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a b s t r a c t 

During large-scale simulations, intermediate data products such as image databases have become popular 

due to their low relative storage cost and fast in-situ analysis. Serving as a form of data reduction, these 

image databases have become more acceptable to perform data analysis on. We present an image-space 

detection and classification system for extracting vortices at multiple scales through wavelet-based filter- 

ing. A custom image-space descriptor is used to encode a large variety of vortex-types and a machine 

learning system is trained for fast classification of vortex regions. By combining a radial-based histogram 

descriptor, a bag of visual words feature descriptor, and a support vector machine, our results show that 

we are able to detect and classify vortex features at various sizes at multiple scales. Once trained, our 

framework enables the fast extraction of vortices on new, unknown image datasets for flow analysis. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Today’s supercomputers allow scientists to simulate turbulent 

henomena using extremely high-resolution grids, producing mas- 

ive data sets that make it possible to gain new insights into com- 

lex turbulent behavior at multiple scales. Unfortunately, there ex- 

sts a large disparity between compute flops (CPU) and I/O capabil- 

ties. This gap has made it unfeasible to save the massive amounts 

f data generated onto non-volatile space in a reasonable amount 

f time. These limitations make feature extraction and analysis dif- 

cult when performed after a simulation, especially when tem- 

oral resolution is low relative to the simulation. It is common 

o only produce simulation-state outputs at regular intervals of 

 simulation which incur a huge cost. These state files are often 

he only data points used for data analysis and feature extrac- 

ion. These outputs can be hundreds of gigabytes large, requiring 

arge amounts of resources to process them after the simulation 

as completed. Recent advancements in analysis and visualization 

echniques have introduced cross-domain in-situ methods that run 

longside large simulations, producing reduced-scale intermediate 

ata products (images) that are more reasonable to manage for 
eature detection and extraction. 
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In the classical 3D turbulence picture, unsteady vortices of 

any sizes appear and interact with each other, generating smaller 

nd smaller vortices, up to the scale where viscous effects domi- 

ate. The quantitative description of this process has been one of 

he central objectives of turbulence research, with many questions 

till open, for example, related to anomalous scaling exponents and 

ntermittency. In order to assist with the understanding of vortic- 

ty dynamics, traditionally, vortex extraction in turbulent flows has 

een a well-studied subject. 

Some of the earliest definitions of vortices were given by Jeong 

t al. [1] , where interactions between coherent structures play a 

ole in the development of vortex dynamics. Subsequently, newer 

opology methods were used to define vortex behavior by Post 

t al. [2] , primarily categorizing feature extraction methods into 

our types: direct flow, texture-based flow, geometric flow, and 

eature-based flow visualization. 

There have been methods developed and used to detect and 

xtract vortex structures in 2D flow. The Okubo-Weiss method 

3,4] has been successfully used on native 2D hydrodynamics and 

agnetohydrodynamics. The Q-criterion has been used in 3D flows 

ut poses issues when used on 2D datasets. Vortices that are not 

ligned to a camera’s plane-of-view cannot be visually character- 

zed as a vortex. While it is ideal to run many of these detec- 

ion methods on the original, raw dataset, sizes of output data 

ftentimes require significant resources that match those where 

he simulation was executed. More complex methods become pro- 

ibitive due to their overhead requirements, and without a pri- 
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ri knowledge of feature locations may need to be processed at 

 global scale, i.e. computing derivative and tensor products from 

tored velocity fields. Additionally, our integration with the Cin- 

ma framework produces many 2D image-sets as light-weight data 

roducts rather than 3D data. For these reasons, we have opted to 

se the Okubo-Weiss method for 2D training and validation of our 

lassification system. 

Aside from the connection with turbulence in general, vortex 

lassification might be particularly useful for understanding the 

arge roll-ups and structure of the flow generated by the Rayleigh- 

aylor, Richtmyer-Meshkov, and Kelvin-Helmholtz instabilities. Re- 

ently, Zhou has provided a comprehensive review of flow, turbu- 

ence, and mixing induced by these instabilities [5–7] . The method 

roposed here might help extend some of the analysis approaches 

urveyed in the review. In addition, experimental data results are 

ften only available as 2-D images. In applications such as ICF, 

here the Rayleigh-Taylor/Richtmyer-Meshkov instabilities are im- 

ortant [5–7] , vortex classification may offer a novel tool for flow 

nalysis. 

