
EUROGRAPHICS - IEEE VGTC Symposium on Visualization (2005)
K. W. Brodlie, D. J. Duke, K. I. Joy (Editors)

Dense Geometric Flow Visualization

Sung W. Park,† Brian Budge,† Lars Linsen,†‡ Bernd Hamann,† and Kenneth I. Joy†

† Institute for Data Analysis and Visualization (IDAV)
Department of Computer Science

University of California, Davis
Davis, CA 95616, U.S.A.

‡ Department of Mathematics and Computer Science
Ernst-Moritz-Arndt-Universität Greifswald

Greifswald, Germany

Abstract
We present a flow visualization technique based on rendering geometry in a dense, uniform distribution. Flow
is integrated using particle advection. By adopting ideas from texture-based techniques and taking advantage of
parallelism and programmability of contemporary graphics hardware, we generate streamlines and pathlines ad-
dressing both steady and unsteady flow. Pipelining is used to manage seeding, advection, and expiration of stream-
lines/pathlines with constant lifetime. We achieve high numerical accuracy by enforcing short particle lifetimes
and employing a fourth-order integration method. The occlusion problem inherent to dense volumetric represen-
tations is addressed by applying multi-dimensional transfer functions (MDTFs), restricting particle attenuation
to regions of certain physical behavior, or features. Geometry is rendered in graphics hardware using techniques
such as depth sorting, illumination, haloing, flow orientation, and depth-based color attenuation to enhance visual
perception. We achieve dense geometric three-dimensional flow visualization with interactive frame rates.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-dimensional Graph-
ics and Realism

1. Introduction

Flow visualization has a long tradition in scientific data vi-
sualization. Approaches for 3D vector fields however have
only recently experienced a boost due to the introduction of
programmable graphics hardware with large texture mem-
ory. Consequently, volumetric flow visualization has en-
tered many disciplines of science and engineering including
mechanics, physics, chemistry, meteorology, geology, and
medicine. Many applications are concerned with steady or
unsteady flow over 2D or 3D domains.

Flow visualization approaches can be categorized into di-
rect, geometric, texture-based, and feature-based approaches
[LHD∗04]. Early attempts such as arrow and hedgehog plots

† {sunpark|bcbudge}@ucdavis.edu,
{hamann|joy}@cs.ucdavis.edu
‡ linsen@uni-greifswald.de

or color coding fall into the category of direct flow visualiza-
tion [PLV∗02]. They provide an intuitive image of local flow
properties.

For a better understanding of global flow dynamics
with respect to “long-term” behavior, integration-based ap-
proaches have been introduced. These integrate flow data
leading to trajectories of no-mass particles moving over
time. Geometric flow visualization approaches render the in-
tegrated flow using geometric objects such as lines, tubes,
ribbons, or surfaces [PLV∗02].

In texture-based flow visualization, a texture is used for
a dense representation of a flow field. The texture is filtered
according to the local flow vectors leading to a notion of
overall flow direction [LHD∗04]. The most prominent ap-
proaches are line integral convolution (LIC) [CL93] and tex-
ture advection [MBC93]. The LIC primitive is a noise tex-
ture, which is convolved in the direction of the flow using

c© The Eurographics Association 2005.

Park, Budge, Linsen, Hamann & Joy / Dense Geometric Flow Visualization

filter kernels. In texture advection, the primitive is a “mov-
ing” texel, which is advected in the direction of the flow.

Feature-based flow visualization is concerned with the ex-
traction of specific patterns of interest, or features. Various
features such as vortices, shock waves, or separatrices have
been considered. Each of them has specific physical proper-
ties, which can be used to extract the desired feature. Once a
feature has been extracted, standard visualization techniques
are applied for rendering [PVH∗03].

All these approaches work well for 2D vector fields.
While geometric flow visualization approaches generalize to
volume data, direct and texture-based approaches have oc-
clusion issues in 3D, an inherent problem for dense repre-
sentations. Dense representations are desirable, as they pro-
vide information concerning overall flow behavior and serve
as a context for chosen visualization methods [Wei04].

Previous dense flow visualization methods have been lim-
ited to texture-based methods. Instead of using textures as
primitives, we introduce a dense geometric flow visualiza-
tion technique based on streamlines for steady flow and path-
lines for unsteady flow. We take advantage of the modern
graphics programmable units (GPUs) as a general purpose
computing device and store our geometric primitives using
texture memory. The lines are computed using a trajectory-
based particle-advection method. We adopt the idea of seed-
ing and expiration from texture-based methods. We imple-
ment the lifecycles of the advected particles using a pipeline
model. We achieve high numerical accuracy by enforcing
short particle lifetimes and employing a fourth-order inte-
gration method. By using geometrical primitives instead of
textures, our method is resolution-independent and allows
for a combination of dense and sparse representations lead-
ing to more comprehensible images and animations when
applied to 3D flow fields. The approaches for streamline and
pathline generation and rendering are described in Sections
3 and 4, respectively. They can be applied to 2D and 3D data
sets. Using graphics hardware, we also exploit its speed and
parallelism.

