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Discrete Sibson Interpolation
Sung W. Park, Lars Linsen, Oliver Kreylos, John D. Owens, and Bernd Hamann

Abstract— Natural-neighbor interpolation methods, such as Sib-
son’s method, are well-known schemes for multivariate data
fitting and reconstruction. Despite its many desirable properties,
Sibson’s method is computationally expensive and difficult to im-
plement, especially when applied to higher-dimensional data. The
main reason for both problems is the method’s implementation
based on a Voronoi diagram of all data points. We describe a
discrete approach to evaluating Sibson’s interpolant on a regular
grid, based solely on finding nearest neighbors and rendering and
blending d-dimensional spheres. Our approach does not require
us to construct an explicit Voronoi diagram, is easily implemented
using commodity three-dimensional graphics hardware, leads to
a significant speed increase compared to traditional approaches,
and generalizes easily to higher dimensions. For large scattered
data sets, we achieve two-dimensional (2D) interpolation at
interactive rates and 3D interpolation (3D)with computation
times of a few seconds.

Index Terms— Scattered Data Interpolation, Natural-Neighbor
Interpolation, Graphics Hardware.

(a) (b)

(c) (d)

Fig. 1. Discrete Sibson interpolation and visualization of Bucky Ball data
set (data size:1283) using (a) 100, (b) 1000, and (c) 10,000 scattered data
points compared to visualization using (d)1283 grid points.
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I. I NTRODUCTION

Scattered data visualization has been an area of interest
for several decades. Recently, it has been experiencing a
revival due to advances in distributed sensor networks, where
small, independent sensors are used to collect data at random
(scattered) locations in space and time. In order to apply
standard visualization techniques such as contouring, slicing,
and volume rendering to scattered data, it is necessary to define
a reconstruction function that can be evaluated at arbitrary
locations. A new challenge arises with the decreasing manu-
facturing costs of the sensors, which allows for many sensors
to be deployed simultaneously. Highly efficient reconstruction
methods are needed to process large streams of time-varying
data originating from large sensor networks in real time.

A measured quantity, e. g., temperature or humidity, vary-
ing over time, can be described as a mathematical function
f (x,y,z, t). Each sensori reports a stream of samplesfi(t)
of that function, taken at the sensor’s position(xi ,yi ,zi)1. In
order to analyze or visualize a measured data set, one has
to reconstruct the functionf from the samples reported by
the sensor network. It is desirable to have visualization tools
with the capability to reconstruct and visualize two- and three-
dimensional scattered data sets with many data points in real
time.

Most scientific visualization techniques require data to include
connectivity information. Scattered data in “raw format” does
not provide such information. A common approach to deal
with unconnected data is the use of field reconstruction
methods producing an analytical definition that is later re-
sampled to a grid format supported by standard visualization
methods such as contouring or volume rendering. Existing
scattered data techniques such as radial basis function meth-
ods, Shepard’s method and its variants, Hardy’s method, and
triangulation-based methods are based on using all samples or
selected local subsets of samples. Many of these techniques
are computationally expensive and do not scale well with the
number of data points; they are not geared toward real-time
visualization.

Sibson’s natural-neighbor interpolation method is a scattered
data interpolation scheme based on a Voronoi (Dirichlet,
Thiessen) diagram of a data set’s sample locations. We present
the mathematical background of, and definitions regarding,
Voronoi diagrams and Sibson’s method in Section III. Sibson’s
method is known to produce good interpolation results and
has desirable properties such as linear precision, locality, and
C1-continuity [1]. Similar to many other schemes, however,
Sibson’s method is computationally expensive and difficult to

1In the case of moving sensors, the valuesxi , yi , and zi are themselves
functions of time.
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compute especially when it is extended to higher dimensions.
The high computational cost is due to the fact that each
evaluation of the interpolant requires the insertion of a site
into the sample location’s Voronoi diagram to calculate the
proper interpolation weights of neighboring samples [2]. The
implementation difficulty is due to the difficulty of explicitly
representing higher-dimensional Voronoi diagrams, especially
when facing limited numerical precision and samples in de-
generate positions.

We present a discretized approximation to Sibson’s interpola-
tion scheme. Instead of computing the interpolation function
using its traditional geometric definition, we use a more
efficient scheme operating on a discrete domain. One straight-
forward way of discretizing Sibson’s method is to use a
discrete Voronoi diagram, which can be computed efficiently
using three-dimensional graphics hardware [3]. However, the
algorithm described by Hoff et al. [3] does not scale well
to large data sets. We decided to use an alternative approach
exploiting geometrical properties of Sibson’s method, which
reduce the interpolation algorithm to rendering and blending
d-dimensional spheres whose radii are determined by the dis-
tance between an evaluation location and its nearest neighbor
in the data set. This approach no longer requires us to use an
explicit Voronoi diagram; we use akd-tree to efficiently find
nearest neighbors instead. Our approach, described in detail in
Section IV, generalizes to higher dimensions.