One of the most popular intermediate data products produced 

oday are Cinema databases [8] . Cinema databases most commonly 

tore image-space representations of the data at many different 

amera perspectives, allowing for instantaneous access to many 

iews of a specific dataset while a simulation is running for post- 

nalysis. For exploratory research, it is sometimes difficult to know 

rior to the simulation what specific features to look for espe- 

ially when running many variations of parameters. Furthermore, 

or massive datasets it is difficult and expensive to save many 

ull-size datasets at fine temporal resolutions. The Cinema frame- 

ork allows for fine temporal, image outputs of large-scale simu- 

ations at a significantly reduced cost. The advent of well-defined 

mage-space features makes Cinema an ideal choice but detection 

ethods must be developed. Recent work by Banesh et al. [9] has 

een able to successfully use an edge-based contour eddy tracking 

ethod on temporal, 2D image data of turbulent ocean currents. 

dditional tracking and evaluation of these results were done by 

ospodnetic et al. [10] . 

Vortices are typically described by their mathematical behav- 

or, but also contain well defined visual footprints making them an 

deal feature to detect and extract in image-space environments. 

erforming meaningful large-scale extraction of visual features in 

iverse fields has traditionally been tackled by the use of machine 

earning algorithms. Without the need of discrete definitions of 

eatures, machine learning algorithms take multiple sets of inputs 

ith weighted descriptors to then separate into several types, or 

lassifications. Work in turbulence area is not substantial, but there 

re several sample works related to turbulence-like datasets. 

Zhang et al. [11] used several methods to boost detection results 

n machine learning for vortex detection. By using local vortex de- 

ection algorithms, termed as weak classifiers, and an expert-in- 

he-loop approach for labeling results, they show to have reduce 

isclassification rates compared to component classifiers. Similar 

o this approach, our framework has the capability to enable an 

xpert-in-the-loop approach for labeling but focus on the use of 

he Okubo-Weiss classifier for this work. Kwon et al. [12] used a 

earning algorithm to evaluate and select the best image-space rep- 

esentations for large scientific data and was able to show signifi- 

ant improvements compared to manual selections. For the extrac- 

ion and classification of vortex features in image space, the use of 

achine learning could significantly improve the efficiency of the 

xtraction. For example, features that would be unclassified by tra- 

itional methods could be learned and correctly identified using 

achine learning techniques. 

In this paper, we develop a classification system that can au- 

omatically identify, describe, and extract features primary to tur- 

ulence datasets in image-space. The focus is on the extraction of 
2 
ortices, due to their importance for turbulence research. Vortices 

re also some of the most visually distinct features available. Once 

rained, our classification system strictly works on image datasets 

ithout the use of the original data scalar components. Our con- 

ributions are the following: 

• an image-space descriptor that operates in linear space for the 

detection and extraction of vortex-like features; 
• a complete training and classification system that enables the 

low-cost evaluation of image-space datasets. 

Data used in this paper is from the public Johns Hopkins Tur- 

ulence Database [13] . While the JHTDB hosts many turbulence 

atasets, the one used corresponds to a Direct Numerical Simu- 

ation (DNS) of homogeneous buoyancy-driven turbulence (HBDT) 

14] on a 1024 3 periodic grid. This simulation solves the incom- 

ressible Navier-Stokes equations for two miscible fluids with dif- 

erent densities, in a triply periodic domain [15–18] . Both fluids are 

nitialized as random blobs using a characteristic size of about 1/5 

f the domain, consistent with the homogeneity assumption. Start- 

ng at rest, constant gravitational acceleration causes the fluids to 

ove in opposite directions due to differential buoyancy forces. As 

urbulence fluctuations are generated and the turbulent kinetic en- 

rgy increases, features of interest begin to emerge. Nevertheless, 

tirring by turbulence increases the rate of molecular mixing. Af- 

er some time, molecular mixing becomes large enough that the 

uoyancy forces are overcome by dissipation and turbulence starts 

o decay. Due to the assistance of the buoyancy forces, the turbu- 

ence decay is different than classical decay. Visually, one interest- 

ng phenomenon is the classification of number and size of vor- 

ices that form along a multi-fluid boundary. 

The remainder of the paper is organized as follows. 

ection 2 briefly describes concepts related to the proposed 

ethod, which is presented in Section 3 . Experimental results 

re described and discussed in Section 4 . Section 5 presents the 

onclusions and directions for future exploration of the topic. 

. Background 

In this section, we present some concepts related to the pro- 

osed method. 

.1. Okubo-Weiss criterion 

The Okubo-Weiss criterion for identifying vortexes is W < 0, 

here W is defined as: 

 = (s n ) 
2 + (s s ) 

2 − ω 

2 (1) 

 n = 

∂u 

∂x 
− ∂v 

∂y 
, s s = 

∂v 
∂x 

+ 

∂u 

∂y 
(2) 

 = 

∂v 
∂x 

− ∂u 

∂y 
. (3) 

ere, s n is the normal component of strain, s s the shear component 

f strain, and ω is the vorticity. 

