
Dense Geometric Flow Visualization

Sung W. Park∗ Oliver Kreylos∗ Bernd Hamann∗

1 Introduction

Flow visualization has a long tradition in scientific data visual-
ization. Approaches for 3D vector fields however have only re-
cently experienced a boost due to the introduction of programmable
graphics hardware with large texture memory. Consequently, vol-
umetric flow visualization has entered many disciplines of science
and engineering including mechanics, physics, chemistry, meteo-
rology, geology, and medicine. Many applications are concerned
with steady or unsteady flow over 2D or 3D domains. By adopting
ideas from texture-based techniques and taking advantage of par-
allelism and programmability of contemporary graphics hardware,
we introduce a dense geometric flow visualization technique based
on streamlines and pathlines addressing both steady and unsteady
flow. The lines are computed using a trajectory-based particle-
advection method. We achieve high numerical accuracy by enforc-
ing short particle lifetimes and employing a fourth-order integration
method. Along with line integration, we apply rendering techniques
such as streamline illumination, mutli-dimensional transfer func-
tions (MDTFs)[Park et al. 2004], and haloing all in the graphics
hardware to enhance visualization and achieve interactivity.

2 Related Work

Flow visualization approaches have been well documented in recent
surveys [Laramee et al. 2004; Post et al. 2002; Post et al. 2003] and
can be generally categorized into direct, geometric, texture-based,
and feature-based approaches.

Early attempts such as arrow and hedgehog plots or color cod-
ing fall into the category of direct flow visualization [Post et al.
2002]. They provide an intuitive image of local flow properties.
For a better understanding of global flow dynamics with respect
to “long-term” behavior, integration-based approaches have been
introduced. These integrate flow data leading to trajectories of no-
mass particles moving over time. Geometric flow visualization ap-
proaches render the integrated flow using geometric objects such as
lines, tubes, ribbons, or surfaces [Post et al. 2002].

In texture-based flow visualization, a texture is used for a dense
representation of a flow field. The texture is filtered according to
the local flow vectors leading to a notion of overall flow direction
[Laramee et al. 2004]. Feature-based flow visualization is con-
cerned with the extraction of specific patterns of interest, or fea-
tures. Various features such as vortices, shock waves, or separatri-
ces have been considered. Once a feature has been extracted, stan-
dard visualization techniques are applied for rendering [Post et al.
2003].

All these approaches work well for 2D vector fields. While geomet-
ric flow visualization approaches generalize to volume data they are
computationally expensive to achieve dense, interactive visualiza-
tion. Direct and texture-based approaches have occlusion issues
in 3D, an inherent problem for dense representations. Dense rep-
resentations are desirable, as they provide information concerning

∗Institute for Data Analysis and Visualization (IDAV),
Department of Computer Science, University of California,
Davis;{parksw—kreylos—hamann}@cs.ucdavis.edu

overall flow behavior and serve as a context for chosen visualization
methods.

3 Dense Geometric Flow Visualization

The concept of dense geometric flow visualization is adopted from
texture-based flow visualization approaches. A rendering primitive
is advected over time under the influence of the underlying flow
field. In each time frame, a flow integration step is applied to de-
termine the position of the primitive in the subsequent frame. The
motion of the primitive indicates local flow behavior. The motion of
a large number of primitives distributed densely across the domain
visualizes the behavior of the entire flow field.

While for texture-based approaches a rendering primitive is rep-
resented by color information, for example in form of noise, our
approach uses geometry. Instead of advected texels, we advect par-
ticles and connect them over subsequent frames to form streamlines
or pathlines.

Let f : D → R be the function of a steady flow field with a 2D or
3D domainD and a vector-valued rangeR. To visualize steady flow
we render a large numbern of streamlines distributed densely and
nearly uniformly over the domainD. At each point in time (after a
start-up phase), exactlyn streamlines exist. Each streamline has a
constant lifetime ofk cycles. The lifetime of a streamline is divided
into three phases: (i) seeding, (ii) advection, and (iii) expiration.
The seeding and the expiration phases last only one cycle each,
such that for the major part of its lifetime, the otherk− 2 cycles,
a streamline is in its advection phase.

The streamlines are grouped intok groups of sizen
k , wheren is

chosen to be a multiple ofk. All streamlines of each group start
their life simultaneously. The computation of all streamlines can be
processed in a pipeline withk cycles. Figure 1 shows the processing
pipeline.

S

S

S

S

S

S

A

A

A

A

A

A

A A

A A

A

A

A

A

A

A

A

A

A

A

A

A

A A

E

E

E

E

E

E

S

S

S

S

S

A A A A

A

A

AA

A

A

Figure 1: Processing pipeline for streamline rendering. Lifecycle of
streamlines is divided into phases seeding (S), advection (A), and
expiration (E).

