
An Octree-based Multiresolution Approach Supporting

Interactive Rendering of Very Large Volume Data Sets

D. Pinskiy
CIPIC�

Department of Computer Science
University of California

Davis, CA, USA

E. Brugger
Lawrence Livermore National Lab.

Livermore, CA, USA

H. Childs
Lawrence Livermore National Lab.

Livermore, CA, USA

B. Hamann
CIPIC�

Department of Computer Science
University of California

Davis, CA, USA

Figure 1: Local re�nement of nested ROIs in foot data set.

Abstract We present an octree-based approach

supporting multiresolution volume rendering of

large data sets. Given a set of scattered points

without connectivity information, we impose an oc-

tree data structure of low resolution in the pre-

processing step. The construction of this initial

octree structure is controlled by the original data

resolution and cell-speci�c error values. Using the

octree nodes, rather than the data points, as ele-

mentary units for ray casting, we �rst generate a

crude rendering of a given data set. Keeping the

pre-processing step independent from the render-

ing step, we allow a user to interactively explore

a large data set by specifying a region of interest

(ROI), where a higher level of rendering accuracy

�Center of Image Processing and Integrated

Computing

is desired. To re�ne an ROI, we are making use

of the octree constructed in the pre-processing step.

Our approach is aimed at minimizing the number of

computations and can be applied to large-scale data

exploration tasks.

Keywords: Multiresolution, local re�nement, vol-

ume rendering, octree

1 Introduction

Ray Casting is a fundamental visualization
method for volumetric data sets. It produces
realistic looking images, but it has a signi�cant
drawback { its time complexity. In most sci-
enti�c �elds, data sets have grown in size to
several million points. Considering �nite el-



ement/di�erence simulations, ray casting can
become extremely expensive. Moreover, pro-
ducing high-detailed renderings can be waste-
ful if a user is interested in only a small portion
of a large data set.
We deal with the \massive data problem" by

applying di�erent levels of detail for data rep-
resentation. Using a hierarchy constructed in
a pre-processing step, we generate a coarse ap-
proximation that serves preview purposes for
large-scale data sets of scattered points. We
re�ne this approximation until it becomes suf-
�ciently detailed for a user to identify an ROI.
Once an ROI has been identi�ed, we locally
re�ne this region and generate a much more
accurate data representation inside the ROI. If
even more precise accuracy is needed inside the
ROI, nested ROIs are used, see Figure 1.

2 Related Work

In the conventional ray casting approach based
on alpha blending, the fundamental formula
that is used for accumulating \illuminated ma-
terial samples" along a ray from (sample) point
1 to point N is based on linear blending, de�ned
by the formula

Bi = Ai+1Ci+1 + (1�Ai+1)Bi+1; (1)

where Ai+1 is the alpha value of the (i+1)-th
point, Ci+1 is the function value (color) of the
(i+1)-th point, Bi is the resulting color seen
at the i-th point, and Bi+1 is the background
color of the (i+1)-th point { the resulting color
seen at the (i+1)-th point [1].
Many techniques have been proposed to im-

prove the e�ciency of conventional ray casting,
which has complexity O(N3). Levoy suggested
to terminate ray traversal when accumulated
color reaches some preset value [2]. This ray
termination condition, which we incorporated
in our method, is given by

(1�A1)(1 �A2):::(1 �Ai) < e; (2)

where e is some threshold value.
Another improvement of the ray-casting al-

gorithm is based on skipping \empty regions"

in space when traversing along a ray. Wan et
al.[3] suggested to �nd approximated bound-
aries of \objects" in a pre-processing step and
then traverse rays only inside the objects. Un-
fortunately, their approach introduces substan-
tial overhead, especially if a user is only inter-
ested in a small part of an object, or an ob-
ject is large relative to the bounding box of
the entire data set. An e�cient technique was
developed by Levoy [2]. He employed a pyra-
midal data representation to encode spatial co-
herence. However, his algorithm is designed for
rectilinear data, not for arbitrarily scattered
points. Levoy's method does not directly sup-
port local re�nement, and it can lead to high
memory requirements.