Since we propose a dense flow representation, we must
address occlusion problems in 3D, which we do by ap-
plying multi-dimensional transfer functions (MDTFs) based
on physical flow properties [PBL∗04]. The application of
MDTFs to dense geometric flow visualization is described
in Section 5.

We display our lines using various rendering techniques,
described in Section 6. Essential to a correct visual percep-
tion is depth sorting of the geometric objects. Illumination is
a key technique to enhance spatial perception. Adding halos
clarifies the spatial relationships between overlapping lines.
To orient lines, we highlight their tips, which increases the
perception of motion. Depth perception is enhanced using
depth-based color attenuation like desaturation and darken-
ing. All rendering features have been implemented in graph-
ics hardware to achieve interactivity.

2. Related Work

Flow visualization based on streamlines provides an intuitive
geometric approach for steady flow data sets, as the extracted
line geometry represent trajectories of mass-less particles
moving under the influence of the flow field. Streamlines
have a long tradition in visualization and are used in var-
ious flow visualization systems [BMP∗90]. The equivalent
of streamlines for unsteady flow fields are pathlines, where
the flow field induces the movement of the particle changes
over time [SML04]. When compared to animated stream-
lines [JL00], pathlines better convey change over time.

Today texture-based approaches are more widely used
than streamlines for flow field visualization, as they provide
a dense representation and can be used to display the en-
tire discrete domain. Texture-based approaches work well in
2D. For 3D applications the dense representation of texture-
based approaches leads to occlusion problems, which is a
major advantage of sparse representations.

In [ZSH96], an interactive 3D flow visualization using
streamlines was presented. Illumination is used to improve
the streamlines’ perception. Texture-mapping capabilities of
modern graphics hardware is exploited. Some approaches
generalize streamlines to streamtubes or even stream ribbons
[USM96]. In [FG98], animated opacity-mapped streamlines
called dashtubes are used. These approaches only treat the
visualization of steady flow.

A major challenge when using sparse representations like
streamlines is seeding of starting points for flow integration.
In [TB96], techniques for automated placing of seed points
were developed to achieve a nearly uniform, dense distribu-
tion of streamlines for 2D flow fields. For 3D flow fields,
seeding strategies typically involve analysis of the underly-
ing flow field to visualize certain features using sparse dis-
tributions. In [Lar02], user interaction is involved for seed-
ing and for interactive control over the evolution of stream-
lines for 3D flow fields. Our approach uses dense stream-
lines, which alleviates the problem of seeding at the expense
of introducing occlusion problems. We tackle occlusion by
applying multi-dimensional transfer functions [PBL∗04].

A dense distribution of streamlines involves additional
computations. To achieve interactive frame rates, we make
extensive use of the programmability of contemporary
graphics hardware. We adopt concepts from texture-based
flow visualization. The rendering primitive for texture-based
approaches is a texel. In texture-based approaches using line
integral convolution (LIC) [CL93], the texture is filtered
along the path of a streamline. An oriented version of the
algorithm was discussed in [WGP97] and an extension to
unsteady flow in [SK97]. In texture-based approaches using
texture advection [JL97], texels are moved while the motion
is directed by the flow field. In [vW02], a fast algorithm was
presented based on advection and decay of texels in image
space. Our approach uses particles as primitives instead of

c© The Eurographics Association 2005.

Park, Budge, Linsen, Hamann & Joy / Dense Geometric Flow Visualization

texels. The particles are advected and connected over subse-
quent frames to generate streamlines or pathlines.

3. Dense Geometric Flow Visualization

The concept of dense geometric flow visualization is adopted
from texture-based flow visualization approaches. A render-
ing primitive is advected over time under the influence of the
underlying flow field. In each time frame, a flow integration
step is applied to determine the position of the primitive in
the subsequent frame. The motion of the primitive indicates
local flow behavior. The motion of a large number of prim-
itives distributed densely across the domain visualizes the
behavior of the entire flow field.

