highlighted in bold). The number of correct matches at each ranking position r (r = 1, 2, . . . , 10) is counted.
The highest possible score for r is 99.

Approach r=1 r=2 r=3 r=4 r=5 r=6 r=7 r=8 r=9 r=10 Total
ShapeDNA [29] 82 80 76 66 64 56 54 38 37 43 596

CN [15] 97 86 87 75 76 70 55 59 46 44 695
ECCobj2D [11] 94 85 81 73 81 73 64 59 56 35 701

SC [2] 97 91 88 85 84 77 75 66 56 37 756
CPDH+EMD (Eucl) [35] 96 94 94 87 88 82 80 70 62 55 808
CPDH+EMD (shift) [35] 98 94 95 92 90 88 85 84 71 52 849

Our method 98 97 96 94 95 87 82 84 72 54 859
PS+LBP[33] 99 97 97 88 88 86 86 90 80 77 888
IDSC+DP[19] 99 99 99 98 98 97 97 98 94 79 958

Height function [39] 99 99 99 99 98 99 99 96 95 88 971

[29]
[15]

[11]
[2]

[35]
[35]

[33]
[19]

[39]

Fig. 13 Precision-recall curves for the Kimia-99 database.
Each precision-recall curve is based on the average recall and
precision of all 99 shapes that are obtained by considering the
first one to 10 retrieved shapes.

ECCobj2D [11] and CN [15]), but performs worse than

the last three methods. Each shape in the Kimia-99
database has 10 matching shapes. Fig. 13 shows the
precision-recall curves when considering the first one to

10 retrieved shapes.

A reason that our method cannot produce the
highest retrieval score for the Kimia-99 database is

that our method cannot handle a shape with large
missing parts well. Considering the example shown
in Fig. 14, the two man shapes shown in the first

column of Fig. 14(a) are from the same class, the
men, of the Kimia-99 database, and they both have
10 similar shapes in the database. Since we compare

two shapes based on comparing the SNNGs defined

(a) Retrieval results of our method.

(b) Retrieval results of ShapeDNA [29].

Fig. 14 The retrieval results for two man shapes from the
Kimia-99 database generated by (a) our method and (b)
ShapeDNA [29], respectively. Each row shows a query shape,
followed by the top 12 matches. For the man shape with two
legs, our method performs better than ShapeDNA, while for
the shape with a missing leg, ShapeDNA performs better.

by the Laplacian eigenfunctions with the nodes of the

SNNGs being the eigenfunctions’ extrema, the two man
shapes has a large dissimilarity because the shape with
a missing leg has a smaller number of extrema. Fig. 14

shows the first 12 matches retrieved by (a) our method
and (b) ShapeDNA for these two shapes, respectively.
Since the men class has 10 shapes with two legs and a

shape with one leg, our method can retrieve the correct
matches for the shape with two legs well, but performs
worse than ShapeDNA for the bottom shape with a

missing leg.
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Fig. 15 The Kimia-216 database. Each
row shows the shapes within a class.

[29] [15]

Fig. 16 The retrieval rates per class obtained by our method, ShapeDNA [29] and
curve normalization (CN) [15] for the Kimia-216 database. For all classes except
for the forks, our method performs as well as or better than the other two methods.

Table 3 Comparison of retrieval results for the Kimia-216 database obtained by different algorithms for 2D shape retrieval
(our method being highlighted in bold). The number of correct matches at each ranking position r (r = 1, 2, . . . , 11) is counted,
and the highest possible score for r is 216.

Approach r=1 r=2 r=3 r=4 r=5 r=6 r=7 r=8 r=9 r=10 r=11 Total
ShapeDNA [29] 181 174 163 148 143 139 120 120 116 109 97 1510

SC [2] 214 209 205 197 191 178 161 144 131 101 78 1809
CPDH+EMD (Eucl) [35] 214 215 209 204 200 193 187 180 168 146 114 2030
CPDH+EMD (shift) [35] 215 215 213 205 203 204 190 180 168 154 123 2070

PS+LBP[33] 216 209 205 195 195 197 188 180 179 163 152 2079
Our method 216 215 214 211 212 213 209 197 191 181 169 2228

Height function [39] 216 216 216 215 215 212 211 204 200 194 179 2278

7.3 Kimia-216 database

The Kimia-216 database [31] consists of 18 classes of
shapes with 12 shapes per class. Fig. 15 shows all the

216 shapes in this database, and shapes shown in a
row belong to a class. From top to bottom, the shapes
shown in rows are the images of the birds, bones, bricks,

camels, cars, children, classic cars, elephants, faces,
forks, fountains, glasses, hammers, hearts, keys, misks,
rays and turtles.

