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Abstract

Transfer functions are a standard technique used in vol-
ume rendering to assign color and opacity to a volume
of a scalar field. Multi-dimensional transfer functions
(MDTFs) have proven to be an effective way to extract
specific features with subtle properties. As 3D texture-
based methods gain widespread popularity for the visu-
alization of steady and unsteady flow field data, there is
a need to define and apply similar MDTFs to interac-
tive 3D flow visualization. We exploit flow field proper-
ties such as velocity, gradient, curl, helicity, and diver-
gence using vector calculus methods to define an MDTF
that can be used to extract and track features in a flow
field. We show how the defined MDTF can be applied to
interactive 3D flow visualization by combining them with
state-of-the-art texture-based flow visualization of steady
and unsteady fields. We demonstrate that MDTFs can be
used to help alleviate the problem of occlusion, which is
one of the main inherent drawbacks of 3D texture-based
flow visualization techniques. In our implementation, we
make use of current graphics hardware to obtain interac-
tive frame rates.

1. Introduction

Flow visualization has always been a significant area of
scientific data visualization; it has also been one of the
most challenging, especially when looking at volumetric
data. A rich variety of applications attach high impor-
tance to the visual exploration of 3D flow fields. Many
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engineering and scientific disciplines including mechan-
ical engineering, physics, chemistry, meteorology, geol-
ogy, and medicine make use of 3D flow visualization for
applications such as aero and fluid dynamics. The mea-
sured or simulated flow field can be static or time vary-
ing.

Early attempts to visualize flow field data in-
clude hedgehog plots, particle tracing, and stream-
lines. Streamlines have been elaborated to stream
ribbons and stream tubes for steady fields [1] and path-
lines, timelines, and streaklines for unsteady fields.
Texture-based approaches have gained the most popu-
larity recently. This is mostly due to the tremendous
progress in graphics hardware, which is now highly
amenable to texture-based approaches. The new hard-
ware supports storage and processing of 2D and 3D
textures of steadily increasing size as well as pro-
grammability, which makes possible the extension of
the graphics processing unit to general purpose com-
putation. In Section 3, we review 3D flow visualization
techniques and describe the approaches we inte-
grated with to our new feature-extraction method.

Volume rendering approaches for 3D scalar fields
have made use of 3D textures in graphics hardware
even before hardware-assisted flow visualization meth-
ods emerged. In these scalar field volume rendering ap-
proaches, color and opacity are assigned to scalar val-
ues using transfer functions. The color and opacity as-
signments can be further refined and improved by using
multi-dimensional transfer functions (MDTFs), which
allow for selection and extraction of very distinct fea-
tures without having them occluded by features with
similar, yet slightly different characteristics.

We present MDTFs for 3D flow visualization. The
transfer functions are based on vector field properties
derived from vector field calculus. The dimensions of



our transfer functions are given by velocity magnitude,
velocity gradient tensor determinant, curl magnitude,
helicity, and divergence of 3D flow fields [2]. In Sec-
tion 4, we explain and discuss the use of these vector
field properties, and in Section 5, we combine the de-
rived properties to form an MDTF. The MDTF ap-
proach can be combined with many 3D flow visual-
ization techniques. In Section 6, we describe how our
transfer function can be applied to GPU-based 3D tex-
ture advection flow visualization methods.

Using our MDTF, we can interactively explore 3D
flow fields and extract/select features of well-defined
behavior. Our approach helps to overcome the oc-
clusion problems that texture-based flow visualization
techniques generally suffer from. In Section 7, we show
results of our approach for steady as well as unsteady
3D flow fields. In particular, we show how significant
features in an unsteady data set can be tracked and
how they evolve over time.

2. Related Work

Our work utilizes transfer functions to aid in feature
extraction. Transfer functions are crucial components
of volume visualization techniques [3, 4, 5]. In recent
years, a large number of improvements have been made
to make transfer functions produce higher quality im-
ages as well as making them easier to use.

Bergman et al. [6] described making colormap se-
lection an interactive process. The colormaps provided
to the user are decided by the rule-based approach
depending on the type of data being visualized. He
et al. [7] and Kindlmann and Durkin [8] introduced
improved methods for generating transfer functions.
He’s method generates transfer functions by use of a
stochastic optimization process. The process relies on
a user defined fitness function, or user input in order
to decide the quality of transfer functions. Kindlmann’s
method automatically attempts to search out isovalues
which might describe material boundaries.

