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Abstract— Natural-neighbor interpolation methods, such as Sib- I. INTRODUCTION

son’s method, are well-known schemes for multivariate data

fitting and reconstruction. Despite its many desirable properties, Scattered data visualization has been an area of interest
Sibson’s method is computationally expensive and difficult to im- for several decades. Recently, it has been experiencing a
plement, especially when applied to higher-dimensional data. The . R

main reason for both problems is the method's implementation revival _due to advances in distributed sensor networks, where

based on a Voronoi diagram of all data points. We describe a small, mdependent sensors are used to collect data at random
discrete approach to evaluating Sibson’s interpolant on a regular (scattered) locations in space and time. In order to apply

grid, based solely on finding nearest neighbors and rendering and standard visualization techniques such as contouring, slicing,

blending d-dimensional spheres. Our approach does not require 4 \q1yme rendering to scattered data, it is necessary to define

us to construct an explicit Voronoi diagram, is easily implemented ion f . h b | d bi
using commodity three-dimensional graphics hardware, leads to & féconstruction function that can be evaluated at arbitrary

a significant speed increase compared to traditional approaches, locations. A new challenge arises with the decreasing manu-
and generalizes easily to higher dimensions. For large scattered facturing costs of the sensors, which allows for many sensors

data sets, we achieve two-dimensional (2D) interpolation at tg phe deployed simultaneously. Highly efficient reconstruction
interactive rates and 3D interpolation (3D)with computation methods are needed to process large streams of time-varying
times of a few seconds. . . .

data originating from large sensor networks in real time.

Index Terms—Scattered Data Interpolation, Natural-Neighbor A measured quantity, e.g., temperature or humidity, vary-
Interpolation, Graphics Hardware.

ing over time, can be described as a mathematical function
f(x,y,zt). Each sensor reports a stream of sample§(t)

of that function, taken at the sensor’s positioq, yi,z)*. In
order to analyze or visualize a measured data set, one has
to reconstruct the functiorf from the samples reported by
the sensor network. It is desirable to have visualization tools
with the capability to reconstruct and visualize two- and three-
dimensional scattered data sets with many data points in real
time.

Most scientific visualization techniques require data to include
connectivity information. Scattered data in “raw format” does
not provide such information. A common approach to deal
with unconnected data is the use of field reconstruction
methods producing an analytical definition that is later re-
sampled to a grid format supported by standard visualization
methods such as contouring or volume rendering. Existing
scattered data techniques such as radial basis function meth-
ods, Shepard’'s method and its variants, Hardy’s method, and
triangulation-based methods are based on using all samples or
selected local subsets of samples. Many of these techniques
are computationally expensive and do not scale well with the
number of data points; they are not geared toward real-time
visualization.

Sibson’s natural-neighbor interpolation method is a scattered

data interpolation scheme based on a Voronoi (Dirichlet,

Fig. 1. Discrete Sibson interpolation and visualization of Bucky Ball data, . . ) :
set (data size128®) using (a) 100, (b) 1000, and (c) 10,000 scattered daihlessen) dlagram of a data set's sample locations. We present

points compared to visualization using & grid points. the mathematical background of, and definitions regarding,
Voronoi diagrams and Sibson’s method in Section Ill. Sibson’s
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compute especially when it is extended to higher dimensions. 1. RELATED WORK

The high computational cost is due to the fact that each

evaluation of the interpolant requires the insertion of a sifecattered data interpolation has been a research topic for
into the sample location’s Voronoi diagram to calculate thgeveral decades and a large number of scattered data interpola-
proper interpolation weights of neighboring samples [2]. TH&N techniques are well-understood today. Typically, scattered
implementation difficulty is due to the difficulty of explicitly data methods are generalized into methods based on inverse
representing higher-dimensional Voronoi diagrams, especiaflistances, radial basis functions, and natural-neighbors. Many
when facing limited numerical precision and samples in dgood surveys discuss and compare extensively on different
generate positions. scattered data methods [1], [2], [8]-[13].

Inverse distance weighted methods are based on the assump-

W t adi tized imation to Sibson’s int tion that the interpolated value should be influenced more by
€ present a discretized approximation 1o SIbson's in erIOOlﬁléarby points and less by more distant points. The original

tion scheme. Instead of computing the interpolation functicwOrk by Shepard [14] used a global scheme, which tends to

using its traditional geometric definition, we use a MOTfatten the recontruction and whose computational costs make