Moreover, we show that our algorithm maps well to mod-
ern programmable graphics hardware. In the past few years,
there has been an explosion in both the performance and
programmability of desktop graphics hardware. Today’s graph-
ics processors offer the capability of running user-specified
programs on each vertex and fragment. These capabilities
are not only used in producing more complex and detailed
shaders for graphics applications [4], but also for tasks
diverging from traditional polygon-based graphics, such as
visual simulation [5], numerical computation [6], or more
general-purpose computing [7]. The rapid performance growth
of these graphics processors coupled with their ubiquity in
modern computers make them particularly interesting targets
for visualization tasks such as the one described in this paper.

With full optimization, we show that in the two-
dimensional case, function/image reconstruction can be done
at interactive frame rates, e. g., we can reconstruct an image at
an output resolution of512×512pixels from50,000scattered
data points in0.125seconds. In the three-dimensional case, the
speed-up is also quite significant, e. g., we can reconstruct a
volume field at an output resolution of128×128×128voxels
from 100,000 scattered data points in a few seconds. Imple-
mentation details and results are in Section V. Overall, our
algorithm leads to a significant increase in speed for large data
sets, reduced storage space, and simplicity in implementation
compared to previous methods.

II. RELATED WORK

Scattered data interpolation has been a research topic for
several decades and a large number of scattered data interpola-
tion techniques are well-understood today. Typically, scattered
data methods are generalized into methods based on inverse
distances, radial basis functions, and natural-neighbors. Many
good surveys discuss and compare extensively on different
scattered data methods [1], [2], [8]–[13].

Inverse distance weighted methods are based on the assump-
tion that the interpolated value should be influenced more by
nearby points and less by more distant points. The original
work by Shepard [14] used a global scheme, which tends to
flatten the recontruction and whose computational costs make
it non-practical for applications to large data sets. Many local
and modified schemes have been introduced to address these
issues. Using inverse ditance weighted methods, each point
and has a radially symmetric influence. This isotropism can
lead to undesired field reconstruction artifacts when sampling
rates differ significantly in different directions.

Radial basis function methods is regarded as being among
the most elegant schemes from the mathematically point
of view [8]. Functions like Hardy’s multiquadrics, inverse
multiquadrics, and thin-plate spline (TPS) interpolants have
been applied to a large variety of scattered data problems. They
allow for anisotropic support, but require solving a system of
N linear equations withN unknowns. Thus, many methods
cannot effectively handle large data sets due to instability
and computational costs associated with the computation of
radial interpolation that grows with increasing distance from
scattered data sites. Local versions of these methods have been
proposed to deal with larger data sets.

Natural-neighbor interpolation, introduced by Sibson [15], is
a popular method used in many fields such as environmental
and geotechnical engineering and solid mechanics [16], [17].
Natural-neighbor interpolation is constructed on the basis of an
underlying Voronoi diagram of a data set’s sample locations.
For natural-neighbor interpolation, a sample’s weight is not
dictated by the same length measure in all dimensions, but by
the appropriate Lebesgue measure of the space directions [17].
This allows for anisotropic support. Among other properties,
natural-neighbor interpolation methods are local, require local
neighbors only, has linear precision, and isC1 continuous
everywhere except at the data sites. Natural-neighbor interpo-
lation is superior to distance-based weights due to its density
variation in the area-based weights. Unlike the radial basis
function methods, it doesn’t require solving a linear system
of equations. Its ability to handle highly irregular distribu-
tion of nodes. However, natural-neighbor interpolation in its
traditional implementation is computationally more intense
than other approaches (especially in higher dimensions) due
the Voronoi diagram computation and Voronoi insertion per
interpolant.

Implementation of scattered data algorithms has been tra-
ditionally done in the CPU. The Advances of GPUs in
recent years, however, have made it an attractive target for
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computationally complex and demanding scientific and visu-
alization applications. Hoff et al. [3] have computed a discrete
Voronoi diagram taking advantage of the graphics hardware.
Since then, GPUs have been used in other computational
geometry problems, for example, for accelerating distance
field computations [18]. GPUs have been applied to scattered
data interpolation methods as well. Jang et al. [19] describe
a method of accelerating radial basis functions on GPUs.
Applying-GPU assisted natural-neighbor interpolation has also
been described by Fan et al for 2D data set. [20]. Their
approach utilizes GPU to compute areas of contribution and
require a Delaunay triangulation of a given data set.