Specifically, our work makes use of multi-
dimensional transfer functions, or MDTFs. MDTFs
can be a very powerful tool, yet can be tricky
to deal with. Kniss et al. [9] described a wid-
get based method for dealing with multi-dimensional
transfer functions. Their method supports inter-
active exploration of multivariate volumes. Morris
and Ebert [10] used multi-dimensional transfer func-
tions combined with photographic data to gener-
ate intuitive colors for volume rendering of medical
data. Hadwiger et al. [11] applied separate trans-
fer functions to each material on a per-fragment

basis in order to obtain color values for each mate-
rial.

Our main contribution is the combination of vec-
tor field properties with MDTFs to provide useful fea-
ture extraction. Feature extraction of scalar datasets
has been of interest to the visualization community for
a long time. More recently, work has been done on fea-
ture extraction of vector field data. The approach of
Verma et al. [12] finds critical points in order to intelli-
gently place seeds for streamline generation in 2D vec-
tor fields. The method of Mann and Rockwood [13] cal-
culates singularities in 3D vector fields. These singular-
ities can be useful in limited situations for classifying
flow fields. Wischgoll and Scheuermann [14] described
an algorithm for locating closed streamlines in 3D vec-
tor fields, and Mahrous et al. [15] presented a method
for topological segmentation of 3D steady flow fields.

While these methods describe geometric separa-
tions, it is also possible to extract features of certain
properties. Suzuki et al. [16] derived an “S-map” to
assign significance to portions of the volume. The S-
map is generated by approximating critical points and
using them to assign importance. Post et al. [17] dis-
cussed this technique further and mentioned many pos-
sible values to extract including vorticity and helicity.
A method by Gray et al. [18] maps curl and diver-
gence to colors of an isosurface extracted from veloc-
ity magnitude. Our technique extracts features in the
same vein, and we use similar quantities to generate
MDTFs that allow useful feature extraction.

3. 3D Flow Visualization

Our method permits incorporation of 3D flow visual-
ization algorithms in order to enhance visualization of
the volume. There are many techniques for visualizing
3D flow, with the simplest being direct flow visualiza-
tion. Some common examples are the hedgehog plot,
and mapping RGB colors to vectors in the field. These
approaches tend not to be very helpful in 3D because
of occlusion issues. Another class of algorithms for flow
visualization is made up of the geometric approaches.
These are integration approaches such as streamlines,
streaklines, timelines, and pathlines. They are inter-
esting from the standpoint that long term information
is presented, and that the information can be sparse
and directed at areas of importance (such as through
seeding strategies [12]). Recently, texture-based meth-
ods have become very popular, especially for 2D fields,
mainly because of their ability to show global infor-
mation. The most common examples are line integral
convolution (LIC) [19, 20] and texture advection meth-
ods, including image based flow visualization (IBFV),
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along with their many variants. Feature-based flow vi-
sualization involves indirectly visualizing flow. Usually
this involves calculating quantities based upon the vec-
tor field data. This paper’s foundation is an example of
feature-based flow visualization. For more information
on these methods, see the survey paper by Laramee et
al. [21].

Our technique makes possible the combination of
feature-based flow visualization with the other types
of flow visualization. In Section 6, we discuss the inte-
gration of our method with the GPU-based 3D texture
advection method based on the method by Weiskopf
and Ertl [22]. By varying different parameters, we show
3D LIC-type images of flow volumes. We also combine
our methods with the 3D IBFV approach described by
Telea and van Wijk [23] to produce 3D IBFV-type im-
ages.

4. Vector Field Calculus

A 3D flow field is defined by a trivariate function. Let
F : R

3 → R
3 be a function such that

F(x, y, z) =





F1(x, y, z)
F2(x, y, z)
F3(x, y, z)



 ,

where F1, F2, and F3 represent the three components
in the directions of the three coordinates x, y, and z.
Typically, the coordinates are Cartesian. In many prac-
tical settings, the discrete version of a flow field is ob-
tained by measuring or simulating the flow components
at equidistant integer sample points (i, j, k) in each of
the three coordinate directions, forming a structured
rectilinear grid. In the following, we derive properties
from vector field calculus as described in [2].