?ﬁ'C'er:jt schem? c&peratlpg on gg |scr,ete dorrr:a(ljn.. One Stralgi'?tﬁon—practical for applications to large data sets. Many local
orward way ot _|scret|2|ng otosons method Is 1o US€ 8nd modified schemes have been introduced to address these
dls_crete VO“’T‘O' d'?gram' Wh'c_h can be computed efficientlyy o Using inverse ditance weighted methods, each point
using three-dimensional graphics hardware [3]. However, t fid has a radially symmetric influence. This isotropism can

algorithm described by Hqﬁ et al. [3] does not ;cale Welbad to undesired field reconstruction artifacts when sampling
to large data sets. We decided to use an alternative appro?é’?és differ significantly in different directions

exploiting geometrical properties of Sibson’s method, which
reduce the interpolation algorithm to rendering and blendirfgadial basis function methods is regarded as being among
d-dimensional spheres whose radii are determined by the dise most elegant schemes from the mathematically point
tance between an evaluation location and its nearest neighbbrview [8]. Functions like Hardy’'s multiquadrics, inverse
in the data set. This approach no longer requires us to usemultiquadrics, and thin-plate spline (TPS) interpolants have
explicit Voronoi diagram; we use lad-tree to efficiently find been applied to a large variety of scattered data problems. They
nearest neighbors instead. Our approach, described in deta#liow for anisotropic support, but require solving a system of
Section IV, generalizes to higher dimensions. N linear equations wittiN unknowns. Thus, many methods
cannot effectively handle large data sets due to instability
and computational costs associated with the computation of
Moreover, we show that our algorithm maps well to mod-adial interpolation that grows with increasing distance from
ern programmable graphics hardware. In the past few yeagsattered data sites. Local versions of these methods have been
there has been an explosion in both the performance agweéposed to deal with larger data sets.

programmability of desktop graphics hardware. Today’s grap“—

. . ) o datural-neighbor interpolation, introduced by Sibson [15], is
ics processors offer the capability of running user-specifie . ) .
agopular method used in many fields such as environmental

g:gg;irtnzn?n uizzhir:/er:gguiinnd frfgrrgecn;}nm iszngagzglillt'aend geotechnical engineering and solid mechanics [16], [17].
y np cing P ?\ﬁjatural-neighbor interpolation is constructed on the basis of an
shaders for graphics applications [4], but also for tasks

diveraing from traditional polvaon-based araohics. such unhderlying Voronoi diagram of a data set’s sample locations.
\verging . POlYg grap ' or natural-neighbor interpolation, a sample’'s weight is not
visual simulation [5], nl_JmerlcaI compl_Jtatlon [6], or more ictated by the same length measure in all dimensions, but by
g??ﬁ;zlépu:goiigon:gggggo[;]';Tje Ir:glfj/virt)ﬁ riﬂgﬁaﬂg? SirtOW[ e appropriate Lebesgue measure of the space directions [17].
grap P P . DIQUILY 4ie allows for anisotropic support. Among other properties,
modern computers make them particularly interesting targ

t . . . .
for visualization tasks such as the one described in this pa&ne%;;il;ggoi?;r ;‘r;:rﬁﬁgor;rrgggi\ggs er]z Ic?gf a::lb:ﬁ%ﬂgiéocal

everywhere except at the data sites. Natural-neighbor interpo-
lation is superior to distance-based weights due to its density

V\./'th fgll opt|m|zat|on,_ we show  that n the ~ two- variation in the area-based weights. Unlike the radial basis
dimensional case, function/image reconstruction can be dqn

. . . uriction methods, it doesn't require solving a linear system
at interactive frame rates, e. g., we can reconstruct an image 2 , - : . o
. : of equations. Its ability to handle highly irregular distribu-
an output resolution dd12x 512 pixels from50,000scattered .. ; . S
o . : tion of nodes. However, natural-neighbor interpolation in its
data points irD.125seconds. In the three-dimensional case, the. .. . . S . .
. N raditional implementation is computationally more intense
speed-up is also quite significant, e.g., we can reconstruc

a . . . . .
) . an other approaches (especially in higher dimensions) due
volume field at an output resolution &28x 128x 128 voxels o . . .
from 100,000 scattered data points in a few seconds. Implthe Voronoi diagram computation and Voronoi insertion per

X ; . . (_T\n rpolant.
mentation details and results are in Section V. Overall, ourte polant

algorithm leads to a significant increase in speed for large détaplementation of scattered data algorithms has been tra-
sets, reduced storage space, and simplicity in implementatiitionally done in the CPU. The Advances of GPUs in
compared to previous methods. recent years, however, have made it an attractive target for



computationally complex and demanding scientific and visbelonged to the Voronoi cell§ (p;) of the neighbors in the
alization applications. Hoff et al. [3] have computed a discretwiginal Voronoi diagram, as illustrated in Figure 2(c). Sibson’s
Voronoi diagram taking advantage of the graphics hardwaisterpolant of a functionf evaluated ap is defined as

Since then, GPUs have been used in other computational

geometry problems, for example, for accelerating distance f(p) = w — iui’f(pi) 7
field computations [18]. GPUs have been applied to scattered Yiz1Ui i=

data interpolation methods as well. Jang et al. [19] descrigere

a method of accelerating radial basis functions on GPUs. U = Ui .
Applying-GPU assisted natural-neighbor interpolation has also ! ZF:lUi

been descriped by Fan et al for 2D data set. _[20]_' Thefrhe reconstructed functioh for the given example is shown
approach utilizes GPU to compute areas of contribution aﬂg Figure 2(d). Sibson's interpolation is a local scheme, as

require a Delaunay triangulation of a given data set. only the values at the natural-neighbors pfinfluence the
interpolated valuef (p).

