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User-Guided Visual Analysis
of Cyber-Physical Production
Systems
Modern cyber-physical production systems (CPPS) connect different elements like
machine tools and workpieces. The constituent elements are often equipped with high-
performance sensors as well as information and communication technology, enabling
them to interact with each other. This leads to an increasing amount and complexity of
data that requires better analysis tools to support system refinement and revision per-
formed by an expert. This paper presents a user-guided visual analysis approach that can
answer relevant questions concerning the behavior of cyber-physical systems. The
approach generates visualizations of aggregated views that capture an entire production
system as well as specific characteristics of individual data features. To show the applic-
ability of the presented methodologies, an exemplary production system is simulated and
analyzed. [DOI: 10.1115/1.4034872]

1 Introduction

The “industrial internet” refers to developments triggered by
new information and communication technologies (ICT) in indus-
try. Terms like industry 4.0, cyber-physical production systems
(CPPS), or smart factory are associated with the same phenom-
enon of industrial systems using ICT in production by applying
cyber-physical methodologies. The most prominent feature of a
CPPS is the interconnection of its different manufacturing ele-
ments such as machine tools or workpieces and the resulting
amount of production data [1].

It is expected that these technologies will make it possible to
handle the increasing complexity of production systems and to
cope with current trends and challenges [2]. Shorter product life
cycles and mass customization are leading to higher numbers of
product variants and ever smaller lot sizes, making it necessary to
adapt a production system in a fast, efficient way.

With the goal of increasing the flexibility of a production sys-
tem, decentralized concepts within production planning and con-
trol have been discussed in theory [3]. Yet, their application in
industry has not been widely spread [4]. The availability of mod-
ern ICT, as discussed under the term of industrial internet, is
expected to have a highly positive effect on the applicability of
such concepts [2].

The enormous amount of data generated by cyber-physical sys-
tems makes it necessary to devise approaches for refinement, for
the data to become truly helpful to human decision-makers. Also,
to identify ways to make machines “intelligent,” data analysis and
visualization tools are becoming essential. Hence, the effort of
this work was driven to a large degree by developing new and
more effective ways to analyze and visualize production data,

allowing humans to have quick access to just the needed, most rel-
evant information.

This work introduces a visual analysis approach that captures
the performance of a production system in an intuitive manner.
For example, bottlenecks and excess capacities are identified and
visually highlighted, thereby guiding the user in the analysis. The
impact of changes applied to a manufacturing system can be ana-
lyzed by utilizing the presented visualizations. Additionally, the
approach can generate an aggregated view of an entire system or
focus on merely the most interesting features captured in a data
set. The developed tool supports a performance driven and yet
detailed analysis by enabling a highly efficient evaluation of pro-
duction data and by guiding a user to ask important questions. An
exemplary production system is simulated to depict the character-
istics of the visualizations and to show the applicability and effec-
tiveness of the presented analysis tool.

This work is structured as follows: Sec. 2 provides an overview
of related work and defines requirements for data analysis and vis-
ualization tools for complex production systems. Section 3
describes the underlying simulated production system and focuses
on the methodologies used in the presented analysis and visualiza-
tion tool. Finally, this work is concluded by summarizing the
main contributions in Sec. 4.

2 Related Work

This section will summarize related work in data analysis and
visualization tools for cyber-physical production systems and
derive the resulting requirements for a visual analysis tool.

2.1 Data Analysis in Cyber-Physical Production Systems.
The data available in a cyber-physical production system can be
used to make production systems more flexible. In this context,
flexibility can be understood, on the one hand, as the transform-
ability of the system to engineering changes on medium or long
term perspective. On the other hand, flexibility can be understood
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as achieved by decentralized production control on a short term
view.

It is obvious that the vast amount of data is not useable without
refinement. Therefore, user friendly tools for data analysis and
visualization are needed [5].

Examples for engineering changes are the reconfiguration, addi-
tion, substitution, or removal of production equipment, e.g.,
machine tools, in a manufacturing system [6]. They usually have
extensive impacts on the manufacturing system due to the mani-
fold interrelationships among production objects [7] and hence
need careful analysis and planning before implementation. The
change in one element might result in the disruption of the process
chains, material flow, or information flow. Therefore, tools are
required that can analyze the effects of envisaged engineering
changes in a fast and comprehensive manner [8].