4.1. Velocity Magnitude

A straightforward property of a flow field that has been
used by other visualization approaches is velocity mag-
nitude. The velocity magnitude is calculated at a dis-
crete position (i, j, k) by the Euclidean norm ‖·‖2, i. e.,

|F(i, j, k)| =

∥

∥

∥

∥

∥

∥





F1(i, j, k)
F2(i, j, k)
F3(i, j, k)
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∥
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. (1)

The velocity magnitude can be used by our MDTF
to distinguish between regions of high and low
flow/velocity.

4.2. Gradient

To detect sudden changes in the flow, one is required
to consider the velocity gradient of the flow. The gra-

dient field of function F is

∇F(x, y, z) =

(

∂F(x, y, z)

∂x
,
∂F(x, y, z)

∂y
,
∂F(x, y, z)

∂z

)

,

(2)
which defines a tensor represented by a 3 × 3-matrix.

At a discrete position (i, j, k) we can approximate
the nine entries of the matrix by central differencing,
for example,

∂F1(i, j, k)

∂x
=

1

2
(F1(i + 1, j, k) − F1(i − 1, j, k)) . (3)

Gradient Magnitude

The tensor can be investigated by performing an eige-
nanalysis of the matrix. Each eigenvalue of the matrix
tells us the stretch factor of the gradient tensor in the
direction of its eigenvector, see Figure 1. For the gen-
eration of our MDTF, it would be useful to exploit
this property, e. g., to extract features with high gra-
dients. A full eigenanalysis for each discrete vertex lo-
cation in our grid is not practical however, especially
when dealing with unsteady fields, where all data pro-
cessing needs to be done in real time as the data is
streaming in. Instead the product of the three eigen-
values of a matrix can be computed by taking the deter-
minant of the matrix. Thus, |∇F(x, y, z)| can be used
to classify regions due to the dimension of the gradi-
ents. Gradient magnitude is given by the determinant

|∇F(x, y, z)| =

∣

∣
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∣

∣
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Figure 1. Influence of velocity gradient tensor
determined by eigenanalysis: Unit circle gets
stretched by eigenvalues e1 and e2 along the di-
rection of the eigenvectors e1 and e2.

Divergence

Another matrix property that is of interest is the trace
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of the velocity gradient tensor, i. e., its associated ma-
trix, since it is the sum of the eigenvalues. Indeed, the
trace of matrix trace(∇F(x, y, z)) turns out to be the
divergence of the field. The divergence of a vector field
is a scalar value defined by

div F(x, y, z) =
∂F1(x, y, z)

∂x
+

∂F2(x, y, z)

∂y
+

∂F3(x, y, z)

∂z
.

(5)
The divergence measures the rate of expansion per vol-
ume unit, i. e., the difference in inflow and outflow per
unit, see Figure 2. Divergence is positive for expand-
ing and negative for compressing flow fields.

Figure 2. Divergence measures the difference in
inflow and outflow per unit.

Curl Magnitude

The curl of a vector field is a measure for the vector
field’s vorticity (degree of turbulent behavior). It is de-
fined by the vector

curl F(x, y, z) =







∂F3(x,y,z)
∂y

− ∂F2(x,y,z)
∂z

∂F1(x,y,z)
∂z

− ∂F3(x,y,z)
∂x

∂F2(x,y,z)
∂x

− ∂F1(x,y,z)
∂y






. (6)

We can exploit the magnitude of the curl
|curl F(i, j, k)| at each discrete grid location for
our multi-dimensional transfer function to extract
swirling features.

Helicity

Also of interest is the curl in the direction of the veloc-
ity of a flow field, which is called the helicity, illustrated
in Figure 3. The helicity is a scalar function and can
be computed as the dot product of the curl and the ve-
locity:

heli F(x, y, z) = curl F(x, y, z) · F(x, y, z) . (7)

Fcurl

F

Figure 3. Helicity is curl in direction of velocity
F, while curl measures vorticity.

