Approximation of Time-varying Multi-resolution Data Using
Error-based Temporal-spatial Reuse

Christof Nuber?, Eric C. LaMar?, Bernd Hamann® and Kenneth 1. Joy®

?Center for Image Processing and Integrated Computing, Department of Computer Science,
University of California, Davis, One Shields Avenue, Davis, CA 95616, U.S.A.
Lawrence Livermore National Laboratory, Livermore, CA 94550, U.S.A.

ABSTRACT

We extend the notion of multi-resolution spatial data approximation of static datasets to spatio-temporal ap-
proximation of time-varying datasets. By including the temporal dimension, we allow a region of one time-step
to approximate a congruent region at another time-step. Approximations of static datasets are generated by
refining an approximation until a given error-bound is met. To approximate time-varying datasets we use data
from another time-step when that data meets a given error-bound for the current time-step. Our technique
exploits the fact that time-varying datasets typically do not change uniformly over time. By loading data from
rapidly changing regions only, less data needs to be loaded to generate an approximation. Regions that hardly
change are not loaded and are approximated by regions from another time-step. Typically, common techniques
only permit binary classification between consecutive time-steps. Our technique allows a run-time error-criterion
to be used between non-temporally consecutive time-steps. The errors between time-steps are calculated in a
pre-processing step and stored in error-tables. These error-tables are used to calculate errors at run-time, thus
no data needs to be accessed.

Keywords: Multi-resolution, Time-varying Datasets, Adaptive Rendering, Interactive Rendering, Error-based
Rendering, Temporal Reuse

1. INTRODUCTION

Computer simulations of complex physical phenomena generate extremely high-resolution and more and more
commonly time-varying datasets. Few of these datasets can be loaded into a computer’s main memory. Some-
times even a single time-step is too large. Loading one time-step at a time can lead to unacceptable delays in
applications where real-time system response is necessary. With a fixed budget assigned to loading and rendering
data, mechanisms must be developed to meet these requirements. When compared to updating complete time-
steps, multi-resolution representations of data in both time and space reduce the amount of data to be updated
for each cycle.

Standard techniques used to explore time-dependent datasets have several disadvantages. Some use a binary
classification, determining whether a node needs to be replaced (i.e., whether it differs from the current time-step)
or not, resulting in an error-based approximation where the error has been pre-defined during pre-processing.
Techniques reusing already generated imagery instead of the underlying data replace only those image parts where
the image needs to be updated. These approaches are usually not view-dependent. Common to all techniques is
the notion of errors between consecutive time-steps only. Some of them are based on the assumption that there
are only changes in small regions of the dataset or small changes between time-steps. Most existing techniques
also use a pre-defined error during pre-processing.

Further author information: (Send correspondence to Christof Nuber)
Christof Nuber: E-mail: cnuber@Qucdavis.edu, Telephone: 1 530 754 9470
Eric C. LaMar: E-mail: lamar1@lInl.gov, Address: Lawrence Livermore National Laboratory, 7000 East Ave., Livermore,
CA 94550-9234, U.S.A.
Bernd Hamann: E-mail: hamann@cs.ucdavis.edu, Telephone: 1 530 754 9157
Kenneth I. Joy: E-mail: joy@cs.ucdavis.edu, Telephone: 1 530 752 1077

Our technique is more general. It considers data values instead of average values or images, which makes our
approach view-independent. Instead of relying on a static binary classification to decide whether or not a region
needs to be replaced, we provide an interactively user-defined error, replacing regions only when they exceed a
user-defined error-threshold. With temporal-spatial reuse of subregions, we are not limited to consecutive time-
steps. We allow a subregion from one time-step to approximate a congruent subregion in any other time-step,
making no requirements with respect to spatial or temporal extent of changes in the dataset.

We avoid reloading of complete new time-steps by subdividing the dataset and reloading on a “replace/subdi-
vide-where-necessary” basis, following a time-adaptive multi-resolution approach. In regions of the dataset where
there is no change between time-steps, it is not necessary to replace that sub-region for a new time-step. The
old region can be reused without error. Furthermore, we allow a sub-region from one time-step to approximate
the same sub-region of a different time-step.

We use an N-ary tree decomposition of space and resolution for individual time-steps (i.e., quadtrees for 2D
data and octrees for 3D data). Leaf nodes contain original data and internal nodes contain approximations, with
the root node containing the coarsest approximation. Each node is associated with a discrete (either original or
approximated) sub-region of the dataset.