III. D EFINITIONS AND BACKGROUND

A. Voronoi Diagram

A standard Voronoi diagram is a partitioning of a given domain
into cells (tiles) based on a finite set of given scattered data
points, calledsites. Each cell contains of the points closest to
a particular site. More specifically, consider ad-dimensional,
convex domainΩ ⊂ IRd and a setN = {p1,p2, . . . ,pm} of m
scattered data points. The Voronoi diagramV (N) of the setN
over domainΩ is a domain partitioning into regionsV(pi)⊂
Ω, such that any point inV(pi) is closer to sitepi than to any
other sitep j ∈N ( j 6= i). The regionV(pi) associated with site
pi is called aVoronoi celland is defined as

V(pi) = {p ∈Ω:d(p,pi) < d(p,p j) ∀ j 6= i},
where d is a distance metric, usually the Euclidean one.
The Voronoi cells are convex polygons/polyhedra inIRd.
Figure 2(a) shows the Voronoi diagram for an example with
four sitesp1, . . . ,p4, where the colors of the four Voronoi cells
represent the function values at the sites.

A number of algorithms exist today for computing Voronoi
diagrams of points in two-dimensions, three-dimensions, and
higher-dimensional spaces. Efficient adaptive precision and
exact arithmetics are active areas of research. There are
also many approximate versions of Voronoi diagrams, and
computations based on space subdivision.

B. Sibson’s Interpolant

Sibson [15] introduced a natural-neighbor interpolation
scheme that uses a weighted average of surrounding or neigh-
boring data sites to compute the interpolated function. The
fundamental difference to Shepard’s method is the assignment
of the weights using natural-neighbors.

Figure 2 illustrates how Sibson’s interpolant is computed using
an example with four sites. Given a set of sites, the Voronoi
diagram of the set of sites is computed first, as shown in
Figure 2(a). To interpolate the function value at a pointp, p
is inserted into the Voronoi diagram, as shown in Figure 2(b).
Its Voronoi cellV(p) hask neighboring cellsV(p1), . . . ,V(pk).
The k sites p1, . . . ,pk are called thenatural-neighborsof p.
The area/volume ofV(p) is the union of areas/volumesui that

belonged to the Voronoi cellsV(pi) of the neighbors in the
original Voronoi diagram, as illustrated in Figure 2(c). Sibson’s
interpolant of a functionf evaluated atp is defined as

f (p) = ∑k
i=1ui f (pi)

∑k
i=1ui

=
k

∑
i=1

u′i f (pi) ,

where
u′i =

ui

∑k
i=1ui

.

The reconstructed functionf for the given example is shown
in Figure 2(d). Sibson’s interpolation is a local scheme, as
only the values at the natural-neighbors ofp influence the
interpolated valuef (p).
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Fig. 2. Sibson’s interpolation starts out with the Voronoi diagram (a) and
tentatively inserts the new sitep (b) to compute areasui (c), which are used
as weights for the interpolation (d).

Typically, Sibson’s interpolation is implemented geometrically,
i. e., one computes the weights for the interpolant by deter-
mining the areas/volumesui associated withpi upon insertion
of p. Another method, proposed by Yee [21], first computes
the Voronoi regionV(p) and then subdivides the region into
the natural-neighbors’ sub-regions. The dual structure of the
Voronoi diagram, known as Delaunay triangulation, also has
been used to calculate Sibson’s interpolant. The Delaunay
triangulation can be used directly to calculate the weights
of the neighboring regions for interpolation [22]. Previous
approaches to Sibson’s interpolation are computationally ex-
pensive and difficult to implement. They do not fit the needs
of real-time visualization.

IV. D ISCRETESIBSON INTERPOLATION

We describe how Sibson’s interpolation can be performed in
a discrete fashion. We start with the description of a discrete
Voronoi diagram computation, which leads to a straightfor-
ward approach to discrete Sibson interpolation. We improve
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this approach by exploiting the geometrical properties of
Sibson’s interpolant, which makes the computation much more
efficient, especially when dealing with many sites, and makes
unnecessary the requirement of computing an explicit Voronoi
diagram.

A. A Discrete Voronoi Diagram

Hoff et al. [3] presented a graph-based approach for the
computation of generalized Voronoi diagrams both in two-
dimensional and three-dimensional space. Their approach is
based on the observations that geometric shapes representing
distance fields can be rendered to generate discrete Voronoi
diagrams. For the two-dimensional case, cones are rendered
as distance functions for each site. By drawing the sites’
distance fields and utilizing graphics hardware’s depth buffer
function to only render parts the geometry being closest to
each site, Hoff et al. showed how Voronoi diagrams can be
constructed. Their approach even generalizes to scenes that
contain data primitives more general than points as sites.
However, the algorithm does not scale in the number of sites
and dimensions. The bottleneck is a result of each site having
to render a distance field that covers the entire domain, i. e.,
a distance cone that covers the entire Voronoi image in two-
dimensional space and a distance hyperboloid sheet that covers
the entire Voronoi volume in three-dimensional space. For a
Voronoi diagram with a large number of sites, this approach
is inefficient.