Il1. DEFINITIONS AND BACKGROUND

A. Voronoi Diagram

ps
A standard Voronoi diagram is a partitioning of a given domai
into cells (tiles) based on a finite set of given scattered da
points, calledsites Each cell contains of the points closest t
a particular site. More specifically, considedalimensional,
convex domainQ c RY and a seiN = {p1,p2,...,Pm} Of m
scattered data points. The Voronoi diagraf(N) of the setN
over domainQ is a domain partitioning into regions(p;) C (@) (0)
Q, such that any point iW (p;) is closer to sitg; than to any

other sitepj € N (j #1i). The regiorV (p;) associated with site .
pi is called aVoronoi celland is defined as "‘i
o

p3

V(pi) = {p € Q:d(p,pi) <d(p,pj) Vj #i},

where d is a distance metric, usually the Euclidean ong
The Voronoi cells are convex polygons/polyhedra RY.
Figure 2(a) shows the Voronoi diagram for an example wit
four sitesps, ..., pa, where the colors of the four Voronoi cells (c) (d)
represent the function values at the sites.

/u3
\
u2

p2

Fig. 2. Sibson’s interpolation starts out with the Voronoi diagram (a) and
A number of algorithms exist today for computing Voronoientatively inserts the new sie (b) to compute areas; (c), which are used

diagrams of points in two-dimensions, three-dimensions, aftje'ghts for the interpolation (d).

higher-dimensional spaces. Efficient adaptive precision and . . L L .
exact arithmetics are active areas of research. There ;yglcally, Sibson’s interpolation is implemented geometrically,

also many approximate versions of Voronoi diagrams, ahnd oneh comput/eslthe Yve|ghts_for(jthg mterpola_nt by_deter-
computations based on space subdivision. mining the areas/volumas associated witlp; upon insertion

of p. Another method, proposed by Yee [21], first computes

the Voronoi regionV (p) and then subdivides the region into
B. Sibson’s Interpolant the natural-neighbors’ sub-regions. The dual structure of the

Voronoi diagram, known as Delaunay triangulation, also has
Sibson [15] introduced a natural-neighbor interpolatiobeen used to calculate Sibson’s interpolant. The Delaunay
scheme that uses a weighted average of surrounding or neigiangulation can be used directly to calculate the weights
boring data sites to compute the interpolated function. Tl the neighboring regions for interpolation [22]. Previous
fundamental difference to Shepard’s method is the assignmapproaches to Sibson’s interpolation are computationally ex-
of the weights using natural-neighbors. pensive and difficult to implement. They do not fit the needs

. . . . . . of real-time visualization.
Figure 2 illustrates how Sibson’s interpolant is computed using

an example with four sites. Given a set of sites, the Voronoi

diagram of the set of sites is computed first, as shown in IV. DISCRETESIBSON INTERPOLATION

Figure 2(a). To interpolate the function value at a pginp

is inserted into the Voronoi diagram, as shown in Figure 2(BjVe describe how Sibson’s interpolation can be performed in
Its Voronoi cellV (p) hask neighboring cell®/ (p1),...,V(pk). a discrete fashion. We start with the description of a discrete
The k sitespy,...,px are called thenatural-neighborsof p. Voronoi diagram computation, which leads to a straightfor-
The areal/volume o¥ (p) is the union of areas/volumesthat ward approach to discrete Sibson interpolation. We improve



this approach by exploiting the geometrical properties efntire grid. Due to the nature oflkal-tree, our approach also
Sibson’s interpolant, which makes the computation much maseales well in dimension.

efficient, especially when dealing with many sites, and makes

unnecessary the requirement of computing an explicit Voronoi

diagram. B. Discretizing Sibson’s Interpolation

In the discretized domain, Sibson’s interpolation can be com-
) o puted in a straightforward manner. Since calculating Sibson’s
A. A Discrete Voronoi Diagram interpolant at pointp is equivalent to taking the weighted
average of values at the neighboring sites (see Figure 2), this
Hoff et al. [3] presented a graph-based approach for thglue can be computed by averaging the discrete elements. Ac-
computation of generalized Voronoi diagrams both in twqumulating all data values from the original Voronoi diagram
dimensional and three-dimensional space. Their approachwighin the Voronoi regiorV (p), and dividing the accumulated
based on the observations that geometric shapes represenfilde by the number of elements accumulated, defines the
distance fields can be rendered to generate discrete Voroggérage of the region. This value is the discretized equivalent
diagrams. For the two-dimensional case, cones are rendei@bibson’s interpolation value. Since discrete elements are
as distance functions for each site. By drawing the sitegccumulated at one location, we call this interpolation scheme
distance fields and utilizing graphics hardware’s depth buffgfe “gather approach.”
function to only render parts the geometry being closest to ] ] ) o
each site, Hoff et al. showed how Voronoi diagrams can [5&ven & discretal-dimensional Voronoi diagram for a set of
constructed. Their approach even generalizes to scenes fA&€SPL;---,Pm € Q C R(f over a rasterized domaf, one
contain data primitives more general than points as sit&&n 8ccess _the following |r_1format|on_f0r every raster position
However, the algorithm does not scale in the number of site§ @' the distanced, = Vq(i) to the sitep; closest to raster
and dimensions. The bottleneck is a result of each site haviR@gs!tiont, and the data value, = V(i) at the sitep;. Thed-
to render a distance field that covers the entire domain, i. dimensional field&/y andV; representing the Voronoi diagram
a distance cone that covers the entire Voronoi image in tw@€ Precomputed as described in Section IV-A. To reconstruct
dimensional space and a distance hyperboloid sheet that cojBgsfunctionf over the entire domaif using a discrete Sibson
the entire Voronoi volume in three-dimensional space. Forierpolant, we scan the rasterized domain and compute an