Tools that support the planning and analysis of changes in man-
ufacturing systems can be found within the concept of the digital
factory [9]. Simulation and evaluation software for products and
material flows can be applied in order to analyze processes and
their changes. However, such software tools require specific
know-how and qualified personnel to use them and to keep them
up to date, and are not specialized on engineering changes [10].

A framework specialized for analyzing impacts of engineering
changes to existing manufacturing systems is proposed by Malak
and Aurich [8]. Here, the alternative solutions for engineering
changes are visualized in a 3D virtual environment where effects
on factory layout and material flow can be seen in a spatial con-
text. Although a three-dimensional virtual environment displays
information intuitively and thus gives a realistic feeling of the
modeled factory, it shows only partial views of the factory and
does not guide the user to the information needed.

For the fast and effective analysis of impacts to engineering
changes, both, aggregated and detailed views, are necessary. To
enable the overall evaluation of the given situation, e.g., to exam-
ine process chain and information flow consistency, the available
data need to be visualized in an aggregated manner. On the other
hand, scalability of the data is required to allow the user to focus
on single products or machines and to well defined time steps of
special interest. An essential requirement is to guide the user to
the most interesting features of the regarded system and to show
critical issues. Therefore, comparative and interactive data high-
lighting integrated in the spatial context of the factory are needed.
Different perspectives focusing on machines, products, and mate-
rial flows within the visualization tool need to be distinguished
and interlinked in an interactive manner.

In contrast to the planning of engineering changes, decisions in
production control need to be taken in real-time with limited
information. The concept of self-control in a decentralized pro-
duction system is based on the ability of several elements of the
system (e.g., machine tools or work pieces) to act and decide
autonomously. In contrast to that, in the centralized approach,
planning is accomplished by a superordinated planning entity.
Therefore, especially for decentralized production control with a
multitude of decision-makers, a fast recognition of data patterns is
necessary to adapt the behavior and decision rules of the acting
elements.

The applicability of different self-organization concepts is
tested in several research projects by using prototype factories
(e.g., Refs. [11–13]). As the implementation of such prototypes
with real machinery involves considerable effort and expenses,
they are therefore not meant for real scale experiments. Thus, the
amount and complexity of data can still be managed manually, so
tools for visual evaluation and optimization of the concepts are
missing. Ilsen et al. propose a test field based on a multi-agent sys-
tem to test several self-organization concepts against each other in
a real sized but virtual environment [14]. Here, several different
decision routines, e.g., for machine tool selection or production
order, are possible. This case shows that in the analysis of decen-
trally controlled production data, the impacts of different decision
routines need to be visualized. Further, there is a need to identify

patterns on an aggregated data level to derive the system’s sensi-
tivity to changes of decision routines. As a consequence, aggre-
gated views displaying the overall performance in a spatial
context, and detailed views representing the perspective of single
elements, are necessary to understand an entire system.

To summarize, one major issue for data visualization is to be
intuitively understandable. Therefore, an interactive guidance for
the user is required, which makes it easy to find interesting fea-
tures in a data set. To get a quick but comprehensive overview of
the status of the production system, different perspectives on an
aggregated level are needed. These have to be interlinked to navi-
gate through the perspectives. Beside the aggregated views, scal-
ability is a further required functionality that enables to select
single hotspots and establish detailed comparisons between
machines, products, or time steps. Embedding the data into the
spatial context of the factory is needed to give the user a realistic
and intuitive understanding of the factory and its performance.

2.2 Visualization Tools in Production Planning. Various
approaches [15–18] present tools to visualize the performance of
a production system. They mainly consist of strategies on stacking
or combining single visualization entities, as workload or produc-
tion time graphs for different machines or points in time. The
main disadvantage of these approaches is that they do not provide
spatial context or user guidance, which was identified to be essen-
tial for data analysis in cyber-physical production systems.

The visualization of product flows is an important task in the
field of production planning. Embedding such flows into an under-
lying geometric model was already used in other domains like
economical trade visualizations [19] and urban traffic visualiza-
tions [20]. There, money transfers are embedded into geographical
maps and vehicle flows are embedded into traffic maps, respec-
tively. The presented work makes use of this approach and trans-
fers it to the domain of cyber-physical production systems by
embedding product flows into virtual factories.