While for texture-based approaches a rendering primitive
is represented by color information, for example in form of
noise, our approach uses geometry. Instead of advected tex-
els, we advect particles and connect them over subsequent
frames to form streamlines or pathlines. We first describe
the details of our method for steady flow, before we gener-
alize dense geometric flow visualization to unsteady flow in
the subsequent section.

Let f : D → R be the function of a steady flow field with
a 2D or 3D domain D and a vector-valued range R. To visu-
alize steady flow we render a large number n of streamlines
distributed densely and nearly uniformly over the domain
D. At each point in time (after a start-up phase), exactly n
streamlines exist. Each streamline has a constant lifetime of
k cycles. The lifetime of a streamline is divided into three
phases: (i) seeding, (ii) advection, and (iii) expiration. The
seeding and the expiration phases last only one cycle each,
such that for the major part of its lifetime, the other k − 2
cycles, a streamline is in its advection phase.

The streamlines are grouped into k groups of size n
k ,

where n is chosen to be a multiple of k. All streamlines of
each group start their life simultaneously. The computation
of all streamlines can be processed in a pipeline with k cy-
cles. Figure 1 shows the processing pipeline.

S

S

S

S

S

S

A

A

A

A

A

A

A A

A A

A

A

A

A

A

A

A

A

A

A

A

A

A A

E

E

E

E

E

E

S

S

S

S

S

A A A A

A

A

AA

A

A

Figure 1: Processing pipeline for streamline rendering. Life-
cycle of streamlines is divided into phases seeding (S), ad-
vection (A), and expiration (E).

3.1. Seeding

Our method makes use of quasi-random numbers for a uni-
form seeding across the domain. Uniform seeding is neces-
sary in order for all regions in the flow to receive attention.
One reason to use quasi-random number generation is that
their computation is reasonably simple to perform in graph-
ics hardware. Another reason is that they tend to provide
a more well-distributed set of samples than pseudo-random
generators [Nie92].

One of the best quasi-random methods is the Hammersley
sequence. However, the Hammersley sequence is limited in
that the user is restrained to a fixed number of points, and
the order of generation matters. Instead, we use the closely
related Halton sequence for seed generation, since the Hal-
ton sequence has a coverage approaching the Hammersley
sequence, but has the nice property that new seeds can be
adaptively generated [Kel96, Nie92].

In general, there are two methods for generating the Hal-
ton sequence. The first method is an iterative solution that
has O(log i) complexity for each element calculation, where
Hi is the ith element of the Halton sequence. The sec-
ond technique involves generating Hi from Hi−1. This is
ideal since the calculation is extremely fast, O(1), and in
most cases exceeds the calculation speed of pseudo-random
number generation. Unfortunately, there is no easy way to
keep state between successive calculations when working on
graphics hardware. Thus, the second method is currently not
possible.

3.2. Advection

Streamlines are generated by integrating flow over time. The
approach we are following is to advect particles over time in
the direction induced by the flow. The streamlines are deter-
mined as the paths of the particles advected over time.

Let p(t) ∈ D be the position of a particle at time t. The
position p(0) at time t = 0 denotes the seed location for that
particle. The path of the particle is defined as

p(t) = p(0)+
Z t

0
f
(

p(x)
)

dx .

The integral equation must be solved using numerical inte-
gration methods. Most commonly a simple first-order Euler
method or a second-order Runge-Kutta method is used.

The Euler method computes the particle position p(t +∆t)
at time t +∆t from the position p(t) at time t as

p(t +∆t) = p(t)+∆t · f
(

p(t)
)

,

where ∆t is a small time step. The second-order Runge-Kutta
method computes a more precise approximation by utilizing
the Euler approximation, denoted as pE(t + ∆t), as a look-

c© The Eurographics Association 2005.

Park, Budge, Linsen, Hamann & Joy / Dense Geometric Flow Visualization

ahead estimate and defining

p(t +∆t) = p(t)+∆t ·
f
(

p(t)
)

+ f
(

pE(t +∆t)
)

2
.

Since keeping integration error low over time is one of our
major goals, we use a fourth-order Runge-Kutta method
based on the computations

x1 = f
(

p(t)
)

,

x2 = f
(

p(t)+
∆t
2
·x1

)

,

x3 = f
(

p(t)+
∆t
2
·x2

)

,

x4 = f
(

p(t)+∆t ·x3

)

, and

p(t +∆t) =
x1 +2(x2 +x3)+x4

6
.

3.3. Expiration

The lifetime of a streamline expires k cycles after its gener-
ation by the seeding process. The particle dies at this point,
i. e., it is not advected any further. In the next cycle it will be
replaced by a new particle at a new seed location. To achieve
high integration accuracy during advection, we favor short
lifetimes.