For each node we calculate in a pre-processing step its error-table, which will be used to determine the error
between two arbitrary time-steps for that node. This approach allows us to determine the approximation error
for any given node without accessing the original data during run-time.

Our technique complements (and can be used with) compression and differential encoding methods or other
schemes used to reduce/compress data. The technique presented here is not restricted to 2D datasets, it is
dimension-independent and applicable to n-dimensional time-varying datasets.

2. RELATED WORK

Finkelstein et al.! were among the first to develop methods for adaptive time-varying animation. They used
a multi-resolution image technique and a quad-tree to decompose an image. Nodes represent flat regions (i.e.,
they store the average color of the children) and may contain child pointers when higher-resolution information
is available. The time dimension is encoded as a time-spanning binary tree, where one image quad-tree is
associated with each node of the binary tree. The root node of the binary tree represents the averaged image
from all time-steps (i.e., a “motion-blurred” image). The leaf nodes of the binary tree store the imagery from a
single time-step. There is no notion of run-time error, only the error associated with the initial construction of
the time sequence is considered.

LaMar et al.? and Weiler et al.? described interactive multi-resolution volume visualization systems. A volume
is composed into an octree hierarchy of approximations, with each level of the tree half the spatial resolution
of the next level. The coarsest approximation is stored at the root node, approximations in the internal nodes,
and the original data at the leaf nodes. A user-defined “importance” function, a suitable approximation error
function, and rendering budgets guide the approximation.

LaMar et al.* introduced a fast method for computing error for multi-resolution volume rendering. The error
is computed on the image volume produced by applying a color and opacity transfer function. Though the color
space and data volume are large, for datasets with byte voxels there are only 2562 unique pairs of error terms.
The frequency of error terms in a node of the octree is recorded in a table, and it is also associated with that
node. To evaluate the error associated with a node, only the table must be evaluated.

Ma et al.? used voxel-level quantization, octree encoding, and differential encoding for compression on voxel,
spatial, and temporal dimensions, respectively. They claimed a compression of up to 90% for some datasets. Since
their method uses voxel-level quantization, this is a lossy technique and is not appropriate for all visualizations.
They used a technique called “temporal merging,” where two or more temporally consecutive sub-regions are
merged. The partial image generated from the first sub-domain of this series is cached and reused for rendering
later time-steps. This approach has a limited notion of error with respect to time: A sub-region is reloaded when
there is change in data values, and reused when there is no change.

Shen et al.® introduced the Time-Space Partitioning (TSP) method that decomposes space using an octree,
and in each node of the octree, decomposes time using a binary tree. The TSP mechanism can represent, to a
limited degree, error in both spatial and temporal senses. Non-leaf nodes store error terms, not approximations
of data. “Bricks” of original data are stored only at the leaf nodes. Spatial error is used to determine when to
approximate a sub-region of a volume with a single color, i.e., a subregion is rendered either at original resolution
or is approximated by a single color. Temporal error is used to determine whether imagery generated at one
time-step can be used to approximate imagery of later time-steps. In both cases, error is estimated using the
variance of spatial and temporal subregions. Low variance results in a constant color or reuse of an image;
high variance results in rendering original data. Once an image is generated for a subregion, it is cached for
possible reuse. Ellsworth et al.” extended the TSP algorithm to hardware texture-based volume rendering. They
utilized alternate error metrics, i.e., instead of examining data values they used the color values resulting from
the transfer function.

Sutton and Hansen® ? introduced T-BON, which is a time-based extension of the BONO (Branch-On-Need-
Octree)!Y method for isosurface identification. The BONO method is an octree decomposition of space, where
each node stores the extrema (minimum and maximum) over the corresponding sub-domain. To find a surface for
a particular isovalue V', the method starts at the root node and visits all nodes whose extrema interval bracket
the isovalue. The T-BON method produces a BONO for each time-step. For each new time-step, all prior
geometry is thrown away, and new geometry is produced, as in the normal BONO method. The per-time-step
BONO is accessed in a demand-page fashion.

Shen!! introduced the Temporal Hierarchical Index Tree (THIT)!! that constructs a “bucket” span space
table to accelerate isosurface extraction, where the minimum and maximum values for a cell correspond to the
cell’s minimum and maximum considering all time-steps. Each table entry contains a temporal subdividing
binary tree. The root node records isosurfaces that intersect the cell for all time-steps, intermediate nodes record
isosurfaces that intersect the cell for intermediate time intervals, and leaf nodes record isosurfaces that intersect
the cell for a single time-step. The algorithm requires that the grid topology remains fixed over time.