Voronoi diagram with a large number of sites, this approadfterpolated valud (p) for each raster positiop of the desired
is inefficient. output region. To computé(p), we accumulate all the values

within the regionV(p) that we would obtain by inserting
Although Hoff's algorithm works well for constructing gener-as a new site into the Voronoi diagram. For the accumulation
alized discrete Voronoi diagrams, for our purposes we onfyocess, we initialize(p) to zero and scan all raster positions
need a discrete Voronoi diagram of point sites that scalesf the discrete Voronoi diagram. For each raster positiore
well to many sites and to higher dimensions. Instead dktermine whether it lies iW (p) by comparing the distance
rendering distance fields, we present a more efficient approagiii) of raster position to its closest site with the distance
for generating Voronoi diagrams that scale well in both numb#&om raster position to raster positionp. If i € V(p), we
of sites and in dimensions by using a spatial structure, i.addV,(i) to c(p). We then count the numbe(p) of raster
a kd-tree. In a discrete Voronoi diagram, at every positiopositionsi € V(p) and assignf (p) = c(p)/n(p).
p, we store information about the nearest siteand the
distanced(p, pi) to that nearest site. Depending on the desired
precision/resolution of the discrete Voronoi diagram, a grid
size is determined. We can usé@tree to query the desired
information at each grid location. Initially, thal-tree is used
to store all sites. Th&d-tree is queried at each grid location
p to determine the site that is closest to the grid location. This
query returns the associated Voronoi region. Then, the nearest
site’s value and the distance to this site can be stored in a
grid, which represents the discrete Voronoi diagram, after the
kd-tree has been queried for all grid locations.

This approach is efficient for constructing Voronoi diagrams

with large number of sites, sincela@-tree can be created in

O(nlogn) time. Performing the nearest site search is done in

O(logn) time. In contrast to the discrete Voronoi approach

in [3], our method scales well in the number of sites: Con-

structing the discrete Voronoi diagram solely depends on the

computational costs of inserting and querying Kaetree, as Fig. 3. The gather approach: Values in Voronoi &lp) are gathered for
opposed to having to render geometric shapes that cover #figon’s interpolant (p).



This approach can be implemented efficiently, without ex-
plicitly inserting new sites into the existing Voronoi diagram.
Assuming that a discrete Voronoi diagram has been computed,
we perform a two-pass computation. In the first pass, we
accumulate all values contributing to eap). In the second
pass, the accumulated values are divided by the number of
accumulations(p) to obtain the interpolated valugp). The
gather approach can be summarized in the following way:

« Compute the discrete Voronoi diagram forsites.
« For every output raster positign do

— Initialize ¢(p) = 0 andn(p) = 0.

— For every Voronoi raster positiondo
If i eV(p), addV(i) to c(p) and incremenh(p)
by 1.

— Setf(p) = c(p)/n(p)-

Fig. 4. The scatter approach: Value at a locatiaontributes to Sibson’s
- . . . interpolant within certain region and thus is scattered to all positions in that
C. Efficient Discrete Sibson Interpolation region. The region is defined by all positiopswith i € V(p).

The key idea to making Sibson'’s interpolant more efficient is to
consider the problem in the “opposite” direction, where valuggetermine exactly the area to which a value at raster position
are “scattered” rather than gathered. Instead of iterating oyefontributes:

all positionsp and gathering the values at all raster positions ] ] ) ]

i and determine whicH (p) are influenced by the value at value V(i) at a raster positioqi i_nfluence_s exa_ctly all those
This approach has two major advantages: It allows us to utiliggtPut locationsp that are within ad-dimensional sphere
the efficient rasterization units in modern graphics hardwa@oundi, whose radius is the distance fromto the closest
and it limits computations to only those valueshat affect SIte-

the final result. Proof: Let pi,...,pm be the sites to be interpolated, and

In more detail, the scatter approach works as follows: Consideran output location. In the discrete Sibson approach, we
onhe raster posmon in the Voronoi diagram_ We want to accumulate and blend all the values that lie within the Voronoi
determine to which positionsthe data valud(i) contributes. Cell V(p) to compute the interpolation resuli(p) at output
This is easily achieved by renderingdadimensional block locationp (see Figures 2 and 3). We have to show that, for all
over all positionsp, and determining, for eacp, whether raster positionseV(p), ad-dimensional sphere aroumavith
the distance betweenand p is less than the distandg(i) radiusr =min,d(i,pi) includes output locatiop, and that
betweeni and its closest site. If it is less, ther V(p), and Such a sphere does not incluglefor all i ¢V (p). Leti € V(p).
we accumulate the valué,(i) into f(p). Then, byV (p, d(i,p) < minZ;d(i,pi;) =r, a d-dimensional