Fig. 16 shows the retrieval rates for each class
obtained by our method, ShapeDNA [29] and CN [15]

for the Kimia-216 database. Our method retrieves all
the correct matches for seven classes of shapes, which
are bones, cars, children, faces, fountains, glasses and

keys; ShapeDNA finds all similar shapes for cars and
faces; and CN retrieves correct matches of 100% for
three classes of shapes, forks, fountains and glasses.

Besides that, except for the forks, our method performs
as well as or better than the other two methods.

Table 3 shows the number of the correct matches
at each ranking position r (r = 1, 2, . . . , 11), excluding
the query itself, for all 216 shapes obtained by several

different algorithms for 2D shape retrieval. The highest
possible score for r is 216. Our method performs
better than the first five algorithms considered here and

slightly worse than the last algorithm. Each shape in

[29]

[2]

[35]

[35]

[33]

[39]

Fig. 17 Precision-recall curves for the Kimia-216 database.
Each precision-recall curve is based on the average recall and
precision of all 216 shapes that are obtained by considering
the first one to 11 retrieved shapes.

this database has 11 matching shapes. The precision-
recall curves are shown in Fig. 17, considering the first

one to 11 retrieved shapes. Though the performance of
our method is worse than that of the height function
method [39], our method can be generalized more easily

to handle 3D shapes, see section 7.5.

7.4 Time complexity

The computationally most expensive components of our
method are shape description and shape matching.

A core operation for extracting the SNNG of a
Laplacian eigenfunction is computing the geodesic inner

distance between two mesh vertices. We use the algo-
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Table 4 Computation times (min) of our method for the
Kimia-25, Kimia-99 and Kimia-216 databases. The second
and third columns show the computation times for the
extraction of the SNNGs and SNNG matching.

Database SNNG extraction SNNG matching Total

Kimia-25 0.76 0.74 1.50

Kimia-99 3.00 7.73 10.73

Kimia-216 6.63 28.73 35.36

rithm described in [25]. This algorithm hasO(n2 log(n))

worst-case time complexity, with n being the number
of vertices in the triangulation [23]. We extract the
SNNG of a Laplacian eigenfunction in two steps. First,

we use the algorithm described in [26] to compute the
Voronoi segmentation (i.e., the cells associated with
the extrema) of the triangulation with the extrema

of the eigenfunction used as seeds. This algorithm
computes the Voronoi segmentation based on geodesic
inner distances between mesh vertices and their clos-

est extrema. This results in a time complexity of
O(n3 log(n)) in the worst case. Second, we compute the
natural neighbor coordinates of each extremum with

respect to its natural neighbors based on the geodesic
inner distances from the mesh vertices of its cell to
its natural neighbors. The parameter m represents the

eigenfunction’s number of extrema. In the worst case,
each extremum has m − 1 natural neighbors, which
rarely happens when m > 3. The time complexity of

this worst case is O((m − 1) × n3 log(n)). Therefore,
the total time complexity of extracting the SNNG of a
Laplacian eigenfunction is O(n3 log(n)) +O((m− 1)×
n3 log(n)) in the worse case, i.e., O(m× n3 log(n)).

The number of nodal domains of the i-th Laplacian
eigenfunction is at most i [4]. We use the first k non-

trivial Laplacian eigenfunctions to represent a shape.
Since we compare the i-th non-trivial eigenfunction of
a shape with the (i−1)-th, i-th and (i+1)-th non-trivial

eigenfunctions of another shape to handle the ordering
problem of eigenfunctions, we extract the SNNGs of
the first k + 1 non-trivial eigenfunctions. These are

the eigenfunctions with indices ranging from two to
k + 2. In our implementation, the value of k is 10,
hence the value of m is at most 12. We implemented

our method in Matlab and performed all experiments
with a 3.2 GHz standard PC with 8 GB of memory. The
second column of Table 4 shows the computation times

required for extracting the Laplacian eigenfunctions’
SNNGs for the shapes in the Kimia-25, Kimia-99 and
Kimia-216 databases.

Our shape matching method discussed in section
6.2 has worst time complexity of O(m2 log(m)) for
comparing two SNNGs. We compute the dissimilarity

between two shapes by comparing the SNNGs of their

first k non-trivial Laplacian eigenfunctions. To handle

the ordering problem of eigenfunctions, we consider
the i-th eigenfunction of a shape can only be mapped
to the (i − 1)-th, i-th or (i + 1)-th eigenfunction of

another shape. For i = 2, the i-th eigenfunction of
a shape can only be mapped to the i-th or (i + 1)-
th eigenfunctions of another shape since the (i − 1)-th

eigenfunction is constant. Therefore, to compute the
dissimilarity between two shapes, we need to compare
3k − 1 pairs of eigenfunctions. The time complexity

is O((3k − 1) × m2 log(m)). We use 10 as the value
of k. The resulting computation times required for
comparing the shapes in the three databases are shown

in the third column of Table 4. One could improve
the computation times by implementing our method in
more efficient programming languages (such as C and

C++) or implementing it using a GPU architecture.