5. MDTFs

Transfer functions provide a means to selectively visu-
alize different aspects of a volume by defining a func-
tion T : R

N → R
M , where usually N = 1 (the data is

scalar), and M = 4 (the function is usually RGBA val-
ued, where RGB is color and A is opacity). In the vector
field context, vector/velocity magnitude has been most
commonly used for the definition of a one-dimensional
transfer function. To enhance the capability to extract
more subtle features, different properties of a vector
field can be incorporated generating an N -dimensional
transfer function to represent each of the N proper-
ties. Characteristic properties of a vector field are those
mentioned in the previous section, i. e., velocity mag-
nitude, gradient tensor determinant, curl magnitude,
helicity and divergence. The combination of these five
scalar values leads to a five-dimensional transfer func-
tion.

In order to define an MDTF, we map each of the
N scalar magnitudes to color channels R, G, and B

and opacity values α by using one-dimensional trans-
fer functions Ti : R → R

4, i = 1, . . . , N . We com-
bine the one-dimensional transfer functions Ti to an
N -dimensional transfer function T : R

N → R
4, ac-

cording to the equations

TRGB(x) =
1

N

N
∑

i=1

Ti,RGB(xi) · Ti,α(xi)

and

Tα(x) =
1

N

N
∑

i=1

Ti,α(xi) ,

where x = (x1, . . . , xN ) ∈ R
N . The color values Ti,RGB

assigned by the individual one-dimensional transfer
functions are averaged in a weighted fashion to de-
fine the color TRGB assigned by the MDTF, where
the weights are given by the individual opacities Ti,α.
The opacity values Ti,α assigned by the individual one-
dimensional transfer functions are averaged as well, to
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define the opacity Tα assigned by the MDTF. T al-
lows one to visualize each component distinctly, but
also makes possible blending of the values in overlap-
ping regions. If extracted features appear to be too
dark, one can increase the intensity by multiplying the
opacity with a constant factor.

The user interface to manipulate our MDTF is
shown in Figure 4(a). For each of the five magnitudes
from Section 4, we provide the user with a bar that al-
lows the user to pick and color the interesting parts of
each property. For example in the third bar of Figure
4(a), we select regions of high curl magnitude and as-
sign to them an orange/red color, while in the fifth bar
of Figure 4(a) we distinguish between regions of high
negative and high positive divergence by assigning to
them the colors blue and white, respectively. The col-
ors and opacities selected using the individual bars are
combined to an MDTF as described above.

6. Implementation

We incorporated MDTFs into a GPU-based 3D tex-
ture advection application in C++ using NVIDIA’s
GeForce FX GPU. The GPU-based advection and ren-
dering system we used for steady and unsteady flow is
similar to the one presented by Weiskopf and Ertl [22].

The 3D texture advection visualization goes through
three basic steps: texture advection, texture blending,
and volume rendering.

For texture advection, 3D volume is advected a slice
at a time, using the first-order Eulerian scheme

x(t − ∆t) = x(t) − ∆tF(x(t), t) ,

where F(x(t), t) is our vector field evaluated at posi-
tion x(t) at time t. The integration step size is ∆t.

For texture injection and blending, we use the ex-
tended blending equation

Tt = Wt · Tt−∆t + Vt · It ,

where the previously advected texture Tt−∆t and the
injection texture It are multiplied by multi-component
weights Wt and Vt to produce the newly advected tex-
ture Tt. In our implementation, we tested two different
settings for noise texture blending. In one case we per-
formed an affine combination of values from the previ-
ously advected texture to produce a fully opaque LIC
type volume. In the other case, we used space-variant
scalar injection weights as described in 3D IBFV [23].

For each fragment rendered, properties of the field
are found using Equation (1) and approximating Equa-
tions (4) – (7) by using central differencing as in Equa-
tion (3). These properties are then evaluated by the
MDTF in Equations (5) and (5).

To render the final image, a direct 3D texture-based
volume rendering is used, by rendering view-aligned
slices.

7. Results

We tested our approach for steady and unsteady
datasets. For steady flow data, we examined a tor-
nado dataset [24] of size 1283. For the unsteady case,
we examined the CFD simulation of five jets consist-
ing of 2000 timesteps of 1283 vector field data1.