) ) ) ) sphere aroundwith radiusr does include (see Figure 5(a)).
This approach can be summarized in the following way: N, leti ZV(p). Then,d(i,p) > min™, d(i,p;) =r, and ad-
dimensional sphere arourndvith radiusr does not include

« Compute the discrete Voronoi diagram forsites. X
(see Figure 5(b)). 0

« For every output raster positign do
— Initialize ¢(p) = 0 andn(p) = 0.
« For every Voronoi raster positiondo
— For every output raster positiqndo
If i eV(p), addV(i) to c(p) and incremenh(p)
by 1.
« For every output raster positign do
— Setf(p) =c(p)/n(p).

Moreover, we observe that in both the scatter and the gat
approach, particularly with dense samples, mggt) do not (@) (b)

contribute to any giveri (p). For the gather approach, it would _ , o

require us to determine a bounding boxYp), for eactp, o 55, , The vabe at ereno reser positrniuences exacty af hose
optimize the procedure, but the computation of the boundifigm i to the closest sit@s.

boxes would be expensive. For the scatter approach, we can

take advantage of this observation. More specifically, we cdime above theorem implies that in order to scatter the value

p3




Vc(i) at pointi to all output raster positiong that are
influenced by it, we merely have to draw cadimensional v3

v2

Vertex attributes for v[0..3] |

sphere of valud/(i) aroundi, where the radius of the sphere
is the distance fromi to its closest site. Blending these
spheres results in a discrete equivalent of Sibson’s interpolant,
as shown in Figure 6. This observation also allows us to
eliminate discrete Voronoi diagrams altogether. The only use P

for a Voronoi diagram in the described algorithm is to find the v
closest site of a point, and this can easily and efficiently be ( Fragment program <°a"ed°"evefv"agmem

vi

(values used by the fragment program)
texcoord: (ix,iy,iz,r)
vertex color: pn.rgb

achieved by querying kd-tree containing all sites directly.

The scatter approach thus simplifies to the following algo

rithm:

« Construct akd-tree form sites.
« For every output raster positigm do

— Initialize ¢(p) =0 andn(p) =0.
« For every raster positiondo

— Find the closest sitp,, in the kd-tree.
— Calculater = d(i,pn).
— For each raster positiop inside ad-dimensional
sphere of radius aroundi do
Add V(i) to c(p) and increment(p) by one.

« For every output raster positigm do

— Setf(p) = c(p)/n(p)-

By rendering just these small regions, the implementati6
becomes considerably more efficient, especially when dealif}

with very large number of samples.” Figu?@ shows how the
scatter approach is implemented in a fragment program.

frag_dist_to_i = distance(i, p)

if (frag_dist_to_i<r)
out_color.rgb = pn.rgb
out_colora =1

else
out_color =0

return out_color

Fig. 7. Scatter approach implementation: Value at each Voronoi raster
positioni is scattered by rendering a quad of twice the length of the distance
r to the closest sitpy. lllustrated are the fragment program scattering values
at one raster position. For efficient processing, raster locatam value at

site pp, are stored using texture coordinates and color attributes of each vertex.

D. Implementation

To take full advantage of the algorithm described, we utilize
the fast raster processing and programmability capabilities
of modern graphics hardware. For implementation purposes,
fie following processing capabilities are desirable: floating-

int precision framebuffer and textures and floating-point
gndlng. Floating-point precision is desired for accuracy in
data accumulation because using only eight-bit precision, i. e.,
256 values, does not suffice to accurately accumulate data
values during interpolation.

In our implementation, we use OpenGL libraries and
NVIDIAs Cg language for vertex and fragment programming
with an NVIDIA GeForce 6800GT card. For storing the
discrete Voronoi diagram and Sibson'’s interpolation function,
we use a four channel 32-bit floating-point textures. The RGB
channels are used for storing the nearest site’s value, and the
A channel is used for storing the distance to the nearest site.
\Voronoi diagram generation usingkd-tree is implemented on

the CPU by querying th&d-tree at each discrete location for
the Voronoi region it is in. For computing Sibson’s interpolant,
the RGB channels are used to accumulate data values, and
the A channel is used for counting the number of values
accumulated in each pixel.