3.4. Rendering

A streamline is represented by a polyline define by connect-
ing the successive discrete locations that the corresponding
particle traverses during advection. Streamlines are rendered
using line primitives. Line primitives offer the greatest sim-
plicity and speed, yet they can provide good visual qual-
ity when coupled with appropriate rendering techniques (see
Section 6).

3.5. Implementation

Since we compute and render many streamlines using a
higher-order integration method, we exploit the parallelism
of contemporary graphics hardware for efficiency. To imple-
ment the entire processing pipeline in graphics hardware, we
also have to exploit the programmability of graphics hard-
ware.

For particle seeding, we have implemented a Halton se-
quence generator in the vertex shader to not reduce the effi-
ciency of the pipelining process using the fragment shader.
As input, we stream a set of vertices, where each vertex holds
a 2D index corresponding to a texel in a 2D texture. Each
vertex streamed into the vertex shader generates two or three
Halton numbers for 2D or 3D flow, respectively, and passes
the fragment shader value. At the end of this stage, the ren-
dered texture contains the location of a seed particle in each
texel.

The advection component of the algorithm takes as input a
set of particle positions, and generates a corresponding set of
advected particles. We have implemented the advection by
passing two textures, the vector field and the particle texture.
These textures are used by a fragment shader to generate
advected particles, which are written to a new render texture.

A single advection is performed by first sampling each
texel of the texture that holds the vector field at time t in the
fragment shader. For each particle’s position the vector field
texture is looked up. The vector field texture is sampled three
more times at different locations based on the particle’s po-
sition according to the fourth-order Runge-Kutta integration
method. Finally, the advected particles are written to a new
texture, which is used for both rendering and further advec-
tion in the following time steps.

Rendering is performed by connecting particle positions
over time using line primitives. We use a buffer that holds
positions of each seed in its k cycles of life. The rendering
component uses as input the result of the last particle advec-
tion. The advected particle positions are first extracted from
the texture. Then, the particles are added into the buffer in
its proper cycle. Finally, the geometry is rendered for each
particle up to the last advected position.

4. Unsteady Flow

When function f describes an unsteady flow field with do-
main D being the Cartesian product of the two or three
spatial dimensions and a temporal dimension, we replace
streamlines by pathlines. Pathlines are defined as paths of
particles in a flow field that changes over time, i. e., during
pathline generation (or particle advection).

We visualize unsteady flow by rendering a dense, uni-
form distribution of pathlines with constant lifetime. The
lifetime of a pathline consists again of the three phases seed-
ing, advection, and expiration. The seeding phase, the expi-
ration phase, and the line rendering are performed as done
for streamlines.

During advection we have to account for the changing
flow field. The flow integration for unsteady fields is de-
scribed by

p(t) = p(0)+
Z t

0
f
(

p(x),x
)

dx ,

where p(t) describes the position of a particle at time t and
function f depends on both position of the particle and time.
We use fourth-order Runge-Kutta integration, which is gen-
eralized for time-dependent fields to the equations

x1 = f
(

p(t), t
)

,

x2 = f
(

p(t)+
∆t
2
·x1, t +

∆t
2

)

,

x3 = f
(

p(t)+
∆t
2
·x2, t +

∆t
2

)

,

c© The Eurographics Association 2005.

Park, Budge, Linsen, Hamann & Joy / Dense Geometric Flow Visualization

x4 = f
(

p(t)+∆t ·x3, t +∆t
)

, and

p(t +∆t) =
x1 +2(x2 +x3)+x4

6
.

For implementation purposes, we use a texture for the vec-
tor field at time t +∆t in addition to the textures for the vector
field at time t and the particle texture. The numerical integra-
tion is performed using six texture reads.

5. MDTFs

To capture the entire flow field we use a dense, uniform seed-
ing strategy for streamline or pathline generation. For 3D
fields, dense structures cause occlusion problems, which we
tackle by applying MDTFs [PBL∗04]. MDTFs can be used
to select regions of a certain physical behavior, called fea-
tures. We extract features with respect to five physical quan-
tities of flow fields, the quantities being velocity magnitude,
gradient magnitude, divergence, curl magnitude, and helic-
ity. We have derived equations for each of the five magni-
tudes in [PBL∗04]. We only visualize streamlines or path-
lines, respectively, within the extracted features.