Figure 6 shows the components we examined: ve-
locity magnitude, determinant of the gradient tensor,
magnitude of curl, helicity, and divergence, respec-
tively. Solid opaque surfaces are rendered without tex-
ture advection to better show the structure of the prop-
erties. Figure 6(a) shows regions of constant velocity
magnitude. Figure 6(b) shows high absolute values for
the gradient tensor determinant. Figure 6(c) shows a
region of high curl magnitude, which yields the struc-
ture of the vortex core of the tornado. The helical mo-
tion of the tornado is shown in Figure 6(d). In Figure
6(e), the blue regions are regions of high negative di-
vergence, where flow is converging, whereas the white
regions are regions of high positive divergence, where
flow is diverging. The last image shows the full MDTF,
as described in Equations (5) and (5) with N = 5. The
used color and opacity assignments are shown in Fig-
ure 4(a).

Figure 5 shows still images from a real-time anima-
tion achieved from GPU-based texture advection meth-
ods using MDTFs to highlight features of interest. The
parameters used create LIC-type visualizations. The
first two images show the tornado data using differ-
ent MDTFs. The third image shows the five-jet data at
a fixed timestep. When animated with texture advec-
tion methods, these surfaces not only show interesting
structures corresponding to the MDTF, but also show
the direction and the movement of the vector field on
the surfaces as well.

In comparison to the LIC-type visualization of vol-
umes, we also generated animations combining 3D
IBFV with MDTFs. Figure 4(b) shows the results when
applied to the tornado dataset. We highlight helicity,
magnitude, and divergence in the image.

We also show images from three different timesteps
of the five-jet dataset with same MDTFs, highlighting
properties of interest in Figure 7. The blue and white
regions specify areas of high divergence with negative
and positive sign, respectively. Red regions highlights

1 Dataset courtesy of Kwan-Liu Ma, IDAV, University of Cali-
fornia, Davis
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high curl, yellow regions highlight high gradient deter-
minant, and green regions show the helical behavior.2

8. Conclusions and Future Work

Vector field visualization continues to be an important
area of active research. It is important not only to see
where a particular part of the field advects from one in-
stant to the next, but also to visualize globally portions
of the field that have certain behaviors.

We have used various vector calculus quantities that
are important for understanding the flow, and we have
discussed methods for visualizing these behaviors by
using MDTFs. This is beneficial, because it allows us
to extract and track features for 3D flow fields. The
MDTFs alleviate part of the occlusion problem, which
has been the major drawback of 3D flow visualization
techniques.

In our current work, we have integrated our feature
extraction MDTFs with GPU-based 3D texture advec-
tion methods to generate LIC-type images of volumes
as well as 3D IBFV-type images of volumes. While they
sometimes can add clarity to the visualization, they can
sometimes distract from the feature extraction visual-
ization. This is mainly due to still remaining occlud-
ing properties of dense vector field visualization tech-
niques.

In future work we may explore integrating geomet-
ric techniques with our MDTF method with the hope
that the occlusion problems can be avoided even fur-
ther, while gaining valuable insight from them.
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(a) (b)

Figure 4. (a) User interface for an MDTF combining five components: velocity magnitude, determinant of
velocity gradient tensor, curl magnitude, helicity, and divergence (top to bottom). (b) 3D IBFV method
combined with MDTF, applied to tornado dataset.

(a) (b) (c)

Figure 5. Texture advectionmethod combinedwithMDTF: (a) highlighting velocitymagnitude, divergence,
and curl magnitude, applied to tornado dataset; (b) highlighting helicity, divergence, and curl magnitude,
applied to tornado dataset; and (c) highlighting velocitymagnitude, divergence, and curlmagnitude, applied
to timestep 1440 of five-jet dataset.
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(a) (b) (c)

(d) (e) (f)

Figure 6. Feature extraction from tornado dataset selecting regions of (a) constant velocity, (b) high gra-
dient tensor determinant, (c) high curl magnitude, (d) distinct helicity, (e) high negative (blue) and high
positive (white) divergence, and (f) their combination using MDTF.

(a) (b) (c)

Figure 7. Rendering of five-jet dataset at timesteps (a) 1440, (b) 1760, and (c) 1960, with MDTF showing
high curl magnitude (red), high determinant of velocity gradient tensor (yellow), high positive divergence
(white) and high negative divergence (blue), and a feature of helicity (green).
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