An efficient implementation would use hardware’s floating-
point blending to accumulate intermediate values. Floating-
point blending is available in the current generation of cards,
however, the precision it supports is only 16 bits which for
small data sets, especially for 3D applications is not enough
for proper interpolation. Using 16-bit blending can produce
incorrect visual results due to data overflow. To approximate
the performance on graphics hardware we measure our time
using 16-bit floating point blending. Although an interpolation

Fig. 6. The gather approach iteratively draws disks of certain radii for evegsing the 16-bit implementation requires the same amount of

raster position and blends the values of the disks. The approach is illustr

for two, four, six, and512 disks.

aé‘?ﬂnputations, it requires less memory transfer. For our time

measurements, we assumed that using the 16-bit implementa-



tion is a reasonably good approximation as we expect the nest case is based on H8x 128 x 128 voxel grid using
generation of cards to only get faster. m randomly generated sites. In the two-dimensional case,
the results obtained with the geometric computation of the
position, This can be implemented in a fragment prograa\%%mi diagram are compargd with thpse obtaingd with the
but certéin inefficiencies must be considered. First, in order IScrete approachgs using distance field r_ende_rmg lahd

' ’ es. The three-dimensional case comparison is done only

accumuIaFe values at_ a single raster _position, points must Stween the two discrete approaches. Figure 9 shows a graph
rendgred instead of triangles or quadrl_laterals. Eyery fragrm?)'?tcomputation times for different Voronoi approaches. For
that is rendered must output to a single location, and thésrelatively smaller number of samples, tka-tree approach

is only possible by rendering points. Also, since the ex aLkes more time but as the number of samples increase, the

rkeglon that.conttr;]btitzs to ;che pta_rglctularfIrlastertpl;)smon 'S n§1 -tree approach exhibits only a slow growth, while both
nown, regions that do not contribute Stil must be examinefy, - yiciance field rendering approach and the geometrical

) . ” ! roach exhibit much faster growth in computation time.
the convex hull, it would require additional computatlonrslc.gpp 9 P

In either case, the additional computations make the gatl=
approach less efficient. :

Implementing the fully optimized scatter approach is simpl. i e e
and very efficient. In two dimensions, we first construct ;. el e
kd-tree of all sites. Sibson’s interpolant is then computed f

drawing circles at each given raster position, while queryir:

the kd-tree for data values and radii. The data value

associated with function values of the circle and the radiy
information is used to render a square, centered at the ras
position, with side length being twice the radius. The circlg .~ .~ :
within each square are drawn by comparing distances in the @) (b)
fragment program. Once all values are accumulated, we use

a fragment program to divide the total accumulated value I5ig. 8. (a) 6400 uniform random sampling of sites vs. (b) non-uniform
the number of accumulated values to generate the final imag"Ping of sites of Lena image.

For Sibson interpolation in three dimensions, spheres are
deposited at each raster position of the volume. This Voronoi Diagram Approaches (512x512)
achieved by computing one slice at a time. For each slic
cross section of the intersecting spheres are accumulated

1000

later normalized. Like in the two dimensional casekdatree 100 ——2D Software
is queried for data values and radii. (Geometric)
_ 10 —-—2I_J Discrete (Dist
3 1 "'4 :II:::') Kd
qE> / —m—tree)lscrete (
V. RESULTS F ~
0.1 — —<—3D Discrete (Dist
7 Field)
Although our optimal Sibson’s interpolation algorithm ng 3D Discrete (Kd
longer requires knowledge of an explicit Voronoi diagram, w tree)

still have compared our new approach for generating discre ' " T T T T o 100000
Voronoi diagrams with Hoff et al's method of generating Number of Sites

discrete Voronoi diagrams. We have compared the computation

time and the interpolation results for two-dimensional Sibsonf. 9. Comparison of performance of Voronoi diagram computation using a
interpolant using the traditional geometric approach and O%Frometrlc approach vs. discrete approaches using distance fieldd-tiees.
optimized hardware-accelerated version. For comparison, y[ve | h ‘ £ th imized . f
also have tested our hardware-accelerated version with & 21aYZ€ the performance of the optimized version o

software implementation of our discrete algorithm. We pros—'%Sons two-dimensional interpolation scheme versus an opii-

vide computation times of our implementation for the threﬁ-"'szcﬁgfé\g’:;er;?g:)erment:rt]'grnag;hseit(g:%r%i[gC ggzpr(?iglh’ we
dimensional case. Our data were generated on a 3.2 Y9 x P

Pentium 4, equipped with 2GB of RAM and an NVIDIAg”d' Instead of just using uniformly distributed random sites,

GeForce 6800GT graphics card running Windows XP. we also have tested our glgorlthrp ag:’;unst adaptively sampled
sites to more accurately simulate “real” scattered data. We have

For performance evaluation of the two discrete Voronoi apised the adaptive sampling as described by Kreylos et al. [23].
proaches, it is reasonable to compare computation timesFafure 8 shows an example of 6400 sites sampled with uniform
both algorithms while varying the number of input valuedistribution and adaptively sampled sites. Figure 10 shows
The two-dimensional test case is based on a Voronoi dilte computational time required to perform interpolation. For
gram on a512x 512 pixel grid, and the three-dimensionalsmall number of sites, the geometric approach of Sibson’s




TABLE |
Discrete Sibson 2D PERFORMANCE DATA FOR3D DISCRETESIBSON INTERPOLATION OF
UNIFORM-RANDOMLY SAMPLED CT HEAD DATA SET (DATA SIZE: 128°) .