.2. Radial gradient transform 

The Radial Gradient Transform (RGT) is used in Takacs et al. 

19] and Luo et al. [20] to improve rotation invariance of descrip- 

ors. Let p be a point and g a gradient in a given feature image

ith center c . The RGT uses two orthogonal basis vectors to pro- 

ide a local reference for the gradient g . The basis vectors are given 

y 

 = 

p − c 

| p − c| (4) 
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Fig. 1. The feature analysis pipeline is composed of an offline training step (dark gray box) and an online classification step (light gray box). The training comprises the 

creation of a dataset of features that are used to obtain a dictionary of words for describing the features and creating an SVM classifier. The SVM is then used to positively 

or negatively classify any feature as a vortex. 
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 = R π/ 2 r (5) 

uch that R π /2 is the rotation matrix for an angle of 90 degrees. 

hen, the radial gradient g ′ is computed as 

 

′ = 

[
r T 

t T 

]
g. (6) 

.3. Bag of visual words 

A Bag of Visual Words (BOVW) is constructed by using vector 

uantization of descriptors extracted from image patches. It is used 

or image classification [21–24] . A BOVW method defines image 

eatures as words (or visual words) and counts the occurrences of 

ach feature in an image. A BOVW descriptor of an image is thus a 

istogram. 

The visual words in a histogram form the dictionary (or code- 

ook) of the BOVW model. The visual words must be chosen so 

hat they relate to features that are common among images to 

ake it possible to classify an image/object. The occurrences of 

he words in one image should make it possible to distinguish that 

mage from another. One expects the distribution of the words to 

iffer significantly. To compute a dictionary one usually performs 

eature detection and description steps for a set of images, result- 

ng in a set of feature descriptors. These are used to produce a 

maller set of descriptors representative for groups of descriptors, 

hose becoming the words. Clustering can be used to compute vi- 

ual words which, for instance, can be defined as centroids of clus- 

ers via a K-means algorithm. 

The BOVW descriptor of an image can be computed as the his- 

ogram, capturing the frequencies of each word in the image. Given 

n image, in order to compute the histogram one can perform the 
3 
eature detection and description steps; subsequently, for each fea- 

ure descriptor obtained, one accumulates the bin related to the 

losest word by an appropriate distance metric. 

.4. Support vector machines 

A support vector machine (SVM) computes a hyperplane that 

est separates a set of n-dimensional feature descriptors, using la- 

els of two classes [25,26] . The hyperplane is a decision bound- 

ry: a new sample can be classified as belonging to one of the two 

lasses according to the side of the hyperplane it is on. 

Among all possible hyperplanes, an SVM computes the one 

hat maximizes the margin to the samples in the classes, i.e., it 

aximizes the distance to the nearest samples in each class, the 

upport vectors. Often a data set is not linearly separable in d- 

imensional space. For this reason, an SVM maps d -dimensional 

eatures to a higher-dimensional space where it is more likely to 

ave a separation hyperplane. This map is performed by a kernel 

unction, e.g., a linear, polynomial or radial basis function. For de- 

ails concerning the optimization process, we refer to [27–29] . 

. Method 

Fig. 1 presents a brief summary of our pipeline. The of- 

ine stage comprises the selection of features, the creation of 

 dictionary to describe what is and what is not a vortex-like 

eature, and the final training of a classifier. The classifier is 

hen used to predict the class of previously unseen features. 

ection 3.1 describes how image features were selected by means 

f the Okubo-Weiss measure in order to compose a dataset for 

raining. Sections 3.2 and 3.3 discuss, respectively, the computation 

f measures to describe the features by means of Radial Histogram 

f Gradients and the derived Bag of Visual Words. The training 
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Fig. 2. Various representations of a feature. From left to right: Velocity magnitude, 

Okubo Weiss, and thresholded Okubo Weiss. The left image is used by our descrip- 

tor, and the center and right images are used to decide an initial classification for 

training. 
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Fig. 3. Given a feature, gradient-based descriptors are extracted as words that af- 

terwards will describe the feature as a bag of words. Initially, the RGT is used and 

the feature is resized to 64 × 64 pixels. A subsampling process is then performed to 

obtain windows with different sizes spread all over the feature. Each of such win- 

dows is split into annular cells in which gradient descriptors are computed to de- 

scribe the window. The set of such descriptors for all the windows form the words 

of the feature. 
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ataset is then used to compute a classifier that assigns a given 

nput feature as a positive or a negative vortex detection, as de- 

cribed in Section 3.4 . 