We now summarize our method. Consider-
ing some error condition, we �rst construct an
octree representation similarly to the approach
described by Laur et al [4]. Using an octree-
based approximation, one generates a data-
dependent, spatial decomposition that adapts
to the underlying complexity of the data. The
technique described by Hamann [5], for exam-
ple, is aimed at eliminating points in nearly
linearly varying regions.

In principle, our technique is related to the
idea of constructing a \data pyramid" { a data
hierarchy of rectilinear (hexahedral) cells with
increasing precision [6]. So-called multiresolu-
tion methods have been developed for polygo-
nal and polyhedral approximations of surfaces
and graphs of bivariate functions de�ned over
volumetric domains. Such approaches were de-
scribed by Eck et al. [7], for example. Our
data-dependent, octree-based method can be
viewed as a semi-automatic and user-driven hi-
erarchical scheme, supporting the visualization
of large-scale scienti�c data by multiple levels
of approximation.

3 Octree Construction

We assume that the input to our method is a
set of scattered data: points in space with asso-
ciated (scalar) function values without known
connectivity information. In a pre-processing



step, we construct an octree in the following
way: First, we compute the bounding box of
all original points. This bounding box is then
subdivided in an octree fashion until each leaf
node in the octree satis�es a speci�c termina-
tion criterion for re�nement. We consider two
types of termination criteria: (i) the number
of original points lying in it is smaller than
some threshold number or (ii) the error be-
tween the function values of the original points
inside the node and an average function value
associated with the node is smaller than some
error threshold. The second termination cri-
terion helps us to identify regions where scat-
tered points have nearly the same function val-
ues. In such regions, we can reduce storage
requirements substantially by representing the
given scalar �eld at a coarse resolution.

Our octree pre-processing step is indepen-
dent of the orientation of the eventually cho-
sen viewing plane. Therefore, once the octree
is constructed, a user can interactively adjust
the location of the viewing plane without de-
grading the performance.

4 Generating Approximations

We can utilize the octree data structure to gen-
erate a �rst preview of a data set. We pro-
cess the octree's nodes that lie no deeper than
in the K-th level of the tree. As a result of
our octree construction, all points inside the
same node have nearly the same function val-
ues, and, introducing little error, we can ap-
proximate these points by a single point (node
center) with average function and alpha values
of all points inside the node. Since we are gen-
erating a crude approximation, we can assume
that the K-th level is relatively \low" in the oc-
tree. Thus, most nodes in the K-th level should
contain large numbers of original points. As a
result, to traverse a single ray, we only have
to use a relatively small number of large in-
tegration spans. These spans are de�ned by
ray-node intersection points.

Figure 2: Ray traversing through quadtree
cells.

4.1 Adjusting Ray Casting

Since we use variable-size octree nodes, we can-
not apply the conventional ray casting formula
directly. This formula assumes that the inu-
ence of each voxel on the corresponding result-
ing pixel in the image plane depends only on
the alpha value of the point and the point's
position.
We need to take into account the lengths

of the intersections of rays with the bounding
boxes of octree nodes. A greater length of in-
tersection results in a greater inuence on the
resulting pixel. Thus, we change the blending
formula in the following way:

Bi = F (li+1; Ai+1)Ci+1 +

(1� F (li+1; Ai+1))Bi+1; (3)

where Ai+1 and Ci+1 are average alpha and
color values of points inside the (i+1)-th node;
F is a \weight function" that considers the
length li+1 of a ray-box intersection and re-
turns a weight corresponding to the intersec-
tion length; and Bi is the resulting color seen
at the i-th node. Figure 2 illustrates this for-
mula for the 2D case. The resulting color B0

is given as

B0 = F (l1; A1)C1 + (1 � F (l1; A1))

[F (l2; A2)C2 + (1� F (l2; A2))F (l3; A3)C3]:

4.2 Weight Function

Let us take a closer look at the weight func-
tion F 's arguments. The second function ar-



gument, opacity A, means this: Zero indi-
cates an absolutely transparent object, and one
corresponds to a completely opaque material.
The �rst argument, length l, is more compli-
cated. This length of intersection of a ray with
an octree cell's bounding box is expressed not
in units of length but in the number of data
points that lie along the ray inside the cell.
Calculating this number exactly is very time-
consuming. However, we can approximate it if
we assume that, on average, the data points are
distributed uniformly inside the volume, and
the distance between adjacent casting rays is
equal to the average distance between adjacent
data points. Suppose we have n3 points inside
the cell, aligned with the coordinate axes, then
we assume n points lie along a ray that inter-
sects the cell and is parallel to one of the co-
ordinate axes. For an arbitrarily oriented ray,
the length of intersection can be calculated as

l = nd=edge; (4)

where d is the distance between the ray's en-
try and exit points in the cell, and edge is the
length of the edge of the cell's bounding box.
We now describe the function by considering

a simple case { a ray meets just one data point
along its way inside the octree cell's bounding
box (l is equal to one). In this case, our ad-
justed formula (3) should yield the same result
as the conventional ray-casting formula (1):

Bi = F (1; Ai)Ci + (1� F (1; Ai))Bi+1 =

AiCi + (1�Ai)Bi+1: (5)

A much more typical case is given when the
number of points (l) that a ray \meets" is
greater than one. Although all these l points
might have di�erent function values, their val-
ues should be close since these points are en-
closed in the same cell of an error-controlled
octree. Therefore, their true function values
can be substituted by the average value of the
points inside the cell. Traversing the ray inside
the cell would then be equivalent to applying
the conventional ray casting to l consecutive
points that have the same function value, see

Figure 3: Approximation of ray-casting a set
of scattered points (left) by ray-casting though
consecutive rectilinear cells (right).

Figure 3:

F (l; A)C + (1� F (l; A))B =

A1C1 + (1�A1)[A2C2 + (1�A2)

[� � � [AlCl + (1�Al)B] � � �]]; (6)

where A1 = A2 = � � � = AK = A and C1 =
C2 = � � � = CK = C. A speci�c function for
which both (5) and (6) hold is

F (l; A) = 1� (1�A)l; (7)

see Appendix.
When l is large, the brute force computa-

tion of F (l; A) becomes rather expensive since
the formula involves calculating the power of
l. Fortunately, there is a way to approximate
this formula. The graph of F (l; A) has a dis-
tinct shape as shown in Figure 4. This func-
tion increases quickly in a range [0; l0]. We can
pre-compute l0 for di�erent opacities and later,
when l > l0, we can set F (l; A) to one.

4.3 Traversal Procedure

For each ray, we call a recursive traversal pro-
cedure. The pseudocode for this procedure is
given below. (To produce a coarse approxima-
tion, we process nodes that are no deeper than
the K-th level; initially, the procedure's second
argument N is set to the octree root, and the
ag ENOUGH is set to False.)



Figure 4: Graph of function F (l; A) for partic-
ular A value

Procedure Traverse(ray R, node N)
If (R does not intersect N) Return;
If (N is on K-th level of octree OR

N is a leaf)
Calculate color and opacity;
If (Opacity threshold is reached)

ENOUGH:=True;
Else

For each Child of N, starting from
the child closest to the viewing
plane, continuing with the next
closest, etc. and ending with
the farthest one

Traverse(R, Child);
If (ENOUGH) Return;

Return;

4.4 Local Re�nement

Once a su�ciently detailed initial image ap-
proximation is generated, a user can specify
an ROI in it by using, for example, a bound-
ing box. The coordinates of the ROI are used
to identify the octree leaf nodes covering the
ROI. These leaf nodes are then subdivided to
achieve better image quality.

Our adaptive ray casting method supports
both local re�nement and coarsening opera-
tions [5]. Coarsening, in contrast to re�ne-
ment, allows a user to merge leaf nodes into a
larger one, thus reducing storage requirements.