Our time-adaptive multi-resolution algorithm exploits the occurrence of small changes and similarities over
time in spatial-identical regions. Using error tables that describe the difference of a region at a given resolution
and the same region at maximum resolution in comparison to other time-steps, we can determine the exact
error introduced by this region. Only when a region does not meet a user-defined error-condition we need to
update this region. This approach allows us to reuse as many regions as possible by exploiting the properties of
a multi-resolution dataset, where the coarsest representation that meets the error-criterion can be reused.

3. BACKGROUND - MULTI-RESOLUTION TECHNIQUES

Multi-resolution (MR) methods offer the possibility to render a dataset at different resolutions for different
subregions of a dataset. Subregions with more detail can be rendered at higher resolution, whereas subregions
with less detail can be rendered at lower resolution. This paradigm allows us to render a dataset using a fraction
of the original representation without a noticeable loss of information, see Fig. 1. Fig. 1 was produced using a
multi-resolution quad-tree decomposition. Each node of the quad-tree contains image data; leaf nodes contain
the original image; interior nodes contain approximation images, with the root node containing the coarsest
approximation. To produce an MR image, given some error-condition, we start at the root node and evaluate
the error for that node. If the error-condition is met, we render that node, otherwise we visit and test the child
nodes. We continue this process until the error-condition is met or a leaf node is found (that is rendered). For
Fig. 1, the error-condition is the distance from the Mona Lisa’s right eye to a node’s center. This distance must
be greater than the length of the node’s diagonal.

Figure 1. Multi-resolution (MR) representation of a Mona Lisa image. Both (a) and (b) show the same MR image;
image (b) shows the outline of the image tiles. All tiles contain the same number of pixels.

4. APPROACH

We extend the idea of MR representation of a dataset to time-varying datasets. Our approach is based on spatial
binary subdivision of a time-varying dataset into hierarchically organized regions, down to a maximum depth
dmaz, together with error tables Ejl{ for each region R describing the errors over time (to determine per region
the error introduced with advancing time). During each render-cycle of a time-step ¢, the visible regions are
checked for their error between the visible representation R%(t,) and the correct representation R%me=(t), where
“visible” means that the region is used for rendering.

Depending on the error of a region it is either reused at time-step ¢ “as is” with the visible representation
R%(t,), replaced by the representation for the current time-step R%(t) with ¢ # t,, or refined by replacing itself
with its subregions Rf“ to reduce error. Using this error-driven approach our goal is to reduce the number of
subregions reloaded per frame, meeting a given error bound where possible.

In most simulations, changes within a region are small for small time-steps when compared to larger time-
steps. Using a maximum error bound e,,,,; and exploiting the similarity of regions between consecutive frames
from the visible regions, a set of subregions is determined that must be replaced in order to meet the error require-
ments. Depending on the current resolution and the change of values over time, a region with minimal activity
can be reused for several steps until it no longer meets the error-condition (R%(t) ~ R4 (t + k), e} (t,t + k) < emax
for k > 0). The advantage of this approach is that it is independent of the dimension and the representation of
the underlying dataset as long as the representation provides multiple resolution levels and error tables.

4.1. Error Tables

The most appropriate way of determining errors e?(¢;,t5) between different temporal representations of a region
R%is to use Nx N error look-up tables E% (with N being the number of time-steps). For each region R? an error
table Eji% is generated that contains the error e‘}%(tl, to) between every time-step ¢; and time-step t2 of the region
at the current depth d in the hierarchy to the corresponding region at the biggest depth d,,4,. The equation
e?{”‘”” (t,t) = 0 can be guaranteed for leaf-regions R? with d = d,q, within the hierarchy.

4.2. Error for a Time-step

Each visible region R? manages the time ¢, it represents and the error 6%1, (ty,t) it introduces. The error e (t,,t)
for a region R? at time ¢ is determined by either the value in the error table when the region itself is displayed
(e = E%(t,,t)) or by the average sum of the errors of its subregions R{™" by e (t) = 23" e‘gl(tv,t), see
Fig. 2.