.1. Okubo-Weiss feature selection 

One of the most critical components in our pipeline is to select 

mage-space features that will be relevant to domain-specific ap- 

lications. In this work, we’ve focused on the extraction of vortex- 

ike features by using a 2-D representation of them. Through the 

se of the Okubo-Weiss criterion, regions in velocity magnitude 

mage space are extracted and used to train our system. 

Most image-space representations used to evaluate scientific 

ata typically employ a rainbow, diverging, or converging col- 

rmap. These may introduce biases that may obscure features of 

nterest or introduce artifacts that are not related to known physi- 

al features [30] . These chromatic colormaps inherently falsify fea- 

ures perceived by human vision to aid in differentiation. Machine 

earning algorithms typically require a single-channel input, caus- 

ng a conversion between a chromatic colormap to a grayscale im- 

ge to pass-through these falsified features. To remove any feature 

iases from our training, we select a linear colormap commonly 

nown as a grayscale colorset. 

Fig. 2 shows various representations of a vortex-like feature un- 

er evaluation by our system for training. When Okubo-Weiss cri- 

erion is computed on an original dataset where the velocity fields 

re available, a negative threshold denotes a high likelihood of a 

ortex existing at that location. By using a fixed negative threshold, 

e are able to generate a mask along an entire dataset and use 

 connected components routine to extract neighboring pixels as 

ull objects, similar to that explained in Fig. 6 . An affine bounding- 

ox region is created around each individual object and a veloc- 

ty magnitude representation is stored for processing further down 

he pipeline. The extracted Okubo-Weiss objects are presented to 

he domain researcher for selection. 

.2. Radial histogram descriptor 

The primary descriptor of a feature is based on capturing lo- 

al variations of the gradients in a similar process to that of the 

istogram of Oriented Gradients (HOG) descriptor [31] . However, 

OG descriptors are very sensitive to the orientation of the input 

eature. Therefore we use an adapted gradient descriptor, as sum- 

arized in Fig. 3 . 

Initially, the gradients of the feature image are computed and 

he Radial Gradient Transform (RGT) is used to improve rotation 

nvariance. After computing the RGT, the gradient image is resized 

o an image of 64 × 64 pixels. By resizing the gradient image, re- 

ated points in the original image and in the resized image present 

he same gradient. The gradient field may be deformed if the fea- 

ure image is resized and then the gradients are computed over 
4 
he resized image. Resizing is performed so that further computa- 

ion is independent of differences in the height and width, as well 

s in the resolution of images. 

A dense set of windows is then uniformly sampled over the gra- 

ient image using vertical and horizontal shifts. The shifts can be 

maller than the window size in order to produce overlaid win- 

ows. The set of windows is also computed using different sizes to 

roduce a multiscale representation of the feature. In our experi- 

ents we used 8 different window sizes starting from 64 with a 

ownsampling factor of 0.9, namely, the windows have sizes 64, 

8, 52, 47, 42, 38, 34 and 31. 

Each window is subdivided using annular cells, as in Fig. 3 , and 

he histogram of radial gradients is then formed by accumulating 

he magnitude of the gradients within k bins related to the dis- 

retized gradients in k directions. The descriptor of a window is 

ormed by concatenating the directional histograms for each annu- 

ar cell. In our experiments we have subdivided the windows using 

wo annular cells. 

.3. Bag of words descriptor 

The final feature descriptor is a Bag of Visual Words (BOVW) 

21] with a vocabulary created using the descriptors based on ra- 

ial gradients. We initially compute the radial descriptors for vor- 

ex and non-vortex features, producing a set of points in the space 

f radial gradient descriptors. A dictionary of n words is then com- 

uted using the k -means clustering, such that words are the cen- 

roids of the clusters. The process is depicted in Fig. 4 . 

The BOVW descriptor of a feature is a n -dimensional vector 

hat counts the occurrence of each word in the feature ( Fig. 5 ).

iven a feature, the radial descriptors are computed to produce a 

et of points in the space of radial gradient descriptors. Each of 

he points is assigned to the closest word, incrementing the corre- 

ponding bin in the final descriptor. 

.4. Classification 

We train a Support Vector Machine (SVM) [25] based on the 

OVW features using a dataset comprised of images extracted from 

he Johns Hopkins Turbulence Database [13] . The set of images for 

raining is obtained using the process defined in Section 3.1 . 

Once training is finished, new unknown test images are consid- 

red to classify features. Given an image patch input, the SVM pro- 
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Fig. 4. Computation of the dictionary. The gradient descriptors for many features are computed and clustered using a k-means in high-dimensional space. As an example, 

the centroids of the k-means clustering (square, circle, triangle, diamond) are assigned as the dictionary which will be used for the bag of words. 

