
A Framework for Real-time Volume Visualization of
Streaming Scattered Data

Sung W. Park∗ Lars Linsen† Oliver Kreylos∗ John D. Owens∗ Bernd Hamann∗

∗ Institute for Data Analysis and Visualization † Department of Mathematics and Computer Science
Department of Computer Science Ernst-Moritz-Arndt-Universität Greifswald
University of California, Davis Greifswald, Germany

Davis, CA 95616, U.S.A.

Abstract
Scattered data reconstruction algorithms are often
computationally expensive and difficult to imple-
ment. In order to visualize streaming scattered
data, efficient approaches to scattered data recon-
struction are required. We present a general frame-
work for scattered data interpolation operating on
discrete domains. The key idea for speeding up
the reconstruction over an underlying grid is a re-
factorization of the algorithm. The re-factorized
version is designed such that it easily maps to
graphics hardware architectures exploiting their
performance and parallelism. Moreover, it natu-
rally extends to applications for streaming data. As
a proof of concept, we have implemented inverse-
distance-weighted interpolation, natural neighbor
interpolation, and radial Hermite interpolation us-
ing our general framework. We apply the frame-
work to two kinds of streaming data: progressive
scattered data and real-time sensor data with mov-
ing sensors delivering asynchronous measurements.
To account for the scattered spatial and temporal
distribution of streaming sensor data, we use a four-
dimensional extension of our framework, which el-
egantly handles representation of time-varying data
and leads to reconstructions that are smooth in both
space and time.

1 Introduction
Scattered data methods arise naturally in a variety of
applications. When data is gathered by measuring
quantities of interest at locations in the real world,
there is usually no predefined or implied connec-
tivity between individual measurement sites, and
the sites are not arranged on a grid. An important
emerging application area for scattered data meth-
ods are wireless sensor networks, where small inde-

∗{sunpark|okreylos|jowens|bhamann}@ucdavis.edu
† linsen@uni-greifswald.de

pendent sensors measure environmental functions
at their location, and asynchronously send their
measurements to a base station using an ad-hoc
wireless network. Sensors are typically not placed
in pre-planned locations, and some sensors can
change position over time. Traditionally, scat-
tered data reconstruction has been treated as a pre-
processing step at the beginning of a visualiza-
tion pipeline, and the efficiency of reconstruction
methods has therefore not been much of a con-
cern. Sensor network applications such as envi-
ronmental monitoring or emergency response, on
the other hand, require monitoring of “live” stream-
ing sensor data, which implies that all reconstruc-
tion and visualization must be performed in real
time. As most reconstruction methods are compu-
tationally expensive and difficult to implement effi-
ciently, new methods need to be developed, or ex-
isting methods need to be reformulated for real-time
streaming demands.

A common usage pattern for scattered data re-
construction is to evaluate a reconstructed function
on a regular grid, and to perform all subsequent
analysis/visualization using that grid. It turns out
that a large subset of existing scattered data meth-
ods, those based on partition-of-unity interpolation,
can be re-factorized in such a way that it becomes
possible to exploit computational coherency, and
the high floating-point performance of modern pro-
grammable GPUs, to reduce the cost of reconstruc-
tion to the point of real-time processing. Further-
more, these re-factorizations are also amenable to
efficiently handle streaming data by only computing
local updates to an existing reconstruction when-
ever new data arrives. We also found that our re-
factorization scheme can handle true time-varying
data, where asynchronous data from moving sen-
sors is interpolated in both space and time, by treat-
ing it as static (n + 1)-dimensional data, to cre-

VMV 2005 Erlangen, Germany, November 16–18, 2005

ate smoothly varying reconstructions that are eas-
ily visualized or analyzed. When treating sam-
ples as individual points in space-time, dynamic in-
sertion/removal of sensors and moving sensors are
handled implicitly.

The re-factorization of scattered data reconstruc-
tion methods led to a natural separation of the meth-
ods into a setup phase that is done once for an
entire data set, a per-sample update phase that is
done whenever a streaming data set changes (by
addition/removal of samples, or change of sample
location/value), a per-sample phase during recon-
struction, and a per-voxel phase during evaluation
of the reconstruction on a regular grid. The setup
and update phases are generally performed on the
host computer’s CPU, using spatial data structures
such as k-d trees to quickly locate samples and
locally update reconstructions; the per-sample re-
construction phase consists mostly of sending data
from the application’s address space into the GPU,
and the per-voxel reconstruction phase is entirely
done on the GPU using vertex and fragment pro-
grams. Modern programmable GPUs provide paral-
lelism and high computational performance through
streamlined designs, and we found that this hybrid
approach leads to efficient implementations for both
static and streaming scattered data, and the sepa-
ration of the reconstruction algorithm into distinct
phases leads to a general framework that can be eas-
ily adapted for different reconstruction methods.