7.5 Discussion

A limitation of our method is the fact that it cannot
handle the case of shapes with topology changes. For

example, let us consider bending a rod shape until its
two ends nearly meet and the shape almost forms a
closed “O.” We use the notation A to represent this

shape. The inner distance between the two ends of
shape A is the length of the rod. Now we keep bending
the rod until its two ends touch. We call this shape B.

The inner distance between the two ends of shape B is
zero. The proposed method considers A and B as two
different shapes, which means the proposed method is

sensitive to a change like this. The MPEG-7 database
[16] is a commonly used database for evaluating 2D
shape retrieval methods. This database includes shapes

that can have extremely dissimilarly shaped contours
yet at the same time are considered to be similar, see
Fig. 18. Our method considers these five shapes to be

quite dissimilar.
Based on our experiments, our method performs

better than ShapeDNA [29]. ShapeDNA describes a

2D shape using similar algorithmic foundations that
we used. Our method also performs better than some
recent methods, e.g., ECCobj2D [11] and CN [15]. Our

method does not perform as well as some methods like
the height function method [39]. However, compared
with the height function method, our method can be

generalized to handle 3D shapes.
The height function method [39] is a contour-based

method. It samples the outer contour (i.e., the bound-

ary curve) of a 2D shape with equidistantly spaced
points. For each sample point, the height function is
the ordered sequence of the distances of the other

sample points to its tangent. For shape matching, this
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Fig. 18 Five shapes stored in the MPEG-7 database. The
contours of these shapes are extremely dissimilar, but in some
cases it is desirable to consider these shapes as similar. Our
method considers these shapes as dissimilar because their
contours are extremely dissimilar.

method uses dynamic programming to find an optimal
correspondence between two sampled contours. The

dissimilarity between two sample points is computed
as a weighted L1 norm of the difference of the points’
height functions. This method cannot be generalized

easily to handle contours of shapes in 3D space because
an order definition of the sample points on the contour
of a 3D shape is required.

Our method can be generalized to 3D shapes, where
one would describe a shape based on low-frequency
Laplacian eigenfunctions of a tetrahedral mesh used

to represent a shape. One would construct the SNNG
for each eigenfunction to capture the distribution of
extrema. Further, one can use more efficient methods

that work only with a surface mesh via Laplace-
Beltrami eigenfunctions.

In addition to the sign and ordering problems for

eigenfunctions, a third issue can arise: Some eigenvalues
can have multiplicities larger than one, and the cor-
responding eigenfunctions define a multi-dimensional

eigenspace. The eigenfunctions of a multi-dimensional
eigenspace form an orthogonal basis. A problem that
arises as a consequence is that the eigenfunctions of

such an eigenspace are not uniquely defined, i.e., any
orthogonal basis of the eigenspace might be considered.
Such multi-dimensional eigenspaces are extremely rare

for asymmetric shapes [10, 27]. Our method currently
does not handle this problem.

When matching the eigenfunctions of a multi-dimen-

sional eigenspace of a shape A to the eigenfunctions of
another shape B, one could handle the ambiguity of the
eigenfunctions of A’s eigenspace in the following way:

For A’s eigenspace, one could choose the orthogonal
basis, and this basis would be chosen to minimize
the total dissimilarity of its eigenfunctions and B’s

corresponding eigenfunctions.

8 Conclusions and possibilities for future
research

We have presented a region-based method for 2D shape
description and matching using 2D shape retrieval as
driving application for performance evaluation. The

major two components of our approach are the use

of (i) a small number of a shape’s associated low-

frequency Laplacian eigenfunctions and (ii) a weight-
ed directed graph to capture topological behavior of
these eigenfunctions. The combination and effective

integration of these two algorithmic components reflect
the major innovation described in this paper. Our
method is invariant under rigid transformations and

uniform scaling, and is also insensitive to small bound-
ary deformations. While there exist shape retrieval
methods that produce equally good or sometimes even

better retrieval results, the results obtained by our
approach and prototype compete favorably relative to
other published methods that are based on similar

algorithmic foundations.

Concerning potential future research, one can con-
sider several possibilities: (i) using other distance met-
rics between weighted directed graphs to improve our

method’s ability to handle shapes with large missing
parts; (ii) using other structures to represent the Lapla-
cian eigenfunctions and comparing retrieval results ob-

tained when using different structures; (iii) generalizing
the method to handle the multi-dimensional eigenspace
situation; (iv) generalizing the proposed method to non-

planar surface description in 3D space, to match and
retrieve curved surfaces.
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