Fig. 5. Visual word binning. Given a set of gradient descriptors for a feature, each 

feature is assigned to the closest dictionary word to form a bag of words descriptor 

for the feature. 
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4

uces a positive or negative response that relates to the distance to 

he fitted hyperplane used to differentiate between various words. 

he kernel function used for the fitted hyperplane is not the de- 

ault linear separable function, but rather a third-degree polyno- 

ial function, which allows non-linear classifications. The signed 

rthogonal distance from the oriented hyperplane is the output 

esponse value and is normalized between −1 and 1. These dis- 

ances represent the separation between the visual words “vortex”

nd “non-vortex”. 

When investigating a new image, the brute-force, non-efficient 

ethod is to consider every single pixel of the new image at the 

ataset’s native resolution. This becomes computationally expen- 

ive when considering potentially thousands of individual images, 

dding up to many billions of pixels. To significantly improve com- 

ute performance, first we must select regions from these new 

mages that we want to consider. The selection is performed by 

 low-cost ellipse region extraction pipeline, as shown in Fig. 6 . 

he extracted region is related to the bounding rectangle that in- 

ludes the ellipse. It is worth to note that fitting a squared region 

o an elongated feature could include data from extraneous dy- 

amics unrelated to the vortex. Therefore, the bounding rectangle 

s better to avoid such interference. 

To extract the ellipse regions, we first compute the gradients 

f an image in the x and y directions. An efficient way of com- 

uting this at multiple resolutions is through the use of discrete 

avelet transforms (DWT) and using their horizontal and vertical 

etail coefficients. The Haar DWT high-pass filter that we used ap- 

roximates a differential for obtaining the gradients. By using co- 

fficients at different scales of the wavelet decomposition it is pos- 

ible to control the identification from finer to coarser features. 

From the gradients of the wavelet transform in a given scale, 

e perform an edge detection [32] . The curvature at each point 

 of the edges is then computed as κ(p) = 1 /R (a ) , such that R ( a )

s the radius of the osculating circle at p . We then threshold the 

dge points p using this κ( p ) value to remove straight edges and

aintain curved edges that may be formed by vortices. 

Contours given by the connected components of the resulting 

dges are then extracted and used to fit ellipses [33] which rep- 
5 
esent regions where vortexes may potentially exist. Once these 

llipses are computed, we extract an affine bounding-box region 

round the ellipse which is considered for classification. 

A further filtering step may be applied to avoid extremely elon- 

ated ellipses which still may occur due to noisy curvature values. 

he thresholding of ellipses is computed using the eccentricity (ra- 

io of the minor and major axis lengths). The smaller the ratio the 

ore elongated is the ellipse. Due to the wavelet structure used to 

enerate the gradients in the previous step, contours can be gen- 

rated at multiple resolutions using wavelet’s native hierarchy, al- 

owing the extraction to be performed at multiple scales. 

The relatively low computation cost of these routines reduces 

he computational cost further rather than attempting to perform a 

lassification query for the entire resolution of the image, at every 

ixel. 

. Experiments and results 

In the following we present experiments and results achieved 

y our method. The experiments were performed using turbulence 

ata from the Johns Hopkins Turbulence Database [13] , which con- 

ists of the velocity components at 1015 time instances in a volume 

f 1024 × 1024 × 1024 voxels. The time instances are separated by 

 constant time step of 0.04 and cover the initial state, growth, and 

ong time decay of turbulence. For training, we used 2D slices from 

1 time instances (one slice per time instance), starting from time 

 = 6 and up to time t = 12 , spanning frames numbers 150 to 300.

ince the peak of turbulence kinetic energy occurs at t ≈ 11.4, the 

raining set covers the strong growth regime, as well as the be- 

inning of turbulence decay. The 2D slices contain the direction of 

ravity and a homogeneous (horizontal) direction, and correspond 

o a 1/4 of the domain depth in the third (horizontal) direction. 

Magnitude images were computed from the velocity compo- 

ents and patches were manually selected to build a dataset for 

raining and testing the SVM classifier. The SVM implementation 

f OpenCV [34,35] was used with a polynomial kernel of degree 

, gamma value of 1 and coefficient 0. The termination criterion 

as set to 100 iterations. The dataset contains 447 features: 229 

f these features were labeled to the vortex class and 218 features 

ere labeled to the non-vortex class. The vortex patches were cho- 

en so that the vortex center is fully contained inside the patch 

nd nearly located at the center of the patch. Patches of regions 

ithout a clear vortex behavior, or even patches depicting a sub- 

egion of a vortex such that its center was occluded, were consid- 

red as non-vortex regions. Fig. 7 shows some examples of patches 

n the dataset. 