4 Implementation

We implement the entire processing pipeline in the programmable
graphics hardware. For particle seeding, we have implemented a
Halton sequence generator in the vertex shader to not reduce the
efficiency of the pipelining process using the fragment shader. As
input, we stream a set of vertices, where each vertex holds a 2D in-
dex corresponding to a texel in a 2D texture. Each vertex streamed



into the vertex shader generates two or three Halton numbers for
2D or 3D flow, respectively, and passes the fragment shader value.
At the end of this stage, the rendered texture contains the location
of a seed particle in each texel.

The advection component of the algorithm takes as input a set of
particle positions, and generates a corresponding set of advected
particles. A single advection is performed by first sampling each
texel of the texture that holds the vector field at timet in the frag-
ment shader. For each particle’s position the vector field texture
is looked up. The vector field texture is sampled three more times
at different locations based on the particle’s position according to
the fourth-order Runge-Kutta integration method. Finally, the ad-
vected particles are written to a new texture, which is used for both
rendering and further advection in the following time steps.

Rendering is performed by connecting particle positions over time
using line primitives. We use a buffer that holds positions of each
seed in itsk cycles of life. The rendering component uses as in-
put the result of the last particle advection. The advected particle
positions are first extracted from the texture. Then, the particles
are added into the buffer in its proper cycle. The line segments
are then sorted based on its depth from the viewer using bitonic
sort algorithm and finally rendered with enhancements such as line-
illumination, haloing, and MDTFs.

5 Results

Figure 2: Tornado: Streamlines are rendered using (left) haloing
(right) depth sorting and illumination in conjuction with depth-
based attenuation.

We examined a tornado data set of size1283 and a CFD simula-
tion of five jets consisting of 2000 timesteps of1283 vector field
data. Figure 2 shows a dense geometric flow visualization for the
tornado data set using streamlines. In Figure 2 (left), we have ren-
dered polylines using flow orientation, depth-based attenuation, and
haloing. Figure 2 (right) shows the importance of using illumina-
tion and depth sorting. The visual perception has increased signifi-
cantly. In Figure 3, we have used an MDTF that extracts regions of
high curl (or vorticity) magnitude. The streamlines are only drawn
within the vortex area.

The computation times for our rendering depend on the rendering
techniques used and on the number of streamlines or pathlines, re-
spectively. For steady flow, we have achieved frame rates up to 66
and for unsteady data when rendering pathlines, we have achieved
frame rates up to 10 frames per second. Contrary to texture-based
flow visualization approaches, the frame rates achieved when using
dense geometric flow visualization are (almost) independent of the
size of the data set. Thus, for larger data sets that still fit in the
texture memory, frame rates are close to the ones listed above. For
unsteady data, data transfer, i. e. copying the individual time steps
to the GPU, becomes a bottle-neck.

Figure 3: Tornado (left) and Time step 1500 of jets data set(right):
MDTFs extract regions of high curl magnitude and high velocity
magnitude.

6 Conlclusion and Future Work

We have presented a flow visualization approach based on ren-
dering geometry in a dense, uniform distribution. We have inte-
grated flow using particle advection to generate streamlines (for
steady flow) and pathlines (for unsteady flow). Pipelining is used to
manage seeding, advection, and death of streamlines/pathlines with
constant lifetime. Our method uses a fourth-order Runge-Kutta
method, which has been efficiently implemented in hardware by
exploiting parallelism and programmability of graphics hardware.
Geometry is rendered using several techniques to enhance visual
perception. We have applied our approach to steady and unsteady
3D flow fields achieving interactive frame rates.

Future research efforts will be directed at employing a depth-sorted
haloing strategy, using adaptive time steps for flow integration, ex-
perimenting with different types of geometry (requires program-
mability of the graphics card’s geometry engine), and extending the
approach to unstructured and irregularly grid-structured data.

References

LARAMEE, R. S., HAUSER, H., DOLEISCH, H., VROLIJK, B.,
POST, F. H., AND WEISKOPF, D. 2004. The state of the art in
flow visualization: Dense and texture-based techniques.Com-
puter Graphics Forum 23.

PARK , S., BUDGE, B., LINSEN, L., HAMANN , B., AND JOY, K. I.
2004. Multi-dimensional transfer functions for interactive 3d
flow visualization. InProceedings of The 12th Pacific Confer-
ence on Computer Graphics and Applications - Pacific Graphics
2004, D. Cohen-Or, H.-S. Ko, D. Terzopoulos, and J. Warren,
Eds.

POST, F. H., LARAMEE, R. S., VROLIJK, B., HAUSER, H., AND
DOLEISCH, H. 2002. Feature extraction and visualisation of
flow fields. InEurographics 2002, State of the Art Reports, IEEE
Computer, D. Fellner and R. Scopigno, Eds., The Eurographics
Association, 69–100.

POST, F. H., VROLIJK, B., HAUSER, H., LARAMEE, R. S.,AND
DOLEISCH, H. 2003. The state of the art in flow visualization:
Feature extraction and tracking.Computer Graphics Forum 22,
4, 775–792.