R ®
a i
e (t,t) [Eenonnes
Region used Region not used
for rendering for rendering
d+1 d+1
R, R,
d+1 H : d+1
3 e, (t t) prosiene] pone Fee exl(tv't)
R
d+1 H H d+1
exz(tv't) , , exj(tv‘ t)
2 : :
E_(t_ t) d+1 d+1
R v
R, R,
d _ rd d _ 1 n d+1
eR(tvvt) = ER(tvvt) eR(t) =" 211:1 €R; (tv, 1)

Figure 2. Calculation of error e%(t.,t) of a region.

4.3. Management of Regions

In order to prevent the re-evaluation of errors for all the regions R within the hierarchy during every time-step,
the evaluation is restricted to error table look-up operations for visible regions R% and propagation of updates
to their parents only for error re-calculation.

4.4. Replacement Strategy

Our replacement strategy is an extension of the multi-resolution approach for steady datasets to time-varying
datasets. A static approach would consider the error of the dataset at the highest resolution, subdividing a
region only when the error tolerance is not met. We extend this approach to time-varying datasets by re-using
the previous representation where possible. When the previous representation does not meet the error-bound,
we use the static hierarchical representation for the current time-step. Using the previous and the current
representation, we decide which regions to reuse and which to replace, using the following strategy: We first
compare regions that have been active in the previous configuration and are active in the current configuration.
We re-use the previous representation for those regions when those meet the error-bound; otherwise, we replace
it with the current representation. Next, we check the remaining regions from the previous representation and
re-use those that still meet the error-bound. The remaining regions from the previous representation do not meet
the current error-bound, so that the representation from the current time-step is used. As a result, we always
obtain a multi-resolution representation for the current time-step that meets the given error-bound replacing
only those regions that need to be replaced.

When restricting the maximum traversal depth of the hierarchy, it is not always possible to reach the given
error bound. Errors are computed for the given resolution at the current depth to the maximum depth in the
tree. If we restrict the level d of refinement for a region R? to a level higher than the base-level d,,q, the region
cannot be refined, although it may have an associated error greater than the given bound. The minimal error
possible for such a region, where d < dynaz, is €%(ty,t,) with e} (t,,t,) > 0. Depending on the value for €4z,
eh(ty, ty) < €maz Will not always be true.

5. RESULTS

We have applied our time-adaptive multi-resolution approach and standard (MR) approaches to 2D image
sequences: a time-dependent modification of the Mona Lisa (see Section 5.3.1) and a simulation of the Richtmyer-
Meshkov instability (see Section 5.3.2).

5.1. Approaches Used for Comparison

5.1.1. Replacement Based on Fixed Resolution

The simplest approach is to replace each region of a dataset at every time-step at a given resolution for all
regions. This approach has a fixed and well-known number of replacements and a well-known error for every
time-step, which is the error between the original resolution and the selected representation level of the dataset.
This approach cannot adapt to a given error-bound, unless we increase the resolution and thus the number of
regions to be replaced. We compare our approach to different fixed-resolution representations.

5.1.2. Replacement Based on Adaptive Refinement

A more advanced approach is to generate an MR representation for the dataset based on error-terms describing
the error for every time-step for each region, reloading all regions from scratch for every time-step. By starting
at the lowest resolution and refining only where the given error-bound requires refinement, the result is an MR
representation that meets the given error-bound, where possible. This approach adapts to a given error-bound
and optimizes the number of regions needed to render the complete dataset.

5.2. Error Definition

For error analysis, we define the error between two greyscale-images as the mean of all absolute pixel-differences:

r<xsize y<ysize

e(image(t;)),image(t;)) = W Z Z ‘(image(ti)(z,y) - image(tj)(a:,y))‘.
x=0 =0

We do not use a view-dependent error, where the influence of the error-term could diminish, for example,
with increasing distance from the point of interest.
5.3. Examples

For evaluation purposes we have used the following two datasets: an image of the Mona Lisa perturbed over
100 time-steps, and an image sequence of the Richtmyer-Meshkov instability'? dataset using 137 images. Both
datasets were subdivided into 256 regions at the highest resolution. To evaluate our strategy we have applied
our time-adaptive approach, the time-static adaptive refinement approach, and the straightforward replacement
approach for different resolutions to both image sequences.

5.3.1. Mona Lisa

For simple evaluation, we have used a snapshot of the Mona Lisa and perturbed the image I according to

I/({E7y) = I({,L‘7y) ’ H(COS(21_T) : H{

)

where

1 ifr>1
r= ,
Vdz?2 +dy? r<1
with dz = (z — 0.5 x imageWidth) /(0.5 x imageWidth) and dy = (y — 0.5 x imageHeight) /(0.5 * imageH eight).