Although Hoff’s algorithm works well for constructing gener-
alized discrete Voronoi diagrams, for our purposes we only
need a discrete Voronoi diagram of point sites that scales
well to many sites and to higher dimensions. Instead of
rendering distance fields, we present a more efficient approach
for generating Voronoi diagrams that scale well in both number
of sites and in dimensions by using a spatial structure, i.e.,
a kd-tree. In a discrete Voronoi diagram, at every position
p, we store information about the nearest sitepi and the
distanced(p,pi) to that nearest site. Depending on the desired
precision/resolution of the discrete Voronoi diagram, a grid
size is determined. We can use akd-tree to query the desired
information at each grid location. Initially, thekd-tree is used
to store all sites. Thekd-tree is queried at each grid location
p to determine the site that is closest to the grid location. This
query returns the associated Voronoi region. Then, the nearest
site’s value and the distance to this site can be stored in a
grid, which represents the discrete Voronoi diagram, after the
kd-tree has been queried for all grid locations.

This approach is efficient for constructing Voronoi diagrams
with large number of sites, since akd-tree can be created in
O(nlogn) time. Performing the nearest site search is done in
O(logn) time. In contrast to the discrete Voronoi approach
in [3], our method scales well in the number of sites: Con-
structing the discrete Voronoi diagram solely depends on the
computational costs of inserting and querying thekd-tree, as
opposed to having to render geometric shapes that cover the

entire grid. Due to the nature of akd-tree, our approach also
scales well in dimension.

B. Discretizing Sibson’s Interpolation

In the discretized domain, Sibson’s interpolation can be com-
puted in a straightforward manner. Since calculating Sibson’s
interpolant at pointp is equivalent to taking the weighted
average of values at the neighboring sites (see Figure 2), this
value can be computed by averaging the discrete elements. Ac-
cumulating all data values from the original Voronoi diagram
within the Voronoi regionV(p), and dividing the accumulated
value by the number of elements accumulated, defines the
average of the region. This value is the discretized equivalent
to Sibson’s interpolation value. Since discrete elements are
accumulated at one location, we call this interpolation scheme
the “gather approach.”

Given a discreted-dimensional Voronoi diagram for a set of
m sitesp1, . . . ,pm∈Ω⊂ IRd over a rasterized domainΩ, one
can access the following information for every raster position
i ∈ Ω: the distancedv = Vd(i) to the sitep j closest to raster
position i, and the data valuecv = Vc(i) at the sitep j . The d-
dimensional fieldsVd andVc representing the Voronoi diagram
are precomputed as described in Section IV-A. To reconstruct
the functionf over the entire domainΩ using a discrete Sibson
interpolant, we scan the rasterized domain and compute an
interpolated valuef (p) for each raster positionp of the desired
output region. To computef (p), we accumulate all the values
within the regionV(p) that we would obtain by insertingp
as a new site into the Voronoi diagram. For the accumulation
process, we initializec(p) to zero and scan all raster positions
i of the discrete Voronoi diagram. For each raster positioni, we
determine whether it lies inV(p) by comparing the distance
Vd(i) of raster positioni to its closest site with the distance
from raster positioni to raster positionp. If i ∈ V(p), we
add Vc(i) to c(p). We then count the numbern(p) of raster
positionsi ∈V(p) and assignf (p) = c(p)/n(p).

Fig. 3. The gather approach: Values in Voronoi cellV(p) are gathered for
Sibson’s interpolantf (p).
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This approach can be implemented efficiently, without ex-
plicitly inserting new sites into the existing Voronoi diagram.
Assuming that a discrete Voronoi diagram has been computed,
we perform a two-pass computation. In the first pass, we
accumulate all values contributing to eachc(p). In the second
pass, the accumulated values are divided by the number of
accumulationsn(p) to obtain the interpolated valuef (p). The
gather approach can be summarized in the following way:

• Compute the discrete Voronoi diagram form sites.
• For every output raster positionp do

– Initialize c(p) = 0 andn(p) = 0.
– For every Voronoi raster positioni do

If i ∈V(p), addVc(i) to c(p) and incrementn(p)
by 1.

– Set f (p) = c(p)/n(p).