In order to define an MDTF, we map each of the N = 5
scalar magnitudes to color channels R, G, and B and opacity
values α by using 1D transfer functions Ti : IR → IR4, i =
1, . . . ,N. We combine the 1D transfer functions Ti to an N-
dimensional transfer function T : IRN

→ IR4, according to the
equations

TRGB(x) =
1
N

N

∑
i=1

Ti,RGB(xi) ·Ti,α(xi)

and

Tα(x) =
1
N

N

∑
i=1

Ti,α(xi) ,

where x = (x1, . . . ,xN) ∈ IRN . The color values Ti,RGB as-
signed by the individual 1D transfer functions are averaged
in a weighted fashion to define the color TRGB assigned by
the MDTF, where the weights are given by the individual
opacities Ti,α. The opacity values Ti,α assigned by the in-
dividual 1D transfer functions are averaged as well, to de-
fine the opacity Tα assigned by the MDTF. The function T
allows one to visualize each component distinctly, but also
makes possible blending of the values to extract a feature,
whose behavior is defined by a combination of the five phys-
ical quantities/properties.

6. Rendering techniques

We render line primitives whose simplicity is advantageous
for rendering many streamlines/pathlines at high frame rates.
But, this qpproach requires us to apply certain rendering
techniques to enhance visual perception in 3D settings.

6.1. Depth Sorting

Most importantly, we need to sort our line primitives ac-
cording to their depth in viewing direction, which is used
to render lines in the correct order. When reading data from
the GPU, performing a depth sort on the central processing
unit (CPU), and passing the data back to the GPU, data ex-
change becomes the bottle neck of our entire rendering sys-
tem. Thus, we perform depth sorting on the GPU.

In a bitonic sort [Bat68], a sequence of numbers (repre-
senting depth in our application) is recursively divided into
two subsequences of equal length, where the first subse-
quence is being sorted recursively in ascending and the sec-
ond subsequence in descending order. The two subsequences
are merged by comparing (and possibly switching) the ith
value of the first subsequence with the ith value of the second
subsequence for all positions i and performing the merging
step recursively for both subsequences.

The beauty of the bitonic sort algorithm is that its mecha-
nism is independent of the values to be sorted and thus can be
implemented in hardware. Moreover, it is amenable to paral-
lel architectures like GPUs. In [PDC∗03], an implementation
of a bitonic sort algorithm on a GPU was proposed. We use
an improved version of this implementation as described in
[KSW04]. The depth and indices of all particles are stored
in a 2D texture. The sorting algorithm first sorts the depth
values of all the rows of the texture simultaneously and then
merges the rows.

6.2. Illumination

Flat shading algorithms of line primitives impair spatial per-
ception of the rendered geometry. In [ZSH96], a method for
rendering illuminated lines at interactive frame rates is de-
scribed by utilizing texture mapping hardware. The light in-
tensity I(x) at each point x on a line segment is computed
by applying a slightly modified Phong model. The model is
given by

I(x) = Iambient(x)+ Idi f f use(x)+ Ispecular(x) ,

where the ambient portion is kept constant, Iambient =
kambient , the diffuse portion is defined as Idi f f use =
kdi f f use(l ·n) with light direction l and normal vector n, and
the specular component is defined as Ispecular = kspecular(v ·
r)m with viewing direction v and reflection vector r. The il-
lumination coefficients kambient , kdi f f use, and kspecular and
the exponent m are application-specific.

Using geometric properties the model is adjusted to

Idi f f use = kdi f f use

(

√

1− (l · t)2
)p

and

Ispecular = kspecular

(

√

1− (l · t)2
√

1− (v · t)2−(l·t)(v·t)
)m

.

The surface-specific normal vector n and reflection vector

c© The Eurographics Association 2005.

Park, Budge, Linsen, Hamann & Joy / Dense Geometric Flow Visualization

r are replaced by expressions using tangent vector t, such
that the model can be applied to line segments. To compen-
sate for excessive brightness, we raise the diffuse portion to
the power of an exponent p. We implement the illumination
algorithm in graphics hardware using a 4× 4 texture trans-
formation matrix for the computation of diffuse and specular
reflection as described in [SZH97].

6.3. Haloing

When overlapping lines occur, their spatial relationship can
be clarified using haloing [ARS79]. We render a dark halo
with a width of six pixels around each line that is rendered
with a width of 1.5 pixels. The halo of a line obstructs the
view of any line behind it.

6.4. Flow Orientation

For any flow visualization it is important to indicate the ori-
entation of a flow direction. In our system flow direction is
visualized by motion. In addition, we intuitively emphasize
orientation by highlighting the tip of each streamline or path-
line, respectively. Even in still images the flow orientation
can be perceived.