Wu and Acharya [21] present an approach to visualize the work-
load of a machine with a stacked box representation of the products
waiting for this specific machine. Although this representation
shows the order and number of waiting products, the approach does
not provide a spatial context and only takes a certain point in time
into account. Therefore, this work extends the approach of Wu and
Acharya by applying it to a whole time window and embedding it
into a spatial context for all machines at once.

Doil et al. [22] present an exploration system based on a virtual
reality environment that allows users to choose different manufac-
turing settings. Because this is an intuitive way to handle manu-
facturing settings, this work also provides a three-dimensional
representation of the factory that is compatible with a virtual real-
ity environment. In addition to the approach of Doil et al., impor-
tant aspects for factory planning like product flows or machine
workloads are visualized directly in this spatial context.

The visualization of production times is handled in the work of
Zhang [23]. Their approach presents a comparative visualization
of production times where the user can examine the production
times under certain conditions. Although that is a good representa-
tion of the production times, their scatterplot alignment makes it
hard to compare different products. In contrast to that, this work
visually captures the development of manufacturing time against
degree of completion. Here, all products are aligned consistently,
enhancing the user to directly compare production times.

Ertek et al. [24] visualize statistical features of production times
for different manufacturing settings. Their approach can compare
production times resulting from these settings, but no user guid-
ance to find good settings is provided. In addition to that, the visu-
alizations presented in the current work highlight interesting
features and thereby guide the user in the analysis of manufactur-
ing settings.

Based on the derived requirements and the found issues in pro-
duction planning, this work shows the development of a visual
analysis tool for virtual manufacturing systems.
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3 Methods

This section will describe the production system that is simu-
lated to obtain the data used for analysis, and the methodologies
to visually analyze this data and guide the user to interesting
features.

3.1 Characterization of the Simulated Production System.
In a first step, a simulation is used to acquire production data of a
virtual factory. All of the factory’s components like the machine
tools and the product workpieces are virtual as well. Each
machine has a machine type and each product has a product type,
so there are different types of virtual products and machines.

The work plan, i.e., the order of operations required to produce
a final product, is given externally and cannot be changed (see
Table 1). Thus, the product type defines which operations need to
be processed sequentially to finish the product, while the machine
type defines the operation the machine is capable of.

The ability of machines of a certain type to perform an opera-
tion with specific requirements is encoded into the machine type.
For example, if the machines of a certain type are able to drill
holes, but their accuracy cannot be guaranteed to be high enough
for a certain operation, their machine type marks this operation as
not performable. Though, other machines might be able to per-
form this operation with the required accuracy. Thus, the techno-
logical capabilities are encoded into the machine types.

The material removal rate (MRR) may vary during operations
depending on material type, cutting speed and depth, cutting aids,
tool type, or other factors. This leads to different process times,
even for operations with the same production technology. The
required setup times for each operation are included in the result-
ing processing times that are given in Table 1.

To finish the production of a product, all of its operations need
to be processed in order, while each operation takes a certain
time. Since in the presented example no machine is capable of
performing all operations, the products have to be processed on
different machines sequentially. So the current operation of a
product is first finished on one machine, and then the product is
transported to another machine. Since this new machine might be
busy, the product is enqueued. To do so, each machine has a
queue of waiting products that are processed in order of arrival
(first in–first out).

If there are different machines of the same type, the question
arises, which of these machines should process a certain product.
This question cannot be answered in a perfectly optimal way for
real-life sized problems due to its high-computational complexity.
So an optimal solution cannot be calculated in a feasible time, but
heuristics can be evaluated efficiently to come close to an optimal

solution of product distributions. This work uses the heuristic of
always choosing the machine that will have processed the prod-
uct’s individual operation first. Other heuristics could be consid-
ered as well, but since the choice of heuristic is not important for
the demonstration of the presented analysis tool, the described
heuristic is chosen out of simplicity reasons.

Another issue is the optimal arrangement of machines in the
factory. This problem is also computationally very expensive and
cannot be solved optimally in a feasible time for a larger number
of machines. Therefore, the arrangement of machines in the pre-
sented example was chosen as demonstrated in Sec. 3.2 by simply
distributing groups of identical machines within the factory.