2 Related Work

Since scattered data interpolation has been an area
of research for a long time, many different ap-
proaches exist. The most common ones can be cat-
egorized into methods based on triangulation, in-
verse distances, radial basis functions, and natural
neighbors. For details, we can refer to many sur-
veys on this topic [1].

Existing approaches are not well suited for time-
varying, streaming scattered data, where new sam-
ples arise, old ones may vanish, and other samples
may change their positions. We show that by refac-
toring the problem, existing approaches such as a
class of inverse distance methods and even natural
neighbor methods can be applied to such data. Re-
cently, a radial Hermite interpolation for scattered
Hermite data has been introduced by Nielson [8].
The interpolation scheme interpolates both sample
values and normals at the sample sites. We show

that our framework is also applicable to scattered
Hermite data, and use radial Hermite reconstruc-
tion as an illustrative example for progressive data
reconstruction.

The concept of progressive data representation
was introduced by Hoppe [6] for triangular meshes,
and was adapted to progressive point set surfaces
by Fleishman et al. [4], and to progressive repre-
sentation of volume data by Staadt and Gross [13].
Our interest is to efficiently reconstruct and visu-
alize scattered data in a progressive representation.
The progressive representation may be the result of
a sophisticated data analysis or merely the order in
which the data was originally generated.

Recent advances in the performance and pro-
grammability of GPUs have made them increas-
ingly attractive targets for the implementation of
complex and computationally demanding scientific
and visualization applications such as scattered data
interpolation. Harris describes the characteristics of
tasks that map well to modern GPUs, including sim-
ple control, ample data parallelism, and high arith-
metic intensity [5]. Efficient implementations on
GPUs can yield substantial performance gains over
CPU implementations because of the GPU’s supe-
rior arithmetic capability [2]; technology trends in-
dicate this gap will only increase in the future [9].
Jang et al. [7] describe a method to reconstruct ra-
dial basis functions on GPUs, and two approaches
to GPU-based natural neighbor interpolation have
been described by Fan el al. [3] and Park et al. [10].

3 Re-factorization of Reconstruction
Formula

The scattered data reconstruction problem as de-
scribed in Section 1 is defined as follows: Given a
set of samples S =

{

si = (pi, fi)
∣

∣ pi ∈ Rn, fi ∈ R
}

,
i. e., a set of n-dimensional sample sites pi with as-
sociated sample values fi, define a function f :Rn →
R such that ∀si = (pi, fi) ∈ S : f (pi) = fi. In gen-
eral, all scattered data reconstruction methods can
be expressed using linear combinations of the sam-
ple values, i. e., f (p) = ∑n

i=1 fi ·d(p,pi), where d is
an appropriately chosen weight function.

A common subclass of interpolation meth-
ods uses a partition-of-unity approach, where the
weighted sum of sample values is divided by the
sum of all weights in a final step. In other words,
methods in this class are characterized by the for-

666

mula

f (p) =
∑n

i=1 fi ·d(p,pi)

∑n
i=1 d(p,pi)

(1)

with an arbitrary weight function d. Weight func-
tions are usually constructed such that they ap-
proach infinity as p approaches pi (to ensure inter-
polation), and approach zero as p moves away from
pi (to ensure locality of influence).

3.1 Reconstruction on Regular Grids
As standard visualization techniques such as slices,
isosurfaces, and volume rendering typically cannot
be applied to scattered data directly, a very common
approach is to evaluate the reconstruction function
of a scattered data set on a Cartesian grid, and visu-
alize the resulting gridded data. The algorithm for
this resampling step is as follows:

1. for each grid point p:
(a) f .c(p) = 0, f .d(p) = 0
(b) for each sample si = (pi, fi):

i. f .c(p)+= fi ·d(p,pi)
ii. f .d(p)+=d(p,pi)

(c) f (p) = f .c(p)/ f .d(p)
The approach of scattered data reconstruction over
a grid is illustrated in Figure 2(a1). The weighted
contribution of all samples is accumulated for each
grid point, and then divided by the sum of weights
to calculate the final reconstructed value. If there
are N grid points and n samples, this algorithm eval-
uates the weight function N ·n times. In the case of
partition-of-unity methods, the above algorithm can
potentially be sped up considerably by exploiting
coherency in weight function evaluation when it is
re-factorized inside-out:

1. for each grid point p:
(a) f .c(p) = 0, f .d(p) = 0

2. for each sample si = (pi, fi):
(a) for each grid point p:

i. f .c(p)+= fi ·d(p,pi)
ii. f .d(p)+=d(p,pi)

3. for each grid point p:
(a) f (p) = f .c(p)/ f .d(p)

The re-factorized approach to scattered data recon-
struction over a grid is illustrated in Figure 2(a2).
The weighted contribution of each sample is dis-
tributed to (and accumulated at) all grid points in-
side the weight function’s support. After all sam-
ples’ contributions have been distributed, the final
reconstructed value at each grid point is calculated
by dividing by the sum of accumulated weights.

This approach exploits coherency in two ways:
First, the weight functions for each sample are eval-
uated in sequence and on a regular grid, which can
lead to efficient implementations, for example us-
ing forward differencing; second, weight functions
used in most reconstruction methods have only lo-
cal support, and the grid points contained in that
support can be found more easily. Furthermore, the
per-sample processing order leads more naturally to
GPU-based implementations exploiting their paral-
lelism and high floating-point performance.

3.2 Reconstruction of Streaming Data
Another major benefit of the re-factorization of the
reconstruction algorithm is that it generalizes to
streaming scattered data. We consider two differ-
ent kinds of streaming scattered data:

• Progressive scattered data, where a fixed data
set is stored at a remote location, and sent
to a local graphics workstation for visualiza-
tion. We want to generate preliminary visu-
alizations of the data set as soon as the first
samples arrive and refine the visualization in-
crementally over time.

• Time-varying sensor data, where spatially
scattered sensors report asynchronous streams
of time-varying sample values. Here, we want
to update the visualization whenever a new
sample value arrives from any of the sensors,
or, in the case of moving sensors, when a sen-
sor changes position.

For both progressive scattered data and time-
varying sensor data, all changes to a data set’s re-
construction due to incremental updates can be ex-
pressed by two basic operations:

• A new sample (pi, fi) arrives and is inserted
into the reconstruction.

• A sample (pi, fi) becomes invalid and is re-
moved from the reconstruction.

Two common cases, that of a sample changing its
associated value and that of a sample moving to a
new position, can be expressed by first removing the
old sample and then inserting the new one. How-
ever, coherency between these two operations often
makes it more efficient to represent them explicitly:

• A sample (pi, fi) changes its value to (pi, f ′i).
• A sample (pi, fi) changes its position and

value to (p′
i, f ′i).

The special case where a sample only changes po-
sition but not its value is uncommon and does not
lead to optimizations, and is therefore not treated

666

separately. For many scattered data reconstruction
methods, the two basic and two additional opera-
tions can be expressed very efficiently with only
changing the gridded reconstruction locally.

For both types of streaming data, our basic recon-
struction algorithm is modified as follows:

1. Calculate initial reconstruction based on the
set of immediately available samples.

2. For each newly arriving sample si:
(a) Update any data structures created in the

data set set-up phase, e. g., insert the sam-
ple into a k-d tree used for neighbor look-
up.

(b) If existing samples’ contributions change
due to the insertion, e. g., deposition radii
are adjusted, subtract the contribution of
affected samples from the reconstruction,
and add their contribution using the ad-
justed weight function.

(c) Add the new sample’s contribution to the
reconstruction.

(d) If immediate visualization is required, re-
normalize the reconstruction in changed
areas by dividing by the sum of deposited
weights.

Due to the locality of most reconstruction meth-
ods, inserting a new sample only involves updat-
ing a constant number of already existing samples,
and then inserting the new sample. Therefore, cre-
ating the final reconstruction of a data set using
the progressive method has the same complexity as
the original methods. For several methods (such as
Shepard’s global method), no existing samples have
to be adjusted, and there is no performance differ-
ence between direct and progressive reconstruction.

In the case of time-varying sensor data, where
new measurements are inserted into the current re-
construction as soon as they arrive, we can optimize
the common case of a sample changing its value by
merely subtracting its old contribution from the re-
construction, and then adding its new contribution
(or adding the difference between the new and the
old contribution). This does not require us to ad-
just the contributions of other samples, and leads to
a very efficient implementation. As the adapted al-
gorithm shows, re-factorized reconstruction offers a
useful framework for handling streaming scattered
data. We show the necessary steps in more detail in
Section 4.3, where we discuss our implementation
of the radial Hermite method.