6.5. Depth-based Attenuation

Although depth sorting, illumination, and haloing effectively
support visual perception, it may be desirable to further en-
hance depth perception by the use of color attenuation. We
have implemented the two attenuation methods of desatura-
tion and darkening [SM02]. Desaturation reduces the satura-
tion of a color while maintaining hue and brightness, which
leads to the visual impression of light being absorbed or scat-
tered by particles (like smog or fog) in the atmosphere. Dark-
ening reduces the brightness of a color while maintaining
hue and saturation. The two attenuation methods can also be
combined.

7. Results and Discussion

We tested our approach for steady and unsteady data
sets. For steady flow data, we examined a tornado data
set [CM93] of size 1283. For the unsteady case, we examined
a CFD simulation of five jets consisting of 2000 timesteps of
1283 vector field data.†

Figure 3(a)-(c) shows a dense geometric flow visualiza-
tion for the tornado data set using streamlines. In Figure 3(a),
we have rendered polylines using flow orientation, depth-
based attenuation, and haloing. The streamlines are not lit

† Data set courtesy of Kwan-Liu Ma, IDAV, University of Califor-
nia, Davis

cycles # seeds # active streamlines frame rate

16 64 1024 66 fps
16 256 4096 66 fps
32 256 8192 22 fps
32 1024 32768 6.69 fps
64 256 16384 7.43 fps
128 64 8192 7,43 fps

Table 1: Frame rates for varying number of seeds, cycles,
and active streamlines.

nor are they sorted by depth. Figure 3(b) shows the impor-
tance of using illumination and depth sorting. The visual per-
ception has increased significantly. In Figure 3(c), we have
used an MDTF that extracts regions of high curl (or vortic-
ity) magnitude. The streamlines are only drawn within the
vortex area.

In our current implementation, the six pixel-wide halo-
ing lines cannot be depth-sorted in conjunction with our 1.5
pixel-wide streamlines/pathlines, as they represent different
types of geometric objects. Thus, haloing only looks correct
when we extract features with low complexity, i. e., when the
artifacts caused by omitting depth-sorting are minimal.

Figures 3(d) and 2 show dense geometric flow visualiza-
tion for the jets data set. In Figure 3(d), we have used depth-
sorting and illumination in conjuction with depth-based at-
tenuation to render streamlines at time step 1500. MDTFs
are used to extract regions with high curl magnitude and high
velocity magnitude. Figure 2 shows three steps of an ani-
mation of unsteady flow using pathlines. The pictures have
been captured at time steps 1120, 1400 and 1800. The im-
ages have been rendered using haloing, illumination, flow
orientation, and depth-based attenuation.

The computation times for our rendering depend on the
rendering techniques used and on the number of streamlines
or pathlines, respectively. Table 1 lists frame rates for steady
data when rendering illuminated streamlines. When apply-
ing depth sorting frame rates decrease by a factor five to
ten. For unsteady data when rendering pathlines, we have
achieved frame rates up to ten frames per second. Contrary to
texture-based flow visualization approaches, the frame rates
achieved when using dense geometric flow visualization are
(almost) independent of the size of the data set. Thus, for
larger data sets that still fit in the texture memory, frame
rates are close to the ones listed above. For unsteady data,
data transfer, i. e. copying the individual time steps to the
GPU, becomes a bottle-neck.

Another nice property of our dense geometric flow visu-
alization approach when compared to texture-based methods
is that no spatial-temporal coherence problems occur. When
coupling dye advection with texture-based flow visualiza-
tion techniques, blurring based on numerical diffusion arti-

c© The Eurographics Association 2005.

Park, Budge, Linsen, Hamann & Joy / Dense Geometric Flow Visualization

facts can be observed, which has only been fixed recently in
[Wei04]. As our advection primitives are pathlines, i. e., geo-
metric objects, our advection step is not subject to diffusion.

8. Conclusions and Future Work

We have presented a flow visualization approach based on
rendering geometry in a dense, uniform distribution. We
have integrated flow using particle advection to generate
streamlines (for steady flow) and pathlines (for unsteady
flow). Ideas from texture-based flow visualization have been
adopted. Pipelining is used to manage seeding, advection,
and death of streamlines/pathlines with constant lifetime.
Our method uses a fourth-order Runge-Kutta method, which
has been efficiently implemented in hardware by exploit-
ing parallelism and programmability of graphics hardware.
We have addressed the occlusion problem inherent to dense
volumetric representations by applying MDTFs restricting
particle attenuation to regions of certain physical behavior,
features. Geometry is rendered using several techniques to
enhance visual perception. We have applied our approach
to steady and unsteady 3D flow fields achieving interactive
frame rates.