The transportation times of products between the machines
depend highly on the arrangement of those machines. Since the
production batches in the used example are very large, the result-
ing transportation times are very small in comparison. Therefore,
the transportation times are visually disappearing in this example.
Still, the methodologies that are presented in Sec. 3.2 are easily
extendable in a straightforward way to also visually include trans-
portation times, as will be seen shortly. In the presented example,
a free transportation model is used. Naturally, other simulations
could use restricted transportation routes to implement conveyor
belts or other transportation methods.

The production data used for the analysis describe which prod-
uct and which operation are performed on which machine at
which point in time. To acquire this data, each product type is vir-
tually produced 30 times in a simulation, while starting with a
product of type A, then B and C, and then repeating this loop 30
times with a temporal gap of 10 min in between the products. This
means, a new product of a specific type starts its virtual manufac-
turing every 30 min. To analyze the gathered production data, the
visualizations and the methodologies described in the following
are used.

3.2 Visualization. Based on the requirements developed in
Sec. 2, a tool for the user-guided visual analysis of simulated pro-
duction data was designed as described below. The tool is a linked
view system, visualizing the manufacturing process under differ-
ent aspects. This means that there are different views, each show-
ing the same data but having a focus on different aspects. The
presented tool contains a flow view, a workload view, and a pro-
duction view.

Additionally, the views are interlinked by transferring user
interactions like selection and highlighting of products, product
types, or machines from one view to all views. Another user inter-
action is to choose a time window by manipulating a point in time
and an interval size in all views. Then, this time window will be
considered for visualization. This enables the user to zoom in and
out onto certain interesting points in time.

All of the views of the system only show the data that occur
during this chosen time window, thereby treating this window
consistently for all views. By doing so, the user is enabled to focus
on certain features, while the overall picture is preserved. This
helps the user in building a mental map of the production data.
Since all views of the presented system always show data for the
same time window or selection, a cognitive transition from one
view to the others is straightforward.

After the virtual manufacturing system is simulated once, the
whole tool and its views work in real-time to provide flexibility of
interactions to the user. The presented tool can be used to analyze
virtual factories, provide user guidance for later optimization or
comparison, and help in decision making.

The overall goal is the optimization of the production process
with respect to a diversity of parameters. Still, this optimization
cannot be done fully automatically because of its high-
computational complexity. This stresses the importance of the
presented tool to support users in their analysis tasks. Although
the optimal solution is unknown to users, the presented tool can
be used to iteratively improve factory settings. By that, users are

Table 1 Work plan describing the individual operations per-
formed for each product type and their according processing
times

Product Operation Production Process time
type number technology (min/pc)

A 1 Milling 52.0
2 Milling 65.3
3 Drilling 200.0
4 Tapping 211.1

B 1 Milling 83.3
2 Turning 163.9
3 Drilling 100.0
4 Tapping 88.9
5 Turning 16.4

C 1 Turning 185.8
2 Drilling 300.0
3 Turning 142.1
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enabled to approximate an optimal solution, thereby finding a suf-
ficient solution and gain a certain confidence in their production
process.

The realization for each view of the tool is presented in the
following.

3.2.1 Flow View. The flow view provides the most general
and intuitive visualization and helps creating an overview of the
virtual manufacturing system by containing different visual ele-
ments (see Fig. 1).

The geometric model of the factory and its machines is dis-
played to form a basis for an embedding into a three-dimensional
virtual context. To reduce the visual occlusion of other graphical
elements, semitransparency is used for the geometric model.
Using a three-dimensional model of a factory as a spatial context
is a familiar working environment for analysts and domain experts
who are used to these kinds of visualizations and interactions.
Also, due to its simplicity and intuitiveness, this embedding is
suitable for presentations.

The product flow extends this natural environment to allow the
tracking of products throughout the factory as described later.
This results in a direct visual feedback on the emergent behavior
of the products in combination with the used heuristic method for
distributing products onto machines. A user can see what
machines individual products were processed on, and how the
products are distributed.

In addition to the visualization of the product flow, the pre-
sented view contains a visualization for machine workloads. Here,
the workload for each machine is displayed by showing the
machine’s queue for several points in time. These graphical ele-
ments are attached to the individual machines, leading to a direct
visual feedback on the performance of machines and their queues.
Also, the visual embedding into a spatial context supports a higher
degree of intuitive understanding.