The image sequence consists of 100 images (snapshots see Fig. 3). Changes within the image occur in the
center and propagate to the outer regions of the image in a concentric circular fashion with the number of circles
increasing by one circle per frame. Fig. 4 shows several snapshots of the Mona Lisa image sequence, with the
regions replaced by our approach shown in white, using an error-bound of 1%. Fig. 5 shows the corresponding
graphs.

Figure 4. Images from Mona Lisa sequence generated with our approach;

error-bound 1%.

Table 1 summarizes the overall numbers of regions loaded and rendered for each strategy. Our approach
loads a smaller number of regions for the complete sequence than the time-static MR approach. The number of
regions loaded is smaller for the simple high-resolution replacement-approach (Fig. 5(a)), and the error generated
is slightly larger (Fig. 5(b)). This fact is due to the large number of regions of change over time in the Mona
Lisa dataset. The straightforward approach performs poorly at lower resolutions due to increasing detail in the
inner region of the image. Depending on the fixed number of regions used, the error rises to 4.9% and 6.7%
for the Mona Lisa dataset (Fig. 5(b)). Both MR approaches show an average pixel-error of less than 1%, with
our approach loading only 69% of the number of regions when compared to the time-static adaptive approach

(Table 1, Fig. 5).

’ Strategy \ Mona Lisa ‘
time-adaptive MR | 16973/24484
time-static MR 24484
Standard Level 2 1600
Standard Level 3 6400
Standard Level 4 25600

Table 1. Mona Lisa sequence: numbers of all regions loaded/rendered over time; error-bound 1%.

regions replaced shown in white;

regions loaded/rendered

error over

time

T T T T T T T .07
256 regions (lcad/render)
250 ! 06 N
W time—-static MR (lead), MR [render) &
5 200 1 " .05 | 16 regions E
i A ¢ R e L R N
) I o A S o i E 9
H L & time-adaptive MR (load) | .04 et :
150 LY B] 64 regions
I L
H)
o i [l .03
4 100 f 3
’g 64 regions (load/render) " 02 i
= oy
50 = E) :
16 regions (load/render) g .01 —__,x"' /,tlme_Statlc MR p
s 5 time-adaptive MR
S F b === gae. " .
e e e 0w s g i e et e
0 10 20 30 40 50 60 70 80 80 100 0 10 20 30 40 50 60 70 80 90 100

frame

(a)

frame

(b)

Figure 5. Mona Lisa Sequence: (a) number of regions loaded/rendered; (b) rendered error per frame; error-bound 1%.
(Note that the number of regions loaded and rendered is the same for all time-static approaches; the number of regions
rendered is the same for the time-static MR approach and our approach; the error using 256 regions is zero.)

Figure 6. Images from Richtmyer-Meshkov image sequence; several time-steps.

5.3.2. Richtmyer-Meshkov Instability

The Richtmyer-Meshkov instability image sequence is a slice through a 3D-simulated dataset of a Richtmyer-
Meshkov instability.'? The simulation describes the process of two fluids mixing after a shock wave has passed
through them. The images show a cross-section perpendicular to the direction of the shock wave. The image
sequence consists of 137 images. Fig. 6 shows several snapshots of the original sequence, and Fig. 7 shows
snapshots using our approach. Although it seems that in this dataset changes occur only within the center
region, there are also significant, but less visible, changes in the direction of the shock wave. The difference
between this dataset and the Mona Lisa dataset is that the Mona Lisa dataset has a large region of change,
whereas the Richtmyer-Meshkov instability sequence has a region of change that is changing its size and location.

Table 2 summarizes the numbers of regions loaded and rendered for the different strategies with two different
error-bounds. As before, our approach loads a smaller number of regions for the complete sequence when
compared to the time-static approach, resulting in the same number of regions to be rendered with a slightly
larger error.

It can be seen in Fig. 7 that our time-adaptive MR approach mainly replaces data in regions of change,
exploiting similarity of different representations of the same region over time for regions with less or no change.

[TTTTITTTITITT]

]
I
W
I
o
i
=
N
I
q
L4
I
I
I

B
i

Cr T
T

DDDE
CLLTT
DDD%%DDD

ddll |

Figure 7. Images from Richtmyer-Meshkov sequence generated with our approach; regions replaced shown in white;
error-bound 1%.