1000 7

# sites | Voronoi | Discrete 3D | Total Time
(sec) (sec) (sec)
100 > 100 1.39 92.05 93.44
1000 2.16 13.05 15.21
—=— Hardware (Uniform) 10000 308 645 953
Hardware (Non-uniform) 100000 383 398 781
Software (Uniform)
—x— Software (Non-uniform) 200000 4.17 3.55 7.72

—a— Geometric (Uniform)
—e— Geometric (Non-uniform)

Time (sec)

! — randomly sampled points. The performance trend as in the
.- other case increases with increasing number of sample points.
. . Figure 13 shows a visualization of the reconstruction.
o 800 ‘ 1600 ‘ 3200 ‘ 6400 ‘ 12800 ‘ 25600 ‘ 51200 ‘
Number of Sites

Fig. 10. Comparison of performance of two-dimensional Sibson interpolatig
using geometric vs. discrete approach.
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Fig. 11. Root-mean-square (RMS) of two-dimensional Sibson interpolatid
resulting from geometric, discrete, and original approaches.

Fig. 13. Discrete Sibson interpolation and visualization of CT Head data

. lati hibi . f h sef (data size128%) using (a) 10,000, (b) 100,000, and (c) 500,000 scattered
Interpolation exhibits a superior performance when comparggt, points, compared to visualization using 188° gridded points.

with the discrete algorithms. As the number of data sites

increases, the discrete version exhibits a significantly better
performance. To test the correctness of the discrete approach,
we have computed differences between the two images. As

zﬂg\r/\;neglg;gure 12, slight differences can be seen aroug%nsidering the two discrete Voronoi approaches presented,

we observe that both methods have advantages and disad-
Table | shows the performance of the discrete Sibson algorithvantages. Using the distance field rendering approach yields
in the three-dimensions based oA28x 128x 128voxel grid very good performance, up to a certain number of sites. Com-
using m randomly generated sites from a CT head data setitational time increases drastically with increasing number
Only the optimized case has been tested. For few sites, tifeadditional sites. In the two-dimensional case, as shown in
discrete approach is slow. This is due to the relatively largection IV-A, the computation time for up to 1,000 sites is less
radii of spheres that have to be rendered for each voxel. Witkan the time required by tHal-tree method. For 1,000 points
more sites, however, the interpolation is significantly faster. Wi a grid of512x 512 the rendering time increases linearly
have also reconstructed data from adaptively sampled versioith additional sites: The algorithm is a brute-force approach,
of the CT head data set as described by Co et al. in [24]. Dwhere each additional site rendered compares its distance to
to adaptive sampling, there are less points outside the heagery discrete point in the grid. The time complexity of this
As a result, the overall speed is significantly slower than tleproach iSO(mP), wherem is the number of sites anfd is

VI. DISCUSSION



(b)

(d)

Fig. 12. Comparison of computational geometry-based and discrete Sibson interpolation using 6,400 data points. (a) Origirelama&de pixels);
(b) result using geometric Sibson interpolation; (c) result using discrete Sibson interpolation; (d) difference image between (b) and (c).

the number of pixels in the grid. THal-tree approach exhibits more complicated to implement, and much more difficult
slightly different behavior. Computation time when dealingp optimize. Furthermore, computation times for rendering
with a small number of sites is slow when compared to the discrete three-dimensional Sibson’s interpolant are very
distance field approach. However, computational time forlew, and computation time, as in the two-dimensional case,
large number of sites is faster since the computational tindecreases with an increasing number of sites.

increases slower compared to the distance approach with the

increasing number of sites. This behavior is expected since

the Voronoi diagram is rendered by querying tkabtree at

each grid location for its closest neighbor, and a search TR investigate the approximation quality of our algorithm, we
kd-trees require®(logm) leading to a total time complexity COmpare images generated by discrete Sibson interpolation

of O((m+P)logm). In the three-dimensional case, the resuliith images generated using a computational geometry-based
show analogous behavior for the two approaches. algorithm. One test case is shown in Figure 12: The difference

image (Figure 12(d)) shows that the two images are almost
When comparing the discrete approaches to the “exact” gédentical. However, differences can be noticed around the
metrical approach, thkd-tree approach is significantly fasteredges of the image. (The resulting image was generated
when the number of sites increases. Compared to the distaffoen adaptively sampled data as shown in Figure 8.) The
field approach, the geometrical approach exhibits better perfagason for such differences is due to aliasing errors: There
mance until the number of sites reaches 5,000. Although taee more samples around the silhouette of the face, which
kd-tree approach shows better performance for higher numbinplies drawing of many small circles in that area. Discrete
of sites, the discrete approach suffers from a few drawbackbson interpolation is prone to aliasing, especially as the
For Voronoi sites that lie within a discrete element, it wouldlumber of data points increases and the radius of rendered
require us to use a higher-resolution grid to produce accuratglimensional spheres decreases. One could compute more
results, in which case it could take much longer than theecurate Sibson values by computing the coverage area of the
geometric approach. Also, the discrete approach would be lesadered spheres on partially covered pixels. Such values for
efficient in the case of a small number of sites and a large grjuxels could be used as weights when accumulating data values
since the geometric approach’s performance is less dependenead to accurate results. Calculating the exact coverage area
on grid size. would be compute-intensive. A good estimate, however, can