The radial histogram ( Section 3.2 ) was computed using two 

nnular blocks and nine directions. The multiscale representation 

sed 8 different window sizes starting from 64 with a downsam- 

ling factor of 0.9, namely, the windows have sizes of 64, 58, 52, 

7, 42, 38, 34 and 31. The shift step used for the multiscale repre- 
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Fig. 6. To greatly reduce the problem-set of analyzing new images, low-cost methods are used to extract regions of potential feature activity. A region is extracted by 

computing an X and Y axis discrete wavelet transform (DWT) at multiple scales. For each scale, edge detection is applied then used to extract contours. Ellipses are fitted 

along sets of connected components then a rectangle is extracted. The rectangle region is then ran through our classifier and generates a response. 

Fig. 7. Examples of patches in the dataset. The first row contains examples of the class vortex and the second row contains examples of the class non-vortex. These visually 

distinct features are necessary to enable the creation of a large range of words during training. 
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entations was of 8 pixels and the dictionary was computed using 

28 words ( Section 3.3 ). 

Dictionary creation, training and classification steps were per- 

ormed on a system with an Intel Core i7 6700k running at 

.00 GHz and conducted as a single-threaded operation on a CPU 

mplementation. To measure pre-processing performance, when in- 

esting 1833 images, dictionary creation took approximately 104 

econds and training 64 seconds per iteration. This dictionary cre- 

tion and training step results in rates of 17.6 patches-per-second 

or the dictionary and 28.6 patches-per-second for training. When 

onducting classification of a new dataset, a patch size of about 

00 × 100 pixels took about 0.05 seconds using an already trained 

ystem. 

The classification experiments are reported using precision ( P ), 

ecall ( R ) and F-measure ( F ), defined respectively by Eqs. 7 –9 . The
6 
easures are defined according to the number of true positives TP 

a vortex feature that was classified as a vortex), false positives FP 

a non-vortex feature classified as a vortex), true negative TN (a 

on-vortex feature classified as a non-vortex) and false negatives 

N (a vortex feature classified as a non-vortex). 

 = 

T P 

T P + F P 
, (7) 

 = 

T P 

T P + F N 

, (8) 

 = 2 

P · R 

P + R 

(9) 

In order to evaluate the proposed method, the dataset of 447 

mages was partitioned into disjoint training and testing subsets 
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Fig. 8. Classification results for different sizes of the training sets. Precision, Recall and F-measure are computed as the training rate changes. The balance between false 

positives and false negatives was achieved when 70% of the dataset was used for training. 

Table 1 

Real versus predicted classification results obtained for the best and the 

average classifiers. These results were obtained with a training rate of 

0.7 and 100 runs of random disjoint train and test partitions. 

Best Average 

Predicted Predicted 

Positive Negative Positive Negative 

Real Positive 65.00 0.00 62.18 2.82 

Negative 11.00 54.00 17.38 47.62 
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hat were randomly chosen. The graph in Fig. 8 summarizes the av- 

rage results for each measure given different sizes for the training 

et. Training and testing steps were performed 100 times for each 

artition and the average value for each evaluating measure was 

omputed. The training set size varies from rates of 0.1 to 0.9, that 

s, from 10% to 90% of the 447 images. The subset of testing images

s formed by 10% of the images (rate of 0.1). 

It can be noticed from precision and recall curves that the clas- 

ifier performs poorly between rates 0.1 and 0.2. In fact, we no- 

iced the classifiers obtained at such low rates would classify all 

est samples either as a vortex or a non-vortex. From the precision 

urve, it can be noticed the number of false positives decreases 

s the rate of training images approaches 0.7 and then it becomes 

table. The number of false negatives can be analyzed from the re- 

all curve, which slightly decays as the precision improves. The f- 

easure averages both curves and from this measure it is possible 

o note that the classifier becomes stable at a rate of 0.7. 

The confusion matrices for the best classifier and for the aver- 

ge classifier are summarized in Table 1 . These results were ob- 

ained with a training rate of 0.7 and 100 runs of random dis- 

oint train and test partitions. The rows correspond to the real 
7 
lasses and the columns to the predicted classes. The best clas- 

ifier achieved a precision of 0.85 and a recall of 1.0, since not a 

ingle vortex sample of the testing subset was misclassified. The 

-measure was of 0.92. The average precision, recall and f-measure 

alues are, respectively, 0.78, 0.96 and 0.86. 