Coarsening is a means for accelerating the ren-
dering process and keeping memory require-
ments for the octree low.

5 Implementation Details and

Results

5.1 Distance Computation for Entry
and Exit Points

An impelmentational issue that arises when us-
ing formulas (4) and (7) is how to e�ciently
calculate the distance (d) between the points
where a ray enters and exits a node's bound-
ing box. Using directly the Euclidean distance
formula for two arbitrary points A=(x0, y0, z0)
and B=(x1, y1, z1) in space, given by:

d =
q
(x0 � x1)2 + (y0 � y1)2 + (z0 � z1)2;

(8)
is computationally expensive. However, we can
take advantage of the fact that we are dealing
only with parallel projections and consider two
cases: (i) A ray passes through opposite faces
of a node's bounding box, and (ii) a ray passes
through two faces sharing a common edge.
The �rst case can be easily detected by

noticing that the ray's entry point has at least
two coordinates that are equal to coordinates
of the front-left-lower corner of the bounding
box; and the exit point has, at least, two co-
ordinates that are equal to coordinates of the
rear-right-upper corner. Since we only consider
parallel projections, all rays are parallel to each
other. Therefore, all rays intersecting opposite
faces of the same bounding box have the same
length of intersection with this box. Let di be
the length of intersection of the ray with the
bounding box of a node in the i-th level of the
octree. This length di is inversely proportional
to the node's level in the octree, and it is given
by

di = d0=(i + 1); (9)

where d0 is the length of intersection of a ray
with the bounding box of the entire data set.
Thus, to compute di, we need to perform only
two arithmetic operations.



Figure 5: Local re�nement of foot data set.

The second case is slightly more compli-
cated. Since all rays are parallel, they form
the same angles with the three coordinate axes.
Let cos� be the cosine of the angle between a
ray and the X-axis; cos � be the cosine of the
angle between a ray and the Y-axis; and cos 
be the cosine of the angle between a ray and
the Z-axis. Depending on the entry point a
and the exit point b, the distance d is de�ned
by one of these three formulas:

d = (b:x� a:x) cos�; (10)

d = (b:y � a:y) cos �; (11)

d = (b:z � a:z) cos ; (12)

where a:x, a:y, and a:z are the coordinates of
the entry point a, and b:x, b:y, and b:z are the
coordinates of the exit point b.

5.2 Global and Local Octrees

We have implemented our volumetric data set
representation as one global and one or more
local octrees. The global octree represents the
whole data set, and each local octree represents
an ROI. Generally, the local octrees are not
as deep as the global octree. However, since
the local octrees cover less space, each of their
nodes approximates less points than the global

one does. As a result, a local octree yields a
better approximation. Considering Figure 5,
the main region is generated using the global
octree with a depth seven, and the ROI is cal-
culated using a local octree of a depth three.
Since constructing the global octree over the

whole data set is a time-consuming task, we
might pre-process the data set and construct
a global octree prior to visualization. In con-
trast, building a local octree must be done
in real time, since specifying and navigating
an ROI is a part of the user-driven, interac-
tive data exploration process. We can accom-
plish real-time local octree generation by us-
ing the main tree as a search tree to locate
a node whose bounding box contains the ROI
and then building the local octree considering
only points that are inside the bounding box.

6 Conclusion

Employing an error-controlled octree data
structure and a multiresolution approach, our
algorithm allows a user to explore large-scale
volumetric data sets by �rst creating a low-
resolution approximation, and then locally re-
�ning regions of particular importance. This
algorithm has great potential, as it supports
high-speed rendering of multiple and even
nested ROIs. We believe that adaptive ap-
proaches, like the one we have presented here,
will play an increasingly important role in fu-
ture large-scale scienti�c data exploration.