3.3 Time Interpolation of Time-varying
Data

The approach to time-varying scattered data de-
scribed in the last section suffers from one seri-
ous drawback: Whenever a sample changes its as-
sociated value, the reconstruction function changes
its value discontinuously. This fact makes it dif-
ficult to visually and analytically observe the be-
havior of a measured phenomenon. A better ap-
proach would interpolate sample values over space
and time. Although space and time are usually
treated and interpolated separately, a promising ap-
proach is to represent time-varying n-dimensional
scattered data as static (n + 1)-dimensional scat-
tered data, where sample values do not change over
time, but are associated with fixed sample positions
in space-time. For example, if a single sensor lo-
cated at position p generates values f1, f2, . . . , fk at
times t1,t2, . . . ,tk, respectively, these changing val-
ues would be represented as k static and unrelated
sample values f1, f2, . . . , fk at the space-time posi-
tions (p,t1), . . . ,(p,tk), respectively. Since we no
longer explicitly represent individual sensors, but
represent individual measurements instead by asso-
ciating them with a single point in space and time,
changing sample values, moving, and even dynami-
cally disappearing and reappearing sensors are han-
dled elegantly. For example, in Figure 1, we con-
sider two moving sensors in a 2D domain that asyn-
chronously generate measurements. The paths of
the two sensors in space-time are denoted by the
thin lines; the generated samples are shown as black
dots. To reconstruct the data at time t0, we intersect
space-time with the plane t = t0. The deposition
spheres around close samples intersect the plane
to form circles, which are used in our deposition
scheme.

In other words, we represent time-varying 3D
scattered data as static 4D scattered data in space-
time. This allows us to extract 3D reconstruc-
tions for arbitrary time points t0 by intersecting
the (not explicitly calculated) 4D reconstruction
function f (x,y,z,t) with the time-orthogonal hy-
perplane t = t0. We can use our existing imple-
mentation for 3D reconstruction using our hybrid
CPU/GPU approach for the time-varying case by
observing that depositing the 4D weighted contri-
bution of a sample si in space-time and then inter-
secting with the t = t0 hyperplane is equivalent to
depositing the intersection of the weighted contri-

666

�

���

��� ��� � �

� � � � ���

	�

�

�

Figure 1: Time interpolation in a 2D domain. The thin lines are
the space-time paths of two moving sensors that generate mea-
surements at random times (black dots). Data is reconstructed for
time t0 by only considering the plane t = t0. The intersections
of the weight function supports (sphere) of near samples with the
plane are deposited into the 2D reconstruction using our normal
algorithm.

bution with t = t0 in 3D space. For example, in
the case of our modified version of Shepard’s re-
construction method [11], we deposit hyperspheres
of radius ri around a sample si = (xi,yi,zi,ti), where
the deposited value is the value of Shepard’s weight
function in four dimensions. The intersection of
such a hypersphere with the hyperplane t = t0 is
a 3D sphere centered at (xi,yi,zi,t0) with radius

r′i =
√

r2
i − (ti − t0)2. Since projecting this inter-

section into 3D space means to merely drop the time
component, we can deposit just as in the 3D case, as
long as we use the full 4D formulation of Shepard’s
weight function for each grid point.

To analyze the behavior of this approach to time-
varying reconstruction, let us first consider the case
where a complete data set is reconstructed for a time
point t0. As the data set contains samples with times
before and after t0, the algorithm can “look into the
future,” and if t0 is slowly moved forward in time,
samples in the future smoothly “fade into” existence
in the reconstruction, whereas samples passed by t0
smoothly fade out. This smooth variation in both
space and time is better suited to detect, either vi-
sually or analytically, the changing behavior of an
observed data set.

In the case of real-time monitoring, it is not pos-
sible to look into the future; therefore, whenever a
new sample arrives and is inserted into the recon-
struction, it will always appear exactly at time t0,
where it has maximal influence on the reconstruc-
tion. Thus, arrival of new samples will cause dis-

continuous changes. “Older” samples will still fade
out smoothly. This fundamental drawback of real-
time monitoring can be tackled in two ways: If the
application only requires “near real time” monitor-
ing, the reconstruction time t0 could always be fixed
behind real time by a set amount, which allows the
algorithm to look into the future by that amount and
smoothly fade in new samples. If this is not an op-
tion, another approach is to insert new samples in
real time, and to allow a user to rewind the live data
stream when a noteworthy change happens, and re-
play a section in “TiVo mode,” which allows look-
ing into the future because the point of view lies in
the past.