Figs. 9 –11 show a large spectrum of classified samples along 

ith the confidence of the classification. The confidence of the 

lassification is based on the distance of a sample to the classi- 

cation boundary returned by SVM. The values were normalized 

sing the maximum and minimum distances so that a value of 1.0 

epresents high confidence and a value of 0.0 represents low con- 

dence. Fig. 9 depicts samples that were correctly classified as vor- 

ices. The scale under the samples shows a confidence distribution 

rom higher confidence (dark blue) towards lower confidence sam- 

les (light blue). Fig. 10 shows examples of samples that were mis- 

lassified as vortices. The confidence values show that these sam- 

les are very close to the classification boundary. The problem may 

appen because there is not enough data to compute a discrimina- 

ive descriptor. We have noticed that many misclassified samples 

re very low-resolution samples. That can be noticed from the pix- 

lation effect in many images of Fig. 10 . The first image to the left,

or instance, is only 19 × 26 pixels. 

Fig. 11 depicts samples that were correctly classified as non- 

ortices. The scale under the samples shows a confidence distribu- 

ion from lower confidence (light red) towards higher confidence 

amples (dark red). 

In many observational or experimental studies, full data infor- 

ation is not available. Taking vortex identification as a generic 

xample, we show that our method can be useful for flow analysis 

n the absence of full data, provided that a complementary dataset 

an be used for training. Thus, through training and classification, 

he high-level identification of regions of interest is made possi- 

le on image datasets rather than the original data. In addition, 
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Fig. 9. Examples of vortices classified using the proposed method and the confidence obtained for each classification. Since the dataset was built with the center of the 

vortex usually at the center of the image, images with such an aspect are classified with higher confidence. 

Fig. 10. Misclassified samples and the confidence value. The misclassified samples were usually features with very low resolution or with a high level of curvature, which 

happens often when the feature is close to a vortex but the vortex center is not inside the feature image. 

Fig. 11. Examples of non-vortices classified using the proposed method and the confidence of the classification. The images show regions with high curvature but that do 

not contain a vortex center. Usually, these are regions at the boundary of the mixing fluids. 
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while the ones classified as non-vortices are drawn in red. 
or very large datasets, the use of image analysis and classifica- 

ion can accelerate the data exploration process. The results show 

hat the method was effective to discriminate vortex-like regions 

rom other boundary regions that, even with a strong gradient re- 

ponse, do not present much revolving behavior or the center of 

he vortex inside of it. We note that some of the false positives and

rue negatives lying close to the decision boundary of the classifier 

resent the following characteristics: they have a curved behav- 

or very similar to the one in vortices, and they come from low- 

ontrast regions or very small resolution regions. We believe these 

ssues can be solved in part by including more samples with dif- 

erent behavior in the dataset so that the classifier can achieve a 

etter generalization and we can have a better understanding of 

he limits regarding resolution and contrast limits. In the next sec- 

ion, we explore the use of the method for datasets outside the 

omain of calibration. 

.1. Detection against test datasets 

The detection performance of our trained system was tested 

mong three other datasets, previously not used for training or 
8 
alidation, with various levels of mixed quantities. These three 

atasets correspond to the same data series in the JHTDB, but are 

rom numerical times t = 8 , 10, and 12, corresponding to frames 

0 0, 250, and 30 0. While this new test subset is from the same

ata series, the extracted 2D slices are from a different depth-level 

n the domain that was not used for training to represent a visu- 

lly different but similar testing dataset. During extraction, a do- 

ain depth of 1/2 was used for training and a depth of 1/4 is used

o extract a testing dataset. These time frames are before and af- 

er kinetic energy peak ( t ≈ 11.4) and cover the interval when tur- 

ulence is most active. However, the amount of molecular mixing 

rogressively increases with time, so that the images are not equiv- 

lent among the three time instances. 

Fig. 12 at t = 8 presents a scenario where features are clearly 

efined and not yet in a very ‘mixed’ state. As shown, the clearly 

efined features allow for the automatic extraction using the el- 

ipse detector to work well, and produce correct classifications. As 

reviously mentioned, features that are too small in size or too 

longated are filtered out before being processed by the classifier. 

inally, candidate regions classified as vortices are drawn in red 
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Fig. 12. A new test dataset (a) with well-defined features represented as velocity magnitude. Our ellipse detector first extracts regions to evaluate (b). After simple filtering of 

features, a classification response is generated (c) to show that our method is able to identify vortex-like regions (red rectangles) at various resolutions. . (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. A more mixed dataset (a) represented as velocity magnitude. Our ellipse extracted regions (b) shows the extraction of many candidate regions before being filtered 

out. Finally, the classification response is shown (c) for regions that fall within the vortex and non-vortex criteria. Our method is able to identify these regions at various 

resolutions. . 
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Fig. 13 at t = 10 examines a time close to the turbulent kinetic 

nergy peak, increasing the complexity of vortex features. The au- 

omatic ellipse detector begins to extract many more regions of in- 

erest but those with a diverging eccentricity ratio are removed by 

 threshold before being processed by the classifier. Finally, the re- 

ions that are classified are done so correctly despite overlapping 

egions. 