Combining multiple elements in one view results in a tool that
is capable of analyzing factory arrangements and mechanisms.
The realization of the product flow and the machine workload is
shown in the following.

Product flow. The product flow is the combination of the trajec-
tories formed from all the products moving throughout the factory

over time. This is demonstrated in Fig. 1, while the images in Fig.
2 show a more detailed look on the properties of the product flow.

A spline [25] is a piecewise polynomial function of a fixed
degree. It can smoothly interpolate a sequence of points without
fluctuating too much, so it is well suited to follow a trajectory.
These splines are used to represent the product flow by visualizing
a spline segment for each moving product.

Instead of visualizing the “real” transportation routes between
machines, the spline representations show the topological routes
of the products, meaning the order in which machines are visited.
If real transportation routes were provided as a model or restric-
tions in the transportation were known, these real paths could be
used instead.

The supporting points of a spline are set to the machine posi-
tions that perform the respective production steps of a product,
with an additional random offset to avoid visual clutter among
multiple splines. The smoothness of the splines helps the user to
follow the progress of individual products. The splines are visual-
ized using Gouraud shaded [26] tubes. This means that small
tubes are used for their geometric models, and that these geome-
tries are lit by a light source to enhance the natural understanding
of their shape and progress. Additionally, alpha-blending the
spline representations help making them halfway transparent to
further distinguish individual spline tubes while preserving an
overall picture of all spines. The middle image of Fig. 2 shows a
closeup of both milling machines from Fig. 1 that demonstrates
these visual effects.

Like all other data mining and visual analysis approaches, this
method has its limits. Large numbers of products or product types
can lead to visual clutter and increased confusion. Fortunately, for
the chosen spline representation, there exist methods like
attribute-driven edge bundling [27] or hierarchical clustering of
flow maps [28] to compensate or mitigate those effects. In addi-
tion to that, general filtering and data aggregation techniques can
be used to analyze and compare facets of interest in the production
data.

By utilizing these visualizations, an intuitive tool for the exami-
nation of properties in the product flow is introduced. By color-
coding different properties, the user is guided to interesting events
and locations in the simulated production system. The left and
right images of Fig. 2 show two examples for different properties.
In both visualizations, the lower left dot represents the factory’s
entrance position for all products, while the lower right dot is the
exit position when the products are fully manufactured. Also, for
demonstration purposes, both images only feature one drilling
machine (top-right dot in each image).

The left image of Fig. 2 shows the overall product flow for three
different types of products. Here, each spline has a color given by
the respective product’s type. This enables the user to follow and
distinguish products by their specific type. Also, the user can see
how products of the same type are split up and distributed onto
different machines for certain production operations. In the exam-
ple in Fig. 2 (left image), this directly generates inside into the
unequal distribution of products.

Fig. 1 Flow view of a virtual production system showing the
geometric model of the factory and its machines, the product
flow for all products color-coded by product type, and the
machine workloads for all machines

Fig. 2 Detailed views of the product flow demonstrating the
visualization of different properties like product types (left
image), methods to reduce visual clutter (middle image), and
waiting times of the products (right image)
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Another alternative to showing product types in the product
flow is to visually encode the waiting times of products. In the
right image of Fig. 2, the relative waiting time of an operation (in
respect to the mean waiting time of all operations of the respective
product type) is coded as color. Here, the colors range from a light
color to a darker color. For a product of a certain type, a light
color means that an operation has a low-waiting time compared to
the other operations of the same product type. A medium color
represents an average waiting time, while a darker color encodes a
high-waiting time. This highly intuitive visualization method
guides the user to machines where products have to wait longer
than average before being processed, like the single drilling
machine in this example.

Besides the presented properties, further attributes like produc-
tion time can be visualized. By mapping the values of such an
attribute directly to colors, bottlenecks of production steps can be
seen for the products individually. Mapping relative attribute val-
ues, i.e., values set in comparison to the values of all other prod-
ucts of the same type, extends this mechanism and enables the
user to visually analyze bottlenecks for an entire product type.

Although this is a powerful tool to locate weaknesses in the fac-
tory design, this flow visualization cannot show single product
locations and their waiting positions. Therefore, an extension of
the overall flow visualization is required.