C. Efficient Discrete Sibson Interpolation

The key idea to making Sibson’s interpolant more efficient is to
consider the problem in the “opposite” direction, where values
are “scattered” rather than gathered. Instead of iterating over
all positionsp and gathering the values at all raster positions
i ∈ V(p) into c(p), one can iterate over the raster positions
i and determine whichf (p) are influenced by the value ati.
This approach has two major advantages: It allows us to utilize
the efficient rasterization units in modern graphics hardware,
and it limits computations to only those valuesi that affect
the final result.

In more detail, the scatter approach works as follows: Consider
one raster positioni in the Voronoi diagram. We want to
determine to which positionsp the data valueVc(i) contributes.
This is easily achieved by rendering ad-dimensional block
over all positionsp, and determining, for eachp, whether
the distance betweeni and p is less than the distanceVd(i)
betweeni and its closest site. If it is less, theni ∈V(p), and
we accumulate the valueVc(i) into f (p).

This approach can be summarized in the following way:

• Compute the discrete Voronoi diagram form sites.
• For every output raster positionp do

– Initialize c(p) = 0 andn(p) = 0.
• For every Voronoi raster positioni do

– For every output raster positionp do
If i ∈V(p), addVc(i) to c(p) and incrementn(p)
by 1.

• For every output raster positionp do

– Set f (p) = c(p)/n(p).

Moreover, we observe that in both the scatter and the gather
approach, particularly with dense samples, mostVc(i) do not
contribute to any givenf (p). For the gather approach, it would
require us to determine a bounding box forV(p), for eachp, to
optimize the procedure, but the computation of the bounding
boxes would be expensive. For the scatter approach, we can
take advantage of this observation. More specifically, we can

Fig. 4. The scatter approach: Value at a locationi contributes to Sibson’s
interpolant within certain region and thus is scattered to all positions in that
region. The region is defined by all positionsp with i ∈V(p).

determine exactly the area to which a value at raster position
i contributes:

Theorem: In a discrete version of Sibson’s interpolant, the
valueVc(i) at a raster positioni influences exactly all those
output locationsp that are within a d-dimensional sphere
around i, whose radius is the distance fromi to the closest
site.

Proof: Let p1, . . . ,pm be the sites to be interpolated, and
p an output location. In the discrete Sibson approach, we
accumulate and blend all the values that lie within the Voronoi
cell V(p) to compute the interpolation resultf (p) at output
locationp (see Figures 2 and 3). We have to show that, for all
raster positionsi ∈V(p), ad-dimensional sphere aroundi with
radiusr = minm

i=1d(i,pi) includes output locationp, and that
such a sphere does not includep, for all i 6∈V(p). Let i ∈V(p).
Then, byV(p, d(i,p) < minm

i=1d(i,pi) = r, a d-dimensional
sphere aroundi with radiusr does includep (see Figure 5(a)).
Now, let i 6∈V(p). Then,d(i,p)≥minm

i=1d(i,pi) = r, and ad-
dimensional sphere aroundi with radiusr does not includep
(see Figure 5(b)).

p3p

p1 p2

p4

i
p

(a)

p3p44

p1 p2

p

i

(b)

Fig. 5. The value at Voronoi raster positioni influences exactly all those
output locationsp that are within a circle aroundi, whose radius is the distance
from i to the closest sitep4.

The above theorem implies that in order to scatter the value
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Vc(i) at point i to all output raster positionsp that are
influenced by it, we merely have to draw ad-dimensional
sphere of valueVc(i) aroundi, where the radius of the sphere
is the distance fromi to its closest site. Blending these
spheres results in a discrete equivalent of Sibson’s interpolant,
as shown in Figure 6. This observation also allows us to
eliminate discrete Voronoi diagrams altogether. The only use
for a Voronoi diagram in the described algorithm is to find the
closest site of a pointi, and this can easily and efficiently be
achieved by querying akd-tree containing all sites directly.

The scatter approach thus simplifies to the following algo-
rithm:

• Construct akd-tree form sites.
• For every output raster positionp do

– Initialize c(p) = 0 andn(p) = 0.

• For every raster positioni do

– Find the closest sitepn in the kd-tree.
– Calculater = d(i,pn).
– For each raster positionp inside a d-dimensional

sphere of radiusr aroundi do

Add Vc(i) to c(p) and incrementn(p) by one.

• For every output raster positionp do

– Set f (p) = c(p)/n(p).

By rendering just these small regions, the implementation
becomes considerably more efficient, especially when dealing
with very large number of samples.” Figure?? shows how the
scatter approach is implemented in a fragment program.