Fig. 14 at t = 12 , during the initial stages of the turbulence de-

ay stage samples a more mixed state with small and complex vor- 

ices dominating the visual space. Many ellipses are automatically 

xtracted but are further reduced by eccentricity thresholds, re- 

oving mainly the smallest, most elongated regions. The result of 

his trimming produces a subset of regions that are likely to con- 

ain vortex activity, and are then able to be classified correctly. This 

et of results also shows the ability to detect various sizes of vor- 

ices correctly within a single dataset. 

.2. Characterizing detected objects 

To characterize the detection of vortices, we measure their 

roperties and plot the distribution of their regions. The detected 

egions are defined by rectangles (enclosing the detected ellipses) 

ith angle, width (minor axis) and height (major axis) properties 

ssociated to them. 
9 
The diagonal of a rectangle is given by 

 = 

√ 

a 2 + b 2 (10) 

uch that a is the region width and b is the region height. We 

efine the normalized quantity as the characteristic length scale 

CLS) 

LS = 

(
c − c min 

c max − c min 

)
2 π (11) 

uch that c min and c max correspond to the minimum and maximum 

ormalized values among all classifications of a time series. 

The distributions of the CLS at four simulation timesteps t = 

 . 44 , 7.68, 9.84, and 12, corresponding to frames 136, 192, 246, and

00, covering the early and late growth as well as the beginning 

f turbulence decay, are shown in Fig. 15 . As the heavy and light 

uid regions start moving due to differential buoyancy forces, the 

otal number of vortices detected in the data increases. Initially, 

ortices are detected across all scales as shown by the distribution 

f CLS from 0 to 2 π . At very early times, vortices are produced 

ainly by the Kelvin-Helmholtz instability acting at the interface 

etween the initially segregated pure fluids. These vortices are the 

ize of the pure fluid regions. Due to vortex stretching and interac- 

ion with the nearby flow, the vortices then start breaking up. As 

he turbulence cascade is established, the characteristic vortex size 

ecreases. 
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Fig. 14. A well-mixed dataset (a) with fine vortex features is represented as velocity magnitude. We are able to extract many candidate regions in (b) based on our ellipse 

detector and classify them correctly in (c), showing extractions at various resolutions. 

Fig. 15. Vortex characterization at four different steps. Time steps t = 5 . 44 (a), 7.68 (b), 9.84 (c), and 12 (d) show the progression of detected vortex features. As the 

simulation progresses, vortices are detected at larger rates and smaller sizes. The mean of detected objects (red) signifies the increase in vortex appearances as it relates to 

the increased mixed nature of the simulation as it progresses over time. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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. Conclusions 

As current and future supercomputers produce insurmount- 

ble amounts of data year-over-year, it has become necessary to 

se approaches for data reduction to alleviate bandwidth lim- 

tations and facilitate the study of new simulations. The gen- 

ration of Cinema image databases has been a recent popu- 

ar approach capable of generating high temporal fidelity snap- 

hots of simulations that otherwise would be skipped by con- 

entional restart state writes. Performing data analysis on these 

assive restart files is prohibitive due to required resources, mak- 

ng the analysis of high-fidelity image database data a prominent 

pproach. 
10 
We presented a method for classification of features in flow 

ataset that uses a 2D approach to discriminate between vortex 

nd non-vortex features. In the method we propose the use of ra- 

ial gradients to produce a Bag of Words descriptor for the fea- 

ures, which are classified using a Support Vector Machine. The 

mage features are detected using an ellipse detection method. In 

uch a manner our contributions include an image-space method 

or the detection and classification of vortex-like features and a 

omplete training and classification system that enables the low- 

ost evaluation of image-space datasets. Our experiments show 

hat the method is able to positively classify vortex features with 

inor losses while keeping a low rate of positively misclassified 

eatures. 
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Improvements of our method should be possible by increasing 

ataset size using more samples and exploring methods for data 

ugmentation through geometrical transformations. We intend to 

xamine these possibilities in future research It is also possible to 

onsider a generalization of the method to 3D space. A possibility 

s to consider adjacent slices of 3D simulation data, in order to use 

D methods expanded with only minor adjustments. By detecting 

ortices in all dimensions, i.e., in the classes of XY -, YZ -, and ZX -

licing planes, it would be viable to triangulate 3D bounding boxes 

f regions containing detected vortices. Further, recent improve- 

ents were made to the Cinema standard enabling the genera- 

ion of floating-point image data during visualization. By encoding 

oating-point image data, it would be possible to reduce a single 

ray-scale channel representation of image data, quantized from to 

55, and encode them at much higher precision. 
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