4 Applying the General Framework
To demonstrate the versatility of our framework, we
briefly describe how to apply it to several different
scattered data reconstruction methods.

4.1 Inverse-distance-weighted Interpola-
tion

The best results in terms of real-time requirements
are to be expected when using the simplest scat-
tered data approach. Shepard [11] introduced the
idea of using radial distance functions for scattered
data interpolation, i. e., he used weight functions of
the form

d(p,pi) =
|p−pi|

µ

∑n
j=1 |p−p j|µ

. (2)

Most commonly, quadratic weights (µ = 2) are used
(also for our implementation).

A local version of Shepard’s method restricts the
influence of each sample to a local region around
the sample site. Using our framework for the im-
plementation of a local version, the inner loop does
not iterate over all grid points but only over the grid
points within a certain distance to the sample site.
Using radial distances, the contribution of a sample
is restricted to an n-dimensional sphere.

4.2 Natural Neighbor Interpolation
Natural neighbor interpolation is based on a
Voronoi tesselation of the n-dimensional domain.
Only the natural neighbors influence the interpola-
tion (local interpolation scheme), and the weights
in Equation (1) are determined by the size of
the Voronoi regions. Over a regular grid, the
weights can be computed by counting the grid

666

points that fall into the respective region. We re-
cently showed [10] that when using the idea of
re-factorization the computation of Sibson’s ap-
proach [12] to natural neighbor interpolation re-
duces to drawing an n-dimensional sphere around
each grid point, whose radius is the distances from
the grid point to the closest site. Moreover, the com-
putation of the Voronoi diagram becomes obsolete
and is replaced by mere k-d tree look-ups. Our dis-
cretization and re-factorization of Sibson’s natural
neighbor interpolation method is described in detail
in our previous publication [10].

4.3 Radial Hermite Interpolation
If we know or can precompute gradient information
at the sites in a scattered data set, the data is defined
by S =

{

si = (pi, fi,ni)
∣

∣ pi ∈ Rn, fi ∈ R,ni ∈ Rn
}

,
where pi and fi are as before and ni denotes the
sample’s gradient. Scattered data of this form is
referred to as scattered Hermite data. To prop-
erly reconstruct scattered Hermite data, both sam-
ple values and sample gradients need to be inter-
polated. Thus, we are searching for a function
f :Rn → R such that ∀si = (pi, fi,ni) ∈ S : f (pi) =
fi ∧∇ f (pi) = ni.

Nielson [8] proposes an approach to scattered
Hermite data interpolation using radial Hermite op-
erators, and applies it to point cloud fitting. In this
context, an implicit surface is represented by scat-
tered Hermite data, where sample values fi are ig-
nored, and the normal vectors define a local signed
distance field for the implicit surface. Nielson’s
Hermite interpolant is defined as

f (p) =
∑n

i=1〈p−pi,ni〉 ·d(p,pi)

∑n
i=1 d(p,pi)

.

The weights d(p,pi) could be chosen as in Equa-
tion (2), leading to an inverse-distance-weighted in-
terpolation of scattered Hermite data, but Nielson
suggested to use another radial function instead.
His radial Hermite interpolation weights are calcu-
lated as

d(p,pi) =

(

(ri −|p−pi|)+
|p−pi|

)µ
,

where ri is the radius of influence for each sam-
ple, the exponent µ > 1 plays the same role as in
Shepard’s method, and (x)+ := max(x,0). Nielson
chooses the radius of influence for each sample si
by finding the k nearest neighbors of site pi, and set-
ting ri to the distance to the farthest neighbor. We

implemented this method in the per-data set set-up
phase of our algorithm, by first creating a k-d tree
containing all sites, and then finding the k nearest
neighbors for each sample.

We apply our re-factorization approach the same
way as for Shepard’s method. The only differ-
ences are the use of different weights d(p,pi), and
the fact that fi is replaced by the dot product 〈p−
pi,ni〉. Since this scheme describes a local and ra-
dial method, the inner loop, again, only considers
grid points within an n-dimensional sphere of ra-
dius ri centered at each site pi. The deposition
of weighted contributions for each sample is per-
formed entirely on the GPU by processing each z-
slice of the volume that intersects the sample’s in-
fluence sphere, and rendering a square that contains
the intersection of the influence sphere with the
slice. Each square is rendered using a fragment pro-
gram that takes as input the sample site pi, the sam-
ple normal ni, and the world position of the pixel p
(all values are passed to the fragment program as
texture coordinates). The fragment program then
calculates the radial Hermite weight function, and
the dot product of the normal vector and the dis-
tance vector from p to pi. It finally deposits the
counter and denominator of the sample’s contribu-
tion in the image buffer representing the z-slice,
which is inserted into the 3D texture representing
the reconstruction at the appropriate position.