This issue is tackled by restricting the overall product flow visu-
alization to the user-defined time window. Here, only the positions
of a product within this temporal window are displayed. A product
is moving within the time window defined by the user, resulting in
a path segment of a certain length. If a product moves slowly
caused by longer transportation, waiting, or production times, the
respective path segment will become shorter. In contrast, if a
product moves faster, the respective path segment will become
longer, since the product travels a longer distance within the given
time interval. Figure 3 shows an example for equally large time
windows moving forward in time (left to right image), thereby
resulting in products moving through the virtual factory. The user
is enabled to see that the overall flow slows down with increasing
time, since the single drilling machine in the top-right corner of
each frame is a bottleneck.

To determine the position of a product moving from a machine
A to a machine B for a specific time, the route between machine
A and B is divided into three parts. The first third of this route rep-
resents the operation of the product being processed at machine
A. The middle third represents the transportation of the product
from machine A to machine B. The last third of the route repre-
sents the time the product waits in queue to be processed by
machine B. So if the product just finished its waiting period and
starts being produced by machine A, the position of this product is
the position of machine A. If the product just finished its produc-
tion period at machine A and starts traveling to machine B, the
position of this product is one third of the path from machine A to
B. If the product reaches machine B and starts waiting to be proc-
essed by machine B, the position of this product is two thirds of
the path from machine A to B. And if the product finished its wait-
ing period and starts being produced by machine B, the product’s
position is the position of machine B.

The advantage of linearly interpolating the position for trans-
portation, waiting, and production phases is that a product’s posi-
tion advances when the product’s status is increased. This is the
case when either the product’s transportation advances, the
remaining time the product has to wait in a queue decreases, or
when the product’s degree of completion increases during
production. By that—in addition to spatial processes like
transportation—temporal processes like waiting or being pro-
duced are transferred into motion, thereby achieving a high level
of intuitiveness.

This method forms a visual encoding of the product flow and
its efficiency, and allows the user to follow single products over
the whole production time. Additionally, it is possible to identify
machines with bottlenecks resulting in a high-production time.
Furthermore, the user can see the location of the products of dif-
ferent types and the amount of products that are produced within
the concerned time window. Also, choosing the time window to
be the whole simulated time interval results in Fig. 2 (left image).

Although this is a powerful visualization, it is hard to identify
the order in which multiple products line up in queue to wait for a
certain machine. This is overcome by the visualization of the
machine workload.

Machine workload. To tackle the problem of requiring addi-
tional insight into the waiting queue of a machine, the presented
approach embeds a suitable visualization for each machine’s
workload into the three-dimensional factory model (see Fig. 1).
By doing that, the spatial context of the virtual factory model is
preserved, and hence the intuitiveness is increased.

For each point in time of the time window defined by the user,
all products in the waiting queue of a machine are shown in their
unique product type’s color. For consistency reasons, this is the
same color as used in the flow view.

The waiting products are visualized as stacked boxes. Each box
has a black frame to distinguish successive products of the same
color, meaning the same product type. For each particular product,
the height of the respective box corresponds to the remaining pro-
duction time this product will need at the machine it is waiting
for. The product a machine is currently working on is located at
the bottom of the stack, while recently enqueued products are
added at the top.

A single stack represents the waiting queue of a machine at a
certain point in time. The height of the stack equals the accumu-
lated height of all boxes, thereby visualizing the workload of the
machine. Instead of limiting this visualization to a single point in
time, a stack for each point in time of the user-defined time win-
dow is visualized. This is consistent with the flow visualization.
Additionally, the current point in time is marked for better orien-
tation. This results in a visualization that is able to provide visual
feedback on the development of a machine’s workload in contrast
to showing only a single point in time.

The result is a visualization for each machine’s workload, rep-
resenting the exact amount of waiting products and their produc-
tion time and order for each specific point in time. Figure 4
visualizes the workload of the first drilling machine from the
example shown in Fig. 1. Figure 4 shows that the products waiting
in the machine’s queue are quite unordered. This indicates that

Fig. 3 Sequence of product flows for a short temporal window moving forward in time (left to right image), resulting in prod-
ucts moving through the virtual factory
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rearranging the products in the machine’s queue into blocks of the
same product type might have a high potential in minimizing time
losses due to tool changes within the machine. When considering
setup times, this could speed up the average production time by
decreasing the overall setup time. As this example shows, the user
can intuitively analyze machine queues with respect to the number
or types of products, their workloads, and even trends over time.