Table 2. Richtmyer-Meshkov sequence: numbers of all regions loaded/rendered over time; error-bounds

250 F

150

number of regions

20

Strategy Richtmyer-Meshkov
1% \ 1.25%
time-adaptive MR | 12019/18359 | 8709/18359
time-static MR 18359 18359
Standard Level 2 2192
Standard Level 3 8768
Standard Level 4 35072

regions loaded/rendered

200

100

T T T T 0.014 T T T
256 regions (load/render) 64 regions
: 16 reglODS ,,,,,,,,,,
time—static MR (load), : 0.012 _time*Sta’FiC MR 1
MR (render) c time-adaptive MR -
N
time—adaptive MR (load) \ g g8
9
J % 0.008 f
d
% 0.006 |
-
o
© 0.004 f B
T Y64 regions (load/render)| 2
16 regions (load/render) E 0.002 b
o
. . . L . L 0 / A : . .
20 40 60 80 100 120 140 0 20 40 60 80 100 120
frame frame

(a)

error over time

1% and 1.25%.

140

Figure 8. Richtmyer-Meshkov sequence (error-bound 1%): (a) number of regions loaded/rendered; (b) rendered error
per frame. (Note that the number of regions loaded and rendered is the same for all time-static approaches; the number
of regions rendered is the same for the time-static MR, approach and our approach; the error for 256 regions is zero.)

regions loaded/rendered error over time

T T T T 0.014 T — T
256 regions (lcad/render) 64 regions
T e e s e = 16 BT, S
time-static MR (load), ;o 6.o1zr time-static MR 1
a MR (render) S time-adaptive MR ===
5 200} \ 1 0.01 F .
et time—adaptive MR (lcad) \ E‘
o 9
1]
H
M50 , i 0.
(']
° B
4 100t % 9
é 2,
= ALY] Qe i
S 50 oad/render) 2
H H X v
AR LR 16 regions (load/render) U; 0. B
f ©
of]
0 20 40 60 80 100 120 140 140
frame frame

(a) (b)

Figure 9. Richtmyer-Meshkov sequence (error-bound 1.25%): (a) number of regions loaded/rendered; (b) rendered error
per frame. (Note that the number of regions loaded and rendered is the same for all time-static approaches; the number
of regions rendered is the same for the time-static MR, approach and our approach; the error for 256 regions is zero.)

The more localized “dynamics” of this image sequence can also be seen in the changing number of regions loaded
per time-step (Fig. 8(a)) and the graph showing the error over time of the different approaches (Fig. 8 (b)). The
curves representing the error for the fixed-resolution approaches are less smooth when compared to the Mona
Lisa sequence. Using an error-bound of 1%, our approach reloads 65% percent of the regions loaded and rendered
for a time-static MR approach (Table 2), resulting in an error less than 0.4% (Fig. 8(b)). For an error-bound of
1.25% we load about 47% of the regions rendered (Fig. 9(a), Table 2) with an error less than 0.5% (Fig. 9(b))).
While the time-static MR approach loads the same number of regions for both error-bounds, the error with our
technique gets slightly larger, but we stay well within the given bounds, loading much less regions.

6. CONCLUSIONS AND FUTURE WORK

The advantage of our approach is that the number of regions replaced is reduced when compared to fixed-
resolution methods or time-static MR methods. Compared to the time-static adaptive refinement strategy our
algorithm also replaces noticeably fewer regions per time-step without a noticeable increase in visible error,
providing better refinement.

The usage of errors is independent of the underlying data representation and the size of the dataset. It allows
us to compare datasets of different time-steps and decide which regions to replace, without accessing the dataset
itself. The sizes of the error tables depend only on the number of subdivisions and the number of time-steps
available, but not on the actual size of the datasets.

When compared to the static adaptive refinement our approach performs well when applied to datasets
characterized by large regions with high detail, but hardly any changes over time. The high detail will force the
static adaptive approach to refine and reload for every time-step.

We have shown that our approach reduces the amount of data to be reloaded when compared to standard
replacement strategies while meeting given error-bounds. Changes in time are not restricted to unidirectional,
successive changes - they can be forward and backward for arbitrary distances.