As mentioned in Section 3.2, reconstruction al-
gorithms have been adapted to allow reconstruction
of progressive or time-varying sensor data. Radial
Hermite interpolation serves as a good example to
illustrate this adaptation process, as it requires non-
trivial operations when inserting/removing samples.

According to the definition of the radii ri, when-
ever a new sample si is inserted (or removed), the
influence radii of all neighboring samples need to
be adjusted. More precisely, when removing si, the
radii r j of all samples s j who have si as one of their
k nearest neighbors have to be recalculated. This
is equivalent to updating all samples s j whose in-
fluence spheres contain the site of si. We use an
adapted k-d tree that stores each sample as a sphere
to efficiently find all affected s j . First, we sub-
tract the contributions of all found s j from the re-
construction; then, after inserting (or removing) si
from the k-d tree, we recalculate the radii of all
found s j by doing another nearest neighbor look-
up. Afterwards, we add the (changed) contribu-

666

tion of all s j back into the reconstruction, and fi-
nally add (or subtract) the contribution of sample si.
Since only a constant number of existing samples is
affected by insertion/removal, and adapting an af-
fected sample’s radius does not in turn affect other
samples, the asymptotic complexity of progressive
reconstruction is the same as that of the original al-
gorithm.

5 Results and Discussion
In order to test the effectiveness of the re-
factorized implementations of the various interpo-
lation schemes, we present results for three rep-
resentative application scenarios. First, we ana-
lyze reconstruction of a 3D dataset using both ra-
dial Hermite and Shepard’s interpolation. Second,
we use radial Hermite and Shepard’s interpolation
on a streaming version of the same dataset. Third,
we demonstrate four-dimensional modified Shep-
ard’s interpolation on a time-varying streaming sen-
sor data set.

To take full advantage of the framework de-
scribed, we use the latest programmable graphics
hardware. Although having floating point preci-
sion is desired, we are limited to current generation
of cards that only support 16-bit blending. 16 bits
are sufficient for most cases for doing Radial Her-
mite or Shepard’s reconstruction but they do pose
problems for doing natural neighbor reconstruction
for small and sparse data sets. We use OpenGL
libraries along with NVIDIA’s Cg language for
vertex and fragment programming to test our re-
factorization. We test our results on a 3.2 GHz Pen-
tium 4 machine with 2 GB of memory, equipped
with an NVIDIA’s GeForce 6800GT graphics card
with 256 MB of video memory.

Radial Hermite and Shepard’s Interpolation.
We generated two scattered Hermite data sets from
a polygonal surface model of a Macaque cranium
data set. The generated data sets consist of 35,000
and 350,000 samples, respectively, with randomly
distributed sample sites and sample values repre-
senting the distance to the polygonal surface model.
We have applied radial Hermite interpolation inter-
preting the data as scattered Hermite data and mod-
ified Shepard’s interpolation interpreting the data
as regular scattered data (without normal informa-
tion). We perform the reconstruction over Carte-
sian grids of size 1283 and 2563. Figures 2(b)
and 3(d) show a direct volume rendering of the re-

Shepard’s Hermite
Data size 35,000 350,000 35,000 350,000
1283 grid 0.344 s 0.328 s 1.031 s 1.091 s
2563 grid 1.250 s 2.870 s 1.420 s 3.230 s

Table 1: Times to reconstruct a 35,000- and 350,000-sample data
set on two different-size Cartesian grids using Shepard’s and radial
Hermite interpolation.

Data size Grid size Streaming window size
(samples) 50 100 500 1000

35,000 1283 14.6 12.6 6.7 3.7
2563 1.5 2.0 1.7 1.5

350,000 1283 13.4 12.6 6.1 3.7
2563 1.5 2.0 1.7 1.2

Table 2: Frame rates (in fps) when using progressive reconstruc-
tion. The streaming window size determines how many samples
are inserted into the reconstruction before the visualization is up-
dated. Frame rates include inserting samples, reconstructing the
volume, and volume rendering the result in a 512× 512 window.
The table entries are averaged over the entire progressive recon-
struction process, and given in frames per second.

constructed data field over a grid of size 2563 using
radial Hermite interpolation and 35,000 samples.
Computation times for reconstruction were on the
order of a second, with larger samples, larger grids,
and more complex interpolation methods incurring
larger computation times. Our timing results are de-
tailed in Table 1.