_ _ _ o o be obtained by simply increasing grid sizes or rendering anti-
Discrete Sibson interpolation is, considering a small numbgfiased primitives.

of sites, computationally slow — significantly slower than the

geometrical approach. However, as the number of sites in-

creases, computation time decreases, and our approach shows

a significant speedup over the software implementation. To quantify the errors of our discrete approach, we have
the two-dimensional case, for around 1,000 sites the comemputed root-mean-square (RMS) error values. Figure 11
putational time required for constructing Sibson’s interpolashows the results obtained with the exact geometric and
is less than a second. Computing the Voronoi diagram adicrete approach are very similar, for small number of sites.
Sibson’s interpolant can be done in under a second. We ha& the number of samples increases, however, the geometric
not yet compared our discrete three-dimensional algorithmpproach produces better approximations. Also, when the
to a software implementation, since we do not have accafiscrete approach is compared against the geometric approach,
to a fast and robust implementation. We expect our threie RMS error increases in linear fashion as the number
dimensional method to perform well, since it uses the saré samples increases. The errors, in both cases, are due to
simple algorithm underlying the two-dimensional method. Aliasing resulting from drawing increasingly large numbers of
three-dimensional geometrically exact method would be mugtcreasingly smaller circles.
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VIlI. CONCLUSIONS ANDFUTURE WORK [6] J. Kriger and R. Westermann, “Linear algebra operators for GPU im-
plementation of numerical algorithmsXCM Transactions on Graphics

We have presented a method for rapid computation of Sib- (Z%ré);ee‘j'ngs of ACM SIGGRAPH 2003pl. 22, pp. 908-916, July

son’s interpolant for two-dimensional and three—dimensional7 c 3 Th S. Hahn. and M. Oskin. “Usi g o
. . L J. ompson, S. Hann, an . OsKin, Sing moaern graphics ar-
Scatte_red qata using CO’ﬁtemPOf?ry graphlcs hardware. O[u} chitectures for general-purpose computing: A framework and analysis,”
technique is based on discretization and takes advantage of in 35th Annual International Symposium on Microarchitectymg. 306—
geometrical properties of Sibson’s interpolation scheme, which 317, Nov. 2002.
reduces thel-dimensional interpolation problem to rendering[8] I. Amidror, “Scattered data interpolation methods for electronic imaging
and blendingd-dimensional spheres of easily computable systems: A surveyJournal of Electronic Imagingvol. 2, no. 11,
, : . : o pp. 157-176, 2002.

radii. The interpolation algorithm is simple and can be acceler-
ated by using modern programmable graphics hardware. O# TI tA- F?'ft{y' D-fA- L?tne'de '\t" N'e'sfn’ dR- Ff?”k&%“d tH-A'_'('ja%e“v

. . . . nterpolation or scattere ata on closed surfac put. Alde
approach is designed for interpolation of scattered data Sets geqom pes.vol. 7, no. 1-4, pp. 303-312, 1990.
with many sites, for which it achieves a major improvement R. Franke and G. Nielsor ic Modeling: Methods and Anpli
. . . Franke an . Nlelsorpeometric iviodeling: Metnhods an pplica-
in performance compared to cla§3|cal _apprOaCheS' We hg‘% tions, ch. Scattered Data Interpolation: A Tutorial and Survery, pp. 131—
analyzed and compared the two-dimensional discrete approach 160. SpringerVerlag, New York, 1991.
with a software |mplementat_|0n of the tradlthnal g_eomemﬁl] S. K. Lodha and R. Franke, “Scattered data techniques for surfaces,” i
approach, and have tested it for the three-dimensional case. Proceedings of Dagstuhl Conference on Scientific Visualizagipn182—
Our discrete Sibson interpolation approach is fast, easy to 222, [EEE Computer Society Pres, 1999.

implement, and generalizes to higher dimension. [12] G. Nielson, “Scattered data modelindEEE Computer Graphics and
Applications pp. 60-70, January 1993.

n

We plan to adap_t the disc_rete approach to other diStance-ba[s%g]dG. M. Nielson, T. A. Foley, B. Hamann, and D. Lane, “Visualizing
scattered data interpolation methods. Moreover, we plan 10" g4 modeling scattered multivariate datEEE Comput. Graph. Appl.

investigate acceleration techniques for the three-dimensional vol. 11, no. 3, pp. 47-55, 1991.
approach In support of interactive visualization of VOIurT]emﬁ4] D. Shepard, “A two-dimensional interpolation function for irregularly

scattered data applications. spaced data,” iffroceedings of 23rd National Conferengp. 517-524,
ACM, August 1968.
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