In addition to showing the real order of products in a machine’s
queue, the user is provided with the possibility to sort the individ-
ual stacks of the visualization by product type. By doing that, the
insight into the order of the products in the queue is lost, but
instead, a more direct visual feedback on the number and the
accumulated production time is gained for all the products of a
certain type, as the bottom image of Fig. 4 shows.

Although the flow view is a suitable tool to review several
aspects of the manufacturing process, it is not able to compare the
workloads of different machines or the influence of design
changes in the factory layout on production times, e.g., for identi-
fying bottlenecks in the production. This is tackled by further
views that are introduced in the following.

3.2.2 Workload View. The flow view lacks the ability to
directly compare the workload of the machines in the virtual fac-
tory. Therefore, a workload view is provided as shown in Fig. 5
for the example used in Sec. 3.2.1. This view consists of a work-
load graph for each machine, visualizing the different graphs posi-
tioned on top of each other. To make the workloads comparable,
the same coordinate system is used for all graphs, meaning that
the workloads of all the machines have the same x-coordinate for
an arbitrary point in time.

Consistent to previous visualizations, not only a single work-
load for a single point in time is shown per machine but also the
workloads for all points in time of the user-defined time window
are displayed. This provides insight into the development of a
machine’s workload over time and offers the possibility to tempo-
rally zoom in onto interesting features. Since the workload graphs
for all machines are linked, they always remain comparable.
Additionally, the current point in time is highlighted for better
orientation.

Here, the focus lies on the magnitude of a machine’s workload,
meaning the accumulated production times of all products in the
machine’s queue (compare to height of graph in Fig. 4). To not
overload the visualization, only important information is included.
Thus, all information about the individual products forming this
workload is neglected.

The workload of a machine is shown in the foreground as the
height of the respective graph. At each point in time, the highest
workload of all machines is calculated and displayed in the

background as a second graph with a light gray color. So the back-
ground is the same for all graphs. This helps in comparing the
workload of different machines.

The color of the graph in the foreground representing a
machine’s actual workload ranges from white to dark, thereby
encoding the ratio of the machine’s workload to the globally high-
est workload by color. This means that a high-relative workload
results in a darker color, whereas in contrast, a low-relative work-
load results in a white color. This enables the user to relate the
workload of individual machines to the globally worst workload,
thereby intuitively identifying critical machines dependent on
time.

Multiple machines of the same type with a high workload may
indicate a need for more machines of this type, while multiple
machines of the same type with a low workload may indicate
redundant machines. If both occurs for different points in time,
the user may want to redistribute the workloads. Because of that,
the introduced visualization is a good basis for analyzing machine
workloads.

It is not necessary to optimize a machine in general, but at spe-
cific points in time, when bottlenecks occur. The presented visual-
ization helps identifying these interesting points in time and the
corresponding critical machines, which then can be investigated
and optimized further. As the visualization is intentionally not
embedded into the three-dimensional factory model, it also pro-
vides a good overview of machine workloads and their critical
features.

3.2.3 Production View. A missing feature of the previous
views is to examine the production times for all products of a spe-
cific type. This is done in the production view. The specific prod-
uct type can be chosen by the user, or an instance of the
production view can be displayed for each product type in paral-
lel. Figure 6 shows the production view for product type C with
its three production operations (compare Table 1).

The top image of Fig. 6 shows that each individual product is
visualized as one slice. Although the manufacturing of different
products starts at different points in time, they are shown aligned
in the production view to ensure comparability. This allows the
user to visually analyze production times.

Fig. 4 Unsorted (top image) and sorted (bottom image) work-
load of the first drilling machine showing the development of
the machine’s queue with its individual products waiting to be
processed

Fig. 5 Workload view showing a workload for each machine in
the virtual factory, thereby guiding the user to machines poten-
tially being overloaded or redundant at certain interesting
points in time
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A time against degree of completion graph is shown per product
on its individual slice. This means that the x-axis measures the
time since the start of the manufacturing of the individual product.
The y-axis measures the degree of completion for each product.