We plan to extend our approach, moving from complete updates to incremental updates on a per-frame basis,
which imposes a load and rendering budget, restricting the amount of data to be loaded and rendered per frame.
It is also necessary to reduce the complexity of the error tables, which currently has a complexity of O(N?),
causing error tables to grow with an increasing number of time-steps.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation under contract ACI 9624034 (CAREER Award)
and ACI 0222909, through the Large Scientific and Software Data Set Visualization (LSSDSV) program un-
der contract ACI 9982251, and through the National Partnership for Advanced Computational Infrastructure
(NPACI); the National Institute of Mental Health and the National Science Foundation under contract NIMH 2
P20 MH60975-06A2 and the Lawrence Livermore National Laboratory under ASCI ASAP Level-2 Memorandum
Agreement B347878 and under Memorandum Agreement B503159. We thank the members of the Visualization
and Graphics Research Group at the Center for Image Processing and Integrated Computing (CIPIC) and the
Center for Applied Scientific Computing (CASC) at Lawrence Livermore National Laboratory.

10.

11.

12.

REFERENCES

. A. Finkelstein, C. E. Jacobs, and D. H. Salesin, “Multiresolution video,” in Proceedings of SIGGRAPH
1996, Computer Graphics, 30, pp. 281290, ACM Press, (New York), 1996.

. E. C. LaMar, K. I. Joy, and B. Hamann, “Multi-resolution techniques for interactive hardware texturing-

based volume visualization,” in IEEE Visualization 99, D. Ebert, M. Gross, and B. Hamann, eds., pp. 355~

361, IEEE, Computer Society Press, 25-29 Oct. 1999.

M. Weiler, R. Westermann, C. Hansen, K. Zimmerman, and T. Ertl, “Level-of-detail volume rendering via

3d textures,” in IEEE Volume Visualization 2000, T. Ertl, B. Hamann, and A. Varshney, eds., pp. 7-13,

IEEE, Oct. 8-13 2000.

E. C. LaMar, B. Hamann, and K. 1. Joy, Efficient Error Calculation for Multiresolution Texture-based

Volume Visualization. Springer-Verlag, Heidelberg, Germany, 2002.

. K.-L. Ma, D. Smith, Y. Ming-Shih, and H.-W. Shen, “Efficient encoding and rendering of time-varying

volume data,” Technical Report TR-98-22, Institute for Computer Applications in Science and Engineering,

NASA, June 1998.

H.-W. Shen, L.-J. Chiang, and K.-L. Ma, “A fast volume rendering algorithm for time-varying fields using

a time-space partitioning (tsp) tree,” in IEFE Visualization '99, D. Ebert, M. Gross, and B. Hamann, eds.,

pp- 371-378, IEEE, Computer Society Press, Oct. 25-29 1999.

D. Ellsworth, L.-J. Chiang, and H.-W. Shen, “Accelerating time-varying hardware volume rendering using

tsp trees and color-based error metrics,” in IEEE Volume Visualization 2000, pp. 119-128, 155 (CP), IEEE,

Oct. 8-13 2000.

P. M. Sutton and C. D. Hansen, “Isosurface extraction in time-varying fields using a temporal branch-on-

need tree (t-bon),” in IEEE Visualization ’99, D. Ebert, M. Gross, and B. Hamann, eds., pp. 147154,

IEEE, Computer Society Press, Oct. 25-29 1999.

P. M. Sutton and C. D. Hansen, “Accelerated isosurface extraction in time-varying fields,” IEEE Transac-

tions on Visualization and Computer Graphics 6, pp. 97-107, Apr./June 2000.

J. Wilhems and A. VanGelder, “Octrees for faster isosurface generation,” ACM Transactions on Graphics

11(3), pp. 201-227, 1992.

H.-W. Shen, “Isosurface extraction in time-varying fields using a temporal hierarchical index tree,” in IEEFE

Visualization '98, D. Ebert, H. Hagen, and H. Rushmeier, eds., pp. 159-166, IEEE, Computer Society Press,

Oct. 18-23 1998.

A. A. Mirin, R. H. Cohen, B. C. Curtis, W. P. Dannevik, A. M. Dimits, M. A. Duchaeineau, D. E. Eliason,

D. R. Schikore, S. E. Anderson, D. H. Porter, P. R. Woodward, L. J. Shieh, and S. W. White, “Very high

resolution simulation of compressible turbulence on the IBM-SP system,” in Proceedings of the ACM/IEEE

SC99 Conference, IEEE Computer Society, Nov. 13-19 1999.