Future research efforts will be directed at employing a
depth-sorted haloing strategy, using adaptive time steps for
flow integration, experimenting with different types of ge-
ometry (requires programmability of the graphics card’s ge-
ometry engine), and extending the approach to unstructured
and irregularly grid-structured data.

Acknowledgments

This work was supported by the National Science Foundation un-
der contract ACI 9624034 (CAREER Award), through the Large
Scientific and Software Data Set Visualization (LSSDSV) program
under contract ACI 9982251, through the National Partnership for
Advanced Computational Infrastructure (NPACI) and a large Infor-
mation Technology Research (ITR) grant; the National Institutes of
Health under contract P20 MH60975-06A2, funded by the National
Institute of Mental Health and the National Science Foundation; by
a United States Department of Education Government Assistance in
Areas of National Need (DOE-GAANN) grant #P200A980307; and
through a Hewlett-Packard contribution to a Graduate Student Fel-
lowship. We thank the members of the Visualization and Computer
Graphics Research Group at the Institute for Data Analysis and Vi-
sualization (IDAV) at the University of California, Davis.

References

[ARS79] APPEL A., ROHLF F. J., STEIN A. J.: The haloed line
effect for hidden line elimination. Computer Graphics
13, 2 (1979), 151–157. 6

[Bat68] BATCHER K. E.: Sorting networks and their applica-
tions. In Proceedings of AFIPS Spring Joint Comput-
ing Conference (1968), vol. 32, pp. 307–314. 5

[BMP∗90] BANCROFT G. V., MERRITT F. J., PLESSEL T. C.,
KELAITA P. G., MCCABE R. K., GLOBUS A.:
FAST: a multi-processed environment for visualiza-
tion of computational fluid dynamics. In VIS ’90:
Proceedings of IEEE conference on Visualization ’90
(1990), IEEE Computer Society Press, pp. 14–27. 2

[CL93] CABRAL B., LEEDOM L.: Imaging vector fields us-
ing line integral convolution. In Computer Graphics
Proceedings (1993), pp. 263–269. 1, 2

[CM93] CRAWFIS R. A., MAX N.: Texture splats for 3d vec-
tor and scalar field visualization. In Proceedings of
IEEE Conference on Visualization 1993 (1993), Niel-
son G. M., Bergeron D., (Eds.), IEEE, IEEE Computer
Society Press, pp. 261–266. 6

[FG98] FUHRMANN A., GRÖLLER E.: Real-time techniques
for 3d flow visualization. In VIS ’98: Proceedings of
IEEE conference on Visualization ’98 (1998), IEEE
Computer Society Press, pp. 305–312. 2

[JL97] JOBARD B., LEFER W.: The motion map: efficient
computation of steady flow animations. In VIS ’97:
Proceedings of IEEE conference on Visualization ’97
(1997), IEEE Computer Society Press, pp. 323–328.
2

[JL00] JOBARD B., LEFER W.: Unsteady flow visualization
by animating evenly-spaced streamlines. Computer
Graphics Forum 19, 3 (2000), 21–31. 2

[Kel96] KELLER A.: Quasi-monte carlo methods in computer
graphics: The global illumination problem. Lectures
in Applied Mathematics 32 (1996), 455–469. 3

[KSW04] KIPFER P., SEGAL M., WESTERMANN R.: Uber-
flow: A GPU-based particle engine. In Proceedings
of Eurographics Conference on Graphics Hardware
(2004). 5

[Lar02] LARAMEE R. S.: Interactive 3d flow visualization
using a streamrunner. In CHI 2002 Conference on
Human Factors in Computing Systems, Extended Ab-
stracts (2002), pp. 804–805. 2

[LHD∗04] LARAMEE R. S., HAUSER H., DOLEISCH H.,
VROLIJK B., POST F. H., WEISKOPF D.: The state of
the art in flow visualization: Dense and texture-based
techniques. Computer Graphics Forum 23 (2004). 1

[MBC93] MAX N., BECKER B., CRAWFIS R.: Flow volumes
for interactive vector field visualization. In VIS ’93:
Proceedings of IEEE conference on Visualization ’93
(1993), pp. 19–24. 1

[Nie92] NIEDERREITER H.: Random Number Generation and
quasi-Monte Carlo Methods. SIAM, 1992. 3

[PBL∗04] PARK S., BUDGE B., LINSEN L., HAMANN B., JOY
K. I.: Multi-dimensional transfer functions for inter-
active 3d flow visualization. In Proceedings of The
12th Pacific Conference on Computer Graphics and
Applications - Pacific Graphics 2004 (2004), Cohen-
Or D., Ko H.-S., Terzopoulos D.„ Warren J., (Eds.). 2,
5

[PDC∗03] PURCELL T. J., DONNER C., CAMMARANO M.,
JENSEN H. W., HANRAHAN P.: Photon mapping on
programmable graphics hardware. In HWWS ’03: Pro-
ceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware (2003), Eurograph-
ics Association, pp. 41–50. 5

[PLV∗02] POST F. H., LARAMEE R. S., VROLIJK B., HAUSER
H., DOLEISCH H.: Feature extraction and visuali-
sation of flow fields. In Eurographics 2002, State

c© The Eurographics Association 2005.