Interpolation of Streaming Data. Using the
same data set, we test the streaming capabilities of
our framework in the context of progressive visu-
alization. We load the data set incrementally, be-
ginning visualization after receiving 50 samples.
The reconstructed grid is updated sample by sam-
ple while data is streaming in, continuing until all
data has been received. Figure 3 shows the progres-
sive visualization using radial Hermite interpolation
to reconstruct the data over a Cartesian grid of size
2563, using direct volume rendering for visualiza-
tion of the reconstructed field. The figure shows
the visualization after having loaded 1,446, 1,876,
2,036, and 35,000 samples. A video showing a real-
time progressive visualization accompanies the pa-
per.

Interpolation of Time-varying Data. Finally,
we demonstrate the use of our framework on a
time-varying, streaming sensor data set (courtesy
of the Monterey Bay Aquarium Research Insti-
tute [MBARI]) measuring temperature in Monterey
Bay. The data set was generated by four moving
sensors, transmitting their data asynchronously to a
server. The sensors are mounted onto autonomous
devices, “gliders,” that float and dive through the
bay. The devices move on a predefined route but de-

666

viate heavily under the influence of the strong cur-
rents in the bay.

We reconstruct the temperature data field over
a grid of size 128 × 128 × 64 × 1800 using four-
dimensional modified Shepard’s interpolation. We
perform Shepard’s interpolation uniformly over
three spatial dimensions and one time dimension.
For visualization, we directly volume-render time-
orthogonal three-dimensional hyperplanes. Fig-
ure 4 shows four visualizations, using two interpo-
lation methods, at two consecutive points in time.
Figures 4(a) and (b) show the four-dimensional in-
terpolation using all samples. Figures 4(c) and (d)
show the same frames using four-dimensional in-
terpolation using no samples with time coordinates
higher than the visualized time slice. In Figures 4(c)
and (d), we observe a sudden change between the
two consecutive frames. The reconstruction is thus
discontinuous in time. Figures 4(a) and (b), on
the other hand, show a slight change indicating
a smooth interpolation over time. Generating all
1,800 frames for the video took 368.97 s when inter-
polating from past and future samples, and 346.03 s
when interpolating from past samples only.

6 Conclusions
We have presented a framework for real-time vol-
ume visualization of streaming scattered data. The
scattered data reconstruction evaluates the recon-
structed function on a Cartesian grid. Subsequent
visualization is performed on that grid. We re-
factorized the reconstruction step for partition-of-
unity interpolations in a way that allows for exploit-
ing computational coherency and floating-point per-
formance of modern programmable GPUs. In par-
ticular, the general framework of our re-factorized
approach is amenable to efficiently handle stream-
ing data.

We have addressed two streaming applications:
progressive visualization of a static scattered data
set and streaming sensor visualization with moving
sensors transmitting samples asynchronously over
time. Our re-factorized reconstruction framework
also scales to higher dimensions, which allows
handling time-varying data using four-dimensional
space-time interpolation. Treating samples as
points in space and time implicitly covers the man-
agement of sample insertion, deletion, or move-
ment. We have generated examples using various
interpolation schemes to demonstrate the effective-
ness and efficiency of our approach.

Acknowledgments
This work was supported by the National Science Foundation un-
der contract ACI 9624034 (CAREER Award), through the Large
Scientific and Software Data Set Visualization (LSSDSV) program
under contract ACI 9982251, through the National Partnership for
Advanced Computational Infrastructure (NPACI) and a large In-
formation Technology Research (ITR) grant; and the National In-
stitutes of Health under contract P20 MH60975-06A2, funded by
the National Institute of Mental Health and the National Science
Foundation.We thank the members of the Visualization and Graph-
ics Research Group at the Institute for Data Analysis and Visu-
alization (IDAV) at the University of California, Davis, in par-
ticular Yong J. Kil for generating the scattered Hermite data set
and Adam Moerschell for creating the movie. Macaque cranium
data set courtesy of Eric Delson and the NYCEP Morphometrics
Group.