(a) (b)

(c) (d)

Fig. 6. The gather approach iteratively draws disks of certain radii for every
raster position and blends the values of the disks. The approach is illustrated
for two, four, six, and5122 disks.

v0 v1

v2v3

r

i pn

p

v0

  frag_dist_to_i = distance(i, p)

  if (frag_dist_to_i < r)

      out_color.rgb = pn.rgb

      out_color.a     = 1

  else

      out_color = 0

  return out_color                     

Fragment program (called on every fragment p)

Vertex attributes for v[0..3]

texcoord: (ix,iy,iz,r)

vertex color: pn.rgb

(values used by the fragment program)

Fig. 7. Scatter approach implementation: Value at each Voronoi raster
position i is scattered by rendering a quad of twice the length of the distance
r to the closest sitepn. Illustrated are the fragment program scattering values
at one raster position. For efficient processing, raster locationi and value at
sitepn are stored using texture coordinates and color attributes of each vertex.

D. Implementation

To take full advantage of the algorithm described, we utilize
the fast raster processing and programmability capabilities
of modern graphics hardware. For implementation purposes,
the following processing capabilities are desirable: floating-
point precision framebuffer and textures and floating-point
blending. Floating-point precision is desired for accuracy in
data accumulation because using only eight-bit precision, i. e.,
256 values, does not suffice to accurately accumulate data
values during interpolation.

In our implementation, we use OpenGL libraries and
NVIDIA’s Cg language for vertex and fragment programming
with an NVIDIA GeForce 6800GT card. For storing the
discrete Voronoi diagram and Sibson’s interpolation function,
we use a four channel 32-bit floating-point textures. The RGB
channels are used for storing the nearest site’s value, and the
A channel is used for storing the distance to the nearest site.
Voronoi diagram generation using akd-tree is implemented on
the CPU by querying thekd-tree at each discrete location for
the Voronoi region it is in. For computing Sibson’s interpolant,
the RGB channels are used to accumulate data values, and
the A channel is used for counting the number of values
accumulated in each pixel.

An efficient implementation would use hardware’s floating-
point blending to accumulate intermediate values. Floating-
point blending is available in the current generation of cards,
however, the precision it supports is only 16 bits which for
small data sets, especially for 3D applications is not enough
for proper interpolation. Using 16-bit blending can produce
incorrect visual results due to data overflow. To approximate
the performance on graphics hardware we measure our time
using 16-bit floating point blending. Although an interpolation
using the 16-bit implementation requires the same amount of
computations, it requires less memory transfer. For our time
measurements, we assumed that using the 16-bit implementa-
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tion is a reasonably good approximation as we expect the next
generation of cards to only get faster.

The gather approach accumulates data values at each raster
position. This can be implemented in a fragment program,
but certain inefficiencies must be considered. First, in order to
accumulate values at a single raster position, points must be
rendered instead of triangles or quadrilaterals: Every fragment
that is rendered must output to a single location, and this
is only possible by rendering points. Also, since the exact
region that contributes to the particular raster position is not
known, regions that do not contribute still must be examined.
Although a bounding region could be calculated by computing
the convex hull, it would require additional computations.
In either case, the additional computations make the gather
approach less efficient.

Implementing the fully optimized scatter approach is simple
and very efficient. In two dimensions, we first construct a
kd-tree of all sites. Sibson’s interpolant is then computed by
drawing circles at each given raster position, while querying
the kd-tree for data values and radii. The data value is
associated with function values of the circle and the radius
information is used to render a square, centered at the raster
position, with side length being twice the radius. The circles
within each square are drawn by comparing distances in the
fragment program. Once all values are accumulated, we use
a fragment program to divide the total accumulated value by
the number of accumulated values to generate the final image.

For Sibson interpolation in three dimensions, spheres are
deposited at each raster position of the volume. This is
achieved by computing one slice at a time. For each slice,
cross section of the intersecting spheres are accumulated and
later normalized. Like in the two dimensional case, akd-tree
is queried for data values and radii.

V. RESULTS

Although our optimal Sibson’s interpolation algorithm no
longer requires knowledge of an explicit Voronoi diagram, we
still have compared our new approach for generating discrete
Voronoi diagrams with Hoff et al.’s method of generating
discrete Voronoi diagrams. We have compared the computation
time and the interpolation results for two-dimensional Sibson’s
interpolant using the traditional geometric approach and our
optimized hardware-accelerated version. For comparison, we
also have tested our hardware-accelerated version with a
software implementation of our discrete algorithm. We pro-
vide computation times of our implementation for the three-
dimensional case. Our data were generated on a 3.2 GHz
Pentium 4, equipped with 2 GB of RAM and an NVIDIA
GeForce 6800GT graphics card running Windows XP.