Park, Budge, Linsen, Hamann & Joy / Dense Geometric Flow Visualization

of the Art Reports (2002), Fellner D., Scopigno R.,
(Eds.), The Eurographics Association, IEEE Com-
puter, pp. 69–100. 1

[PVH∗03] POST F. H., VROLIJK B., HAUSER H., LARAMEE
R. S., DOLEISCH H.: The state of the art in flow visu-
alization: Feature extraction and tracking. Computer
Graphics Forum 22, 4 (2003), 775–792. 2

[SK97] SHEN H., KAO D.: UFLIC: A line integral convolu-
tion algorithm for visualizing unsteady flows. In Pro-
ceedings of IEEE Conference on Visualization 1997
(1997), Yagel R., Hagen H., (Eds.), IEEE Computer
Society Press, pp. 317–322. 2

[SM02] SCHUSSMAN G., MA K.-L.: Scalable self-orienting
surfaces: A compact, texture-enhanced representation
for interactive visualization of 3d vector fields. In
Proceedings of Tenth Pacific Conference on Computer
Graphics and Applications – Pacific Graphics 2002
(2002), Coquillart, Shum„ Hu, (Eds.), IEEE, IEEE
Computer Society Press. 6

[SML04] SCHROEDER W., MARTIN K., LORENSEN B.: The
Visualization Toolkit An Object-Oriented Approach To
3D Graphics, 3 ed. Kitware, Inc. publishers, 2004. 2

[SZH97] STALLING D., ZÖCKLER M., HEGE H.-C.: Fast dis-
play of illuminated field lines. IEEE Transactions
on Visualization and Computer Graphics 3, 2 (1997),
118–128. 6

[TB96] TURK G., BANKS D.: Image-guided streamline
placement. In International Conference on Computer
Graphics and Interactive Techniques (1996), pp. 453–
460. 2

[USM96] UENG S. K., SIKORSKI K., MA K.-L.: Efficient
streamline, streamribbon, and streamtube construc-
tions on unstructured grids. IEEE Transactions on Vi-
sualization and Computer Graphics (1996), 100–110.
2

[vW02] VAN WIJK J.: Image based flow visualization. In Pro-
ceedings of the 29th Conference on Computer Graph-
ics and Interactive Techniques (2002), Spencer S.,
(Ed.), vol. 21 of ACM Transactions on Graphics, ACM
Press, pp. 745–754. 2

[Wei04] WEISKOPF D.: Dye advection without the blur: A
level-set approach for texture-based visualization of
unsteady flow. Computer Graphics Forum (Euro-
graphics 2004) 23, 3 (2004), 479–488. 2, 7

[WGP97] WEGENKITTL R., GRÖLLER E., PURGATHOFER W.:
Animating flow fields: Rendering of oriented line inte-
gral convolution. In CA ’97: Proceedings of Computer
Animation (1997), IEEE Computer Society, p. 15. 2

[ZSH96] ZÖCKLER M., STALLING D., HEGE H.-C.: Interac-
tive visualization of 3d-vector fields using illuminated
stream lines. In VIS ’96: Proceedings of IEEE con-
ference on Visualization ’96 (1996), IEEE Computer
Society Press. 2, 5

(a)

(b)

(c)

Figure 2: Animation with dense geometric flow visualiza-
tion applied to unsteady flow of jets data set. Pathlines are
rendered at time steps 1120, 1400, and 1800.

c© The Eurographics Association 2005.

Park, Budge, Linsen, Hamann & Joy / Dense Geometric Flow Visualization

(a) (b)

(c) (d)

Figure 3: Dense geometric flow visualization applied to steady flow. Tornado data set: Streamlines are rendered using (a)
haloing and flow orientation or (b) depth sorting and illumination in conjuction with depth-based attenuation. MDTFs are used
for feature extraction, e. g., regions of high curl magnitude (c). Time step 1500 of jets data set: MDTFs extract regions of high
curl magnitude and high velocity magnitude (d).

c© The Eurographics Association 2005.