References
[1] I. Amidror. Scattered data interpolation methods for elec-

tronic imaging systems: A survey. Journal of Electronic
Imaging, 2(11):157–176, 2002.

[2] I. Buck and T. Purcell. A toolkit for computation on GPUs.
In R. Fernando, editor, GPU Gems, pages 621–636. Addison
Wesley, Mar. 2004.

[3] Q. Fan, A. Efrat, V. Koltun, S. Krishnan, and S. Venkata-
subramanian. Hardware assisted natural neighbour interpo-
lation. In Proc. 7th Workshop on Algorithm Engineering and
Experiments (ALENEX), 2005.

[4] S. Fleishman, D. Cohen-Or, M. Alexa, and C. T. Silva. Pro-
gressive point set surfaces. ACM Trans. Graph., 22(4):997–
1011, 2003.

[5] M. Harris. Mapping computational concepts to GPUs. In
M. Pharr, editor, GPU Gems 2, chapter 31, pages 493–508.
Addison Wesley, Mar. 2005.

[6] H. Hoppe. Progressive meshes. In SIGGRAPH ’96:
Proceedings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques, pages 99–108, New
York, NY, USA, 1996. ACM Press.

[7] Y. Jang, M. Weiler, M. Hopf, J. Huang, D. S. Ebert, K. P.
Gaither, and T. Ertl. Interactively Visualizing Procedurally
Encoded Scalar Fields. In O. Deussen, C. Hansen, D. Keim,
and D. Saupe, editors, Proceedings of EG/IEEE TCVG Sym-
posium on Visualization VisSym ’04, pages 35–44, 2004.

[8] G. M. Nielson. Radial Hermite operators for scattered point
cloud data with normal vectors and applications to implicit-
izing polygon mesh surfaces for generalized CSG operations
and smoothing. In G. Turk, J. J. van Wijk, and H. Rush-
meier, editors, IEEE Visualization 2004, pages 203–210.
IEEE Computer Society Press, 2004.

[9] J. Owens. Streaming architectures and technology trends. In
M. Pharr, editor, GPU Gems 2, chapter 29, pages 457–470.
Addison Wesley, Mar. 2005.

[10] S. W. Park, L. Linsen, O. Kreylos, J. D. Owens, and
B. Hamann. Discrete Sibson interpolation. IEEE Transac-
tions on Visualization and Computer Graphics, to appear,
2005.

[11] D. Shepard. A two-dimensional interpolation function for ir-
regularly spaced data. In Proceedings of 23rd National Con-
ference, pages 517–524. ACM, August 1968.

[12] R. Sibson. A vector identity for the Dirichlet tessellation.
Mathematical Proceedings of the Cambridge Philosophical
Society, 87(1):151–155, 1980.

[13] O. G. Staadt and M. H. Gross. Progressive tetrahedraliza-
tions. In D. Ebert, H. Hagen, and H. Rushmeier, editors, Pro-
ceedings of IEEE Visualization ’98, pages 397–402. ACM
Press, 1998.

666

(a1)

s1

s2

s3

(a2)

s1

s2

s3

(a) Re-factorization of scattered data reconstruction: (a1) When operating on a
grid, we iterate over all grid points and accumulate weighted contributions of
values fi for all samples si = (pi, fi). (a2) When re-factorizing the reconstruction,
we iterate over all samples si = (pi, fi) and accumulate weighted contributions of
each sample value fi for all grid points. A sample’s contribution is often restricted
to a local region.

(b) Isosurface rendering of recon-
structed Macaque cranium using
35,000 samples, radial Hermite in-
terpolation and a 2563 Cartesian
grid.

Figure 2: Re-factorization of scattered data reconstruction and its application.

(a) (b) (c) (d)
Figure 3: Progressive visualization of scattered data using a re-factorized implementation of radial Hermite interpolation applied to
Macaque cranium data set: (a) 1,446 samples, (b) 1,876 samples, (c) 2,036 samples, and (d) 35,000 samples.

(a) (b)

(c) (d)
Figure 4: Visualization of streaming temperature data in Monterey Bay scattered over space and time. We perform four-dimensional
natural neighbor interpolation to reconstruct the scattered data over a 128× 128 × 64 × 1800 grid. These figures show direct volume
rendering of a three-dimensional time-orthogonal hyperplane. (a) and (b) show two consecutive frames when considering all space-time
samples for interpolation. (c) and (d) show the same frames when only considering samples from the past and present, thus exhibiting a
visual discontinuity in time. The video from which these frames were extracted accompanies the paper.

666