For performance evaluation of the two discrete Voronoi ap-
proaches, it is reasonable to compare computation times of
both algorithms while varying the number of input values.
The two-dimensional test case is based on a Voronoi dia-
gram on a512× 512 pixel grid, and the three-dimensional

test case is based on a128× 128× 128 voxel grid using
m randomly generated sites. In the two-dimensional case,
the results obtained with the geometric computation of the
Voronoi diagram are compared with those obtained with the
discrete approaches using distance field rendering andkd-
trees. The three-dimensional case comparison is done only
between the two discrete approaches. Figure 9 shows a graph
of computation times for different Voronoi approaches. For
a relatively smaller number of samples, thekd-tree approach
takes more time but as the number of samples increase, the
kd-tree approach exhibits only a slow growth, while both
the distance field rendering approach and the geometrical
approach exhibit much faster growth in computation time.

(a) (b)

Fig. 8. (a) 6400 uniform random sampling of sites vs. (b) non-uniform
sampling of sites of Lena image.
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Fig. 9. Comparison of performance of Voronoi diagram computation using a
geometric approach vs. discrete approaches using distance fields andkd-trees.

To analyze the performance of the optimized version of
Sibson’s two-dimensional interpolation scheme versus an opti-
mized software implementation of the geometric approach, we
have choosenn randomly generated sites on a512×512pixel
grid. Instead of just using uniformly distributed random sites,
we also have tested our algorithm against adaptively sampled
sites to more accurately simulate “real” scattered data. We have
used the adaptive sampling as described by Kreylos et al. [23].
Figure 8 shows an example of 6400 sites sampled with uniform
distribution and adaptively sampled sites. Figure 10 shows
the computational time required to perform interpolation. For
small number of sites, the geometric approach of Sibson’s
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Discrete Sibson 2D
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Fig. 10. Comparison of performance of two-dimensional Sibson interpolation
using geometric vs. discrete approach.
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Fig. 11. Root-mean-square (RMS) of two-dimensional Sibson interpolation
resulting from geometric, discrete, and original approaches.

interpolation exhibits a superior performance when compared
with the discrete algorithms. As the number of data sites
increases, the discrete version exhibits a significantly better
performance. To test the correctness of the discrete approach,
we have computed differences between the two images. As
shown in Figure 12, slight differences can be seen around
sharp edges.

Table I shows the performance of the discrete Sibson algorithm
in the three-dimensions based on a128×128×128voxel grid
using m randomly generated sites from a CT head data set.
Only the optimized case has been tested. For few sites, the
discrete approach is slow. This is due to the relatively large
radii of spheres that have to be rendered for each voxel. With
more sites, however, the interpolation is significantly faster. We
have also reconstructed data from adaptively sampled version
of the CT head data set as described by Co et al. in [24]. Due
to adaptive sampling, there are less points outside the head.
As a result, the overall speed is significantly slower than the

TABLE I

PERFORMANCE DATA FOR3D DISCRETESIBSON INTERPOLATION OF

UNIFORM-RANDOMLY SAMPLED CT HEAD DATA SET (DATA SIZE: 1283) .

# sites Voronoi Discrete 3D Total Time
(sec) (sec) (sec)

100 1.39 92.05 93.44
1000 2.16 13.05 15.21
10000 3.08 6.45 9.53
100000 3.83 3.98 7.81
200000 4.17 3.55 7.72

randomly sampled points. The performance trend as in the
other case increases with increasing number of sample points.
Figure 13 shows a visualization of the reconstruction.

(a) (b)

(c) (d)

Fig. 13. Discrete Sibson interpolation and visualization of CT Head data
set (data size:1283) using (a) 10,000, (b) 100,000, and (c) 500,000 scattered
data points, compared to visualization using (d)1283 gridded points.

VI. D ISCUSSION

Considering the two discrete Voronoi approaches presented,
we observe that both methods have advantages and disad-
vantages. Using the distance field rendering approach yields
very good performance, up to a certain number of sites. Com-
putational time increases drastically with increasing number
of additional sites. In the two-dimensional case, as shown in
Section IV-A, the computation time for up to 1,000 sites is less
than the time required by thekd-tree method. For 1,000 points
on a grid of512×512, the rendering time increases linearly
with additional sites: The algorithm is a brute-force approach,
where each additional site rendered compares its distance to
every discrete point in the grid. The time complexity of this
approach isO(mP), wherem is the number of sites andP is
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(a) (b) (c) (d)

Fig. 12. Comparison of computational geometry-based and discrete Sibson interpolation using 6,400 data points. (a) Original image (512×512 pixels);
(b) result using geometric Sibson interpolation; (c) result using discrete Sibson interpolation; (d) difference image between (b) and (c).

the number of pixels in the grid. Thekd-tree approach exhibits
slightly different behavior. Computation time when dealing
with a small number of sites is slow when compared to the
distance field approach. However, computational time for a
large number of sites is faster since the computational time
increases slower compared to the distance approach with the
increasing number of sites. This behavior is expected since
the Voronoi diagram is rendered by querying thekd-tree at
each grid location for its closest neighbor, and a search in
kd-trees requiresO(logm) leading to a total time complexity
of O((m+P) logm). In the three-dimensional case, the results
show analogous behavior for the two approaches.