7 Acknowledgements

This work was supported by the National Sci-
ence Foundation under contracts ACI 9624034
(CAREER Award), through the Large Sci-
enti�c and Software Data Set Visualiza-
tion (LSSDSV) program under contract ACI
9982251, and through the National Partner-
ship for Advanced Computational Infrastruc-
ture (NPACI); the O�ce of Naval Research
under contract N00014-97-1-0222; the Army
Research O�ce under contract ARO 36598-
MA-RIP; the NASA Ames Research Center



through an NRA award under contract NAG2-
1216; the Lawrence Livermore National Lab-
oratory under ASCI ASAP Level-2 Memoran-
dum Agreement B347878 and under Memoran-
dum Agreement B503159; and the North At-
lantic Treaty Organization (NATO) under con-
tract CRG.971628 awarded to the University
of California, Davis. We also acknowledge the
support of ALSTOM Schilling Robotics and
SGI. We thank the members of the Visualiza-
tion Group at the Center for Image Process-
ing and Integrated Computing (CIPIC) at the
University of California, Davis.

References

[1] W. Schroeder, K. Martin, and B.
Lorensen. Visualization Toolkit. 2nd edi-
tion, Prentice Hall, 1998.

[2] M. Levoy. E�cient Ray Tracing of Volume
Data. Transaction on Graphics, 9(3):245{
261, July 1990.

[3] M. Wan, A. E. Kaufman, and S. Bryson.
High Performance Presence-Accelerated
Ray Casting. Proc. IEEE Visualization
1999:379{386, 1999.

[4] D. Laur and P. Hanrahan. Hierarchi-
cal Splatting: A Progressive Re�ne-
ment Algorithm for Volume Rendering.
Proc. SIGGRAPH (Computer Graphics
25):285{288, 1991.

[5] B. Hamann. A Data Reduction Scheme for
Triangulated Surfaces. Computer Aided
Geometric Design, 11(2):197{214, March{
April 1994.

[6] L. De Floriani. A Pyramidal Data Struc-
ture for Triangle-Based Surface Descrip-
tion. IEEE Computer Graphics and Ap-
plications, 9(2):67{78, March 1989.

[7] M. Eck, A. D. DeRose, T. Duchamp,
H. Hoppe, M. Lounsbery, and W. Stuet-
zle. Multiresolution Analysis of Arbitrary
Meshes. Proc. SIGGRAPH (Computer
Graphics 29): 173{182, 1995.

Appendix

We prove by induction over the length of in-
tersection l this statement: Using the weight
function

F (l; A) = 1� (1�A)l (13)

in the formula

Bi = F (li+1; Ai+1)Ci+1+(1�F (li+1; Ai+1))Bi+1

(14)
is equivalent to applying the conventional ray
casting formula (1) to l consecutive rectilinear
cells that have the same function and opacity
values.
For the base case (l = 1), we have

F (1; A) = 1� (1�A)1 = A)

F (1; A)C + (1� F (1; A))B =

AC + (1�A)B:

We assume that the statement holds when
the length of intersection is equal to 1, 2, � � �,
or K data points:

F (K;A)C + (1� F (K;A))B =

A1C1 + (1�A1)[A2C2 + (1�A2)

[� � � [AKCK + (1�AK)B] � � �]]; (15)

where A1 = A2 = � � � = AK = A and C1 =
C2 = � � � = CK = C.
Before we continue with the induction step,

we note that the following equation holds:

A+F (K;A)�F (K;A)A = F (K+1; A): (16)

Now we perform the induction step (l = K+
1):

A1C1 + (1�A1)[A2C2 + (1�A2)

[� � � [AK+1CK+1 + (1�AK+1)B] � � �]] =

AC + (1�A)[F (K;A) + (1� F (K;A))B] =

AC + F (K;A)C + (1� F (K;A))B �

F (K;A)AC � (1� F (K;A))BA =

(A+ F (K;A) � F (K;A)A)C +

(1� (F (K;A) +A� F (K;A)A))B =

F (K + 1; A)C + (1� F (K + 1; A))B

That concludes our proof.


