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Abstract

The remote analysis and visualization of raw large turbulence datasets is challenging. Current

accurate direct numerical simulations (DNS) of turbulent flows generate datasets with billions of

points per time-step and several thousand time-steps per simulation. Until recently, the analysis

and visualization of such datasets was restricted to scientists with access to large supercomput-

ers. The public Johns Hopkins Turbulence database simplifies access to multi-terabyte turbulence

datasets and facilitates the computation of statistics and extraction of features through the use

of commodity hardware. We present a framework designed around wavelet-based compression

for high-speed visualization of large datasets and methods supporting multi-resolution analysis of

turbulence. By integrating common technologies, this framework enables remote access to tools

available on supercomputers and over 230 terabytes of DNS data over the Web. The database

toolset is expanded by providing access to exploratory data analysis tools, such as wavelet decom-

position capabilities and coherent feature extraction.
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1. Introduction1

Extremely large datasets commonly arise in science and engineering today, and it is often pro-2

hibitive to store an original massive dataset at multiple sites or transmit it over computer networks3

in its entirety. Regardless, such datasets represented tremendous scientific value for the broader4

scientific community. It is imperative to deploy e↵ective technologies enabling the remote ac-5

cess to vast data archives for the purpose of having a large pool of scientists harness their value6

and make new discoveries. Our analysis framework presented here was driven specifically by the7

needs articulated by scientists from Johns Hopkins University (JHU) and Los Alamos National8

Laboratory. JHU hosts a large digital repository of data from several disciplines, including mas-9

sive simulation data from numerical simulations of turbulent physics. The framework we present10

makes remote visual analysis possible via an e↵ective protocol controlling the distribution of anal-11

ysis and visualization steps to be performed on the server side (JHU site) and a remotely connected12

visualization client.13

Furthermore, our framework incorporates the power of approximating a dataset by using cubic14

(bi-cubic, tri-cubic) B-spline wavelets. The utilization of wavelet approximation allows a user to15

generate initial previews or simply coarse approximations of a dataset quickly, making possible16

the e�cient identification of specific regions of interest that might warrant an analysis at a more17

detailed level. We demonstrate our framework for datasets available in the JHU repository and for18

typical scientific analysis scenarios.19

Most datasets encountered in applications in the physical sciences, similar to most natural im-20

ages, present lower-dimensional structures whose detection, extraction, and characterization are21

active areas of research. The search for more e�cient algorithms to detect and manipulate such22

structures has led to the development of a multitude of multi-resolution geometric methods sup-23

porting data analysis at multiple scales. One area that significant benefits from the application of24

such methods is fluid turbulence. In general, turbulent flows contain localized, highly intermittent25

structures as well as more stable, coherent structures. The characterization of these structures,26

which interact nonlinearly as they are advected by the background flow and significantly alter the27

local topology, is an open, fundamental question in the study of turbulence. Multi-resolution rep-28
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resentation methods seem ideally suited for such an e↵ort due to their localization in both the real29

and frequency spaces.30

Recently, Pulido et al. [1], studied several multi-resolution representation methods in depth,31

including B-spline, Daubechies and Coiflet wavelets, curvelets and surfacelets. These methods32

were compared to determine their ability to capture the structure of fully developed turbulence33

using a truncated set of coe�cients. Methods were evaluated based on their ability to approximate34

scalar and vector fields, including density and velocity, as well as derived data such as derivatives,35

spectra, and properties of constant density surfaces. The main criteria used for comparing meth-36

ods were computational e�ciency, numerical accuracy, and degree of data compression. While37

di↵erent methods performed better with respect to various metrics, B-spline wavelets consistently38

ranked at or near the top of the metrics considered. Except for some of the orthogonal wavelet39

methods, the use of multi-resolution representation techniques to study turbulence is relatively40

new and an emerging area of research. In particular, the B-spline wavelets have only been sparsely41

used for such purpose. Here, we present the addition of the B-spline wavelet representation to the42

JHU turbulence database. By overcoming bottlenecks in the system, we demonstrate this tool for43

both remote visualization and novel multi-scale analysis of turbulence data.44

1.1. Contributions45

This paper contains the following contributions:46

• Wavelet compression is introduced at the data-level to reduce access costs, bandwidth, mem-47

ory and compute footprint, therefore improving latency between database components to48

support many remote users.49

• Remote visualization is made possible for a multi-terabyte database cluster supporting com-50

modity hardware.51

• New analysis tools are demonstrated for two datasets for these types of turbulence: a) Homo-52

geneous Buoyancy Driven Turbulence (HBDT) [2] and b) Forced Magneto-Hydrodynamic53

turbulence (FMHDT) [3].54
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In Sections 2 and 3, we discuss related works in remote visualization and wavelet compression,55

describe the public JHU database cluster, and provide a brief introduction to wavelet methods.56

Section 4 presents a pipeline that introduces wavelet methods and visualization support to the57

JHU database cluster. Section 5 discusses results focused on measures assessing the performance,58

quality, and e�ciency of using wavelet methods for analysis. Additionally, multi-scale analysis59

is performed, driven by domain scientists, and results are presented using the newly implemented60

analysis tools. Our conclusions in Section 6 summarize our results and contributions.61

2. Related Work62

With the continued and rapid growth of the size of datasets, movement of data is increasingly63

di�cult. Database systems, such as the Johns Hopkins Turbulence Database (JHTDB) [4], pro-64

vide public access via Web services to large datasets in a database cluster. E�cient and remote65

Visualization and analysis capabilities are crucially important for understanding such large-scale66

simulated datasets, to gain the desired value and scientific insight from the available data.67

Compression for reducing bottleneck behavior in systems for data visualization purposes has68

been explored previously. Classic methods, such as Haar wavelets, are used in Computational69

Fluid Dynamics (CFD) for data transmission in Trott et al. [5]. Lippert et al. [6] applied wavelet70

splats, permitting lossy compression, to enable volume rendering of large datasets. Concern-71

ing large-scale and remote data visualization, Guthe et al. [7] proposed the use of hierarchical72

wavelets in a preprocessing step to reduce hardware requirements for volume visualization ap-73

plications. While this technique reduces the cost of visualization on standard PCs, interactive74

data walkthrough leads to rendering times exceeding 1000ms per frame, unless wavelet coe�-75

cients are cached. Woodring et al. [8] used a commercial wavelet standard, Jpeg2000, to perform76

compression over the network. Lakshminarasimhan et al. [9] described a new error-bound, B-77

spline-fitting-based method for lossy data compression and performed a direct comparison with78

wavelets. When comparing the method to traditional Haar and other linear wavelet methods, it has79

been