Since each product’s slice is parallel to the xy-plane, the
remaining z-axis measures the individual products themselves. As
all products of the same type start their manufacturing at different
points in time, the z-axis can also measure this temporal offset.

With increasing manufacturing time (x-axis), each product’s
degree of completion (y-axis) increases from zero (darker color)
until it reaches a value of one (brighter color), meaning a fully
manufactured product. The level of completion is calculated by
dividing the elapsed process time through the overall process time
of a product. Here, halfway completed operations are taken into
account by interpolating their relative level of completion
linearly.

The resulting horizontal lines that can be seen in Fig. 6 repre-
sent periods of time in which the individual product is not proc-
essed. Instead, the product is waiting in a queue for the respective
machine to start producing the next operation of this product. Sev-
eral products with the same degree of completion lead to visual
plateaus. This is caused by equal operations being finished for
several products. Since plateaus are caused by a number of prod-
ucts waiting for the next operation to begin, the vanishing of a pla-
teau indicates that there are no more waiting products for the
upcoming operation. In general, transitions between neighboring
plateaus represent processing phases, while the plateaus them-
selves represent inactive phases, i.e., transportation or waiting
phases.

The two lower images in Fig. 6 show the same data as the top
image but without possible occlusion problems. Here, the lower
left image clearly shows the different process phases, while the
completion ratio is visualized by color analog to the top image.
The begin and end of process phases are highlighted by thin black
lines. It becomes clear why optimizing machine workloads and
thereby inactive phases is that important for optimizing the overall
manufacturing times by comparing the time intervals of process
versus inactive phases.

The lower right image shows an overview of the amount of
products that have exceeded a certain completion ratio after a
given manufacturing time, ranging from none (white color) to all

products (darker color). This visualization focuses more on the
temporal trend of the products’ completion, thereby enabling the
user to identify interesting features based on the distribution the
product’s completion ratios during the manufacturing process.

In contrast to displaying only two-dimensional graphs for the
minimum, the maximum, or the average production times for all
products of the same type, the presented visualizations are capable
of providing trend analyzes over the whole manufacturing time,
while still preserving a high level of intuitiveness. The views are
also able to show interesting features like drastic changes in man-
ufacturing time. This is not only possible for the overall produc-
tion time of a product but also for each individual operation. Yet,
the user is enabled to get an overview over all products of the
same type. Furthermore, the user is visually guided to operations
that take longest or increase the production time most. At last, a
visual exploration of changes in production times is possible by
comparing the resulting production views based on different fac-
tory setups.

The presented flow view, workload view, and production view
focus on different aspects and form a combined system of inter-
linked views allowing the user to examine production properties
and factory performance.

4 Conclusions

This work introduced a tool for analysis and visualization of
manufacturing data generated by cyber-physical production sys-
tems. The tool displays manufacturing data in an intuitive format
that communicates relevant information to a human expert. To
enable an overall understanding of a manufacturing system’s state
and process, aggregated views were generated. In addition, the
visualizations can focus on individual machines or products and
zoom in onto interesting time steps. The user is guided between
the interlinked views showing machine workloads, state of work-
pieces being manufactured, or material flows. Bottlenecks or
excess machining capacities can visually be highlighted, thus
guiding the user to interesting locations and events. The influence
of changes of the factory setup, e.g., addition, removal, or reconfi-
guration of machining tools, can be simulated, analyzed, and
evaluated.

To support more realistic analysis and visualization of process
chains, properties like machine accuracies and criteria like costs
or lead times are a natural and straightforward extension of the
presented manufacturing system.

The presented visual analytics tool can be used to show the
impact when using different decision rules for production plan-
ning and control. Thus, this tool is suitable for the analysis of the
behavior of self-controlled production environments. Here, the
presented tool provides access to and visualizations of the
detailed, underlying data, and its patterns.

Considering the ever increasing size and complexity of data
created by today’s production systems, opportunities exist to
greatly increase the flexibility of production systems with a focus
on time or cost reduction, rapid adaptation to new manufacturing
demands, and product quality control. The presented approach
holds the potential to evaluate these opportunities by mining pro-
duction data and analyzing different engineering changes, thereby
adding value to the decision-making process.
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