Multiresolution Cutting-Plane Visualization Based on an Octree

Dmitriy V. Pinskiy* Sean Ahern! Eric Brugger! and Bernd Hamann*
(pinskiy@cs.ucdavis.edu, ahern@llnl.org, brugger1@Illnl.org, hamann@cs.ucdavis.edu)

Cutting Plane through Sphere and Skull Data Sets. Red Polygon is ROI

1 Introduction

As data sets have grown in size to several million
data points, considering finite element/difference sim-
ulations, the extraction of just a single cutting plane
can become prohibitively expensive. We address this
problem by presenting a technique that is based on a
multiresolution approach.

Our goal is the efficient generation of cutting
planes through extremely large data sets, allowing a
user to slice volumetric data sets at arbitrary locations
and in arbitrary orientations in real time. Within a
specific cutting plane, a user can select a region of in-
terest (ROI), where a higher rendering resolution is de-
sired. The presented algorithm supports not only effi-
cient cutting-plane rendering and local refinement but
also permits moving an ROI in a cutting plane and al-
lows ROI to be bounded by any convex polygon with
arbitrary number of edges.

2 Related Works

The underlying data structure that we employ in is an
error-controlled octree. Octrees permit the hierarchical
representation of space, where a cube-like region is split
into eight children. This data structure is described by

*Center of Image Processing and Integrated Computing, De-
partment of Computer Science, University of California, Davis
fLawrence Livermore National Laboratory

Samet [4].

The input for our method is a set of points
in space with associated function values (”scattered
data”), for which we construct an octree. First, we
compute the bounding box of the set of all given points.
This bounding box is then subdivided in octree nodes
until each leave node in the octree satisfies a specific
termination criterion. We consider two types of ter-
mination criteria: (i) a node is no longer split when
the number of original points lying in it is smaller than
some threshold number N or (ii) a node is no longer
split when the error between the function values of the
original points inside the node and an average function
value associated with the node is smaller than some er-
ror threshold E. (A similar error-controlled approach
has been developed by Laur and Hanrahan, but their
driving application is volume rendering [2].) By vary-
ing the values N and E, we enforce further subdivision of
octree cells through which most likely the cutting plane
will pass and of cells that contain an ROI. One of the
main purposes of our octree construction is the fact that
data points are spatially sorted using a data structure
with extremely low storage requirements. The octree
also allows us to find intersections with a cutting plane
efficiently. (We use the intersection algorithm described
by Muller and Heines[3].)

Our techniques is also related to the idea of
constructing a ”data pyramid,” i.e., a hierarchy that in-
creases the precision of an approximation by increasing
the number of cells while shrinking cell sizes [1].



After the given scattered data points have been
organized in an octree, a user can specify a cutting
plane, and a set of tiles/polygons covering the cutting
plane is rendered. Tiles are rendered according to func-
tion values. Typically, a user has to generate a large
number of cuts before he/she has identified a specific
cut of interest — a main region. Thus, it is imperative
that the tiles making up a cutting plane be generated
most efficiently. Our recursive algorithm works as fol-
lows: We consider the coordinates/extension of a node
(a cube) and check whether the cutting plane intersects
the node’s bounding box. If it does not, there is no
intersection between the plane and the node, and noth-
ing is rendered. Otherwise, we check if the node whose
bounding box we consider is a leaf. If this is the case,
we clip the plane against the bounding box and asso-
ciate the resulting tile with the function value of the
node and insert the tile into the set of output tiles to
be rendered. If it is not a leaf, then it is a branch, and
we recursively apply the algorithm to every child.

One of the important advantages of this al-
gorithm is that we do not have to explore “useless”
branches — branches that are not intersected by a cut-
ting plane. By processing the scattered data using
an octree approach, we achieve logarithmic complexity.
Another advantage of this approach is that it simplifies
performing local refinements — which is enabled by sim-
ply replacing certain tiles with smaller ones to achieve
more rendering accuracy in a localized and adaptive
fashion.

3 Region-of-Interest Construc-

tion
After a main region has been selected, a user can specify

an ROI in the cutting plane for better-resolution render-
ing. To accomplish that, we perform these operations:

e Locate ROI — Determine which branches of the
octree should be “expanded.”

¢ Expand these branches.

e Repeat the clipping algorithm for the newly gen-
erated octree nodes to generate smaller and more
precise tiles.

e Update the set of tiles for rendering.

We provide a user with only a low-resolution
representation of a main region. Therefore, visually in-
specting the main region, the user is able to make only

Rendering of Cutting Plane (Main Region) and ROI
Surrounded by Quadtree

a best guess about locating an ROI in a cutting plane.
Once a specified ROI is rendered at a higher resolution,
and a user might want to further adjust the location
of the ROI by moving it within the cutting plane. It
might require several iterations before a user finds the
ROI he/she really is interested in. This “navigation”
step can become time-consuming if one uses a naive ap-
proach. We have developed an approach that solves this
problem efficiently: We employ an approach related to
caching. We assume that a user’s first guess for placing
an ROl is good but not correct; we construct a quadtree
that sorts the tiles/polygons near and inside the ROI
in the current cutting plane. We have to build this
quadtree only once. After that, we do not need to tra-
verse the entire octree every time when a user moves an
ROI inside some region around the initial ROI because
all needed polygons are already sorted via the quadtree
structure.

References

(1] L. De Floriani. A Pyramidal Data Structure for
Triangle-Based Surface Description. IEEE Com-
puter Graphics and Applications, 9(2):67-78, 1989

(2] D. Laur and P. Hanrahan. Hierarchical Splatting:
Aprogressive Refinement Algorithm for Volume
Rendering. Proceedings of SIGRAPH 91, pp. 285
- 288, July 1991

[3] T. Muller and E Heines. Real-Time Rendering. A
K Peters, Natick, Massachusetts, 1999

[4] H. Samet. Applications of Spatial Data Structures.
Addison- Wisley, Reading, Massachusetts, 1990