When comparing the discrete approaches to the “exact” geo-
metrical approach, thekd-tree approach is significantly faster
when the number of sites increases. Compared to the distance
field approach, the geometrical approach exhibits better perfor-
mance until the number of sites reaches 5,000. Although the
kd-tree approach shows better performance for higher numbers
of sites, the discrete approach suffers from a few drawbacks.
For Voronoi sites that lie within a discrete element, it would
require us to use a higher-resolution grid to produce accurate
results, in which case it could take much longer than the
geometric approach. Also, the discrete approach would be less
efficient in the case of a small number of sites and a large grid,
since the geometric approach’s performance is less dependent
on grid size.

Discrete Sibson interpolation is, considering a small number
of sites, computationally slow – significantly slower than the
geometrical approach. However, as the number of sites in-
creases, computation time decreases, and our approach shows
a significant speedup over the software implementation. In
the two-dimensional case, for around 1,000 sites the com-
putational time required for constructing Sibson’s interpolant
is less than a second. Computing the Voronoi diagram and
Sibson’s interpolant can be done in under a second. We have
not yet compared our discrete three-dimensional algorithm
to a software implementation, since we do not have access
to a fast and robust implementation. We expect our three-
dimensional method to perform well, since it uses the same
simple algorithm underlying the two-dimensional method. A
three-dimensional geometrically exact method would be much

more complicated to implement, and much more difficult
to optimize. Furthermore, computation times for rendering
a discrete three-dimensional Sibson’s interpolant are very
low, and computation time, as in the two-dimensional case,
decreases with an increasing number of sites.

To investigate the approximation quality of our algorithm, we
compare images generated by discrete Sibson interpolation
with images generated using a computational geometry-based
algorithm. One test case is shown in Figure 12: The difference
image (Figure 12(d)) shows that the two images are almost
identical. However, differences can be noticed around the
edges of the image. (The resulting image was generated
from adaptively sampled data as shown in Figure 8.) The
reason for such differences is due to aliasing errors: There
are more samples around the silhouette of the face, which
implies drawing of many small circles in that area. Discrete
Sibson interpolation is prone to aliasing, especially as the
number of data points increases and the radius of rendered
d-dimensional spheres decreases. One could compute more
accurate Sibson values by computing the coverage area of the
rendered spheres on partially covered pixels. Such values for
pixels could be used as weights when accumulating data values
to lead to accurate results. Calculating the exact coverage area
would be compute-intensive. A good estimate, however, can
be obtained by simply increasing grid sizes or rendering anti-
aliased primitives.

To quantify the errors of our discrete approach, we have
computed root-mean-square (RMS) error values. Figure 11
shows the results obtained with the exact geometric and
discrete approach are very similar, for small number of sites.
As the number of samples increases, however, the geometric
approach produces better approximations. Also, when the
discrete approach is compared against the geometric approach,
the RMS error increases in linear fashion as the number
of samples increases. The errors, in both cases, are due to
aliasing resulting from drawing increasingly large numbers of
increasingly smaller circles.
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VII. C ONCLUSIONS ANDFUTURE WORK

We have presented a method for rapid computation of Sib-
son’s interpolant for two-dimensional and three-dimensional
scattered data using contemporary graphics hardware. Our
technique is based on discretization and takes advantage of
geometrical properties of Sibson’s interpolation scheme, which
reduces thed-dimensional interpolation problem to rendering
and blendingd-dimensional spheres of easily computable
radii. The interpolation algorithm is simple and can be acceler-
ated by using modern programmable graphics hardware. Our
approach is designed for interpolation of scattered data sets
with many sites, for which it achieves a major improvement
in performance compared to classical approaches. We have
analyzed and compared the two-dimensional discrete approach
with a software implementation of the traditional geometric
approach, and have tested it for the three-dimensional case.
Our discrete Sibson interpolation approach is fast, easy to
implement, and generalizes to higher dimension.

We plan to adapt the discrete approach to other distance-based
scattered data interpolation methods. Moreover, we plan to
investigate acceleration techniques for the three-dimensional
approach in support of interactive visualization of volumetric
scattered data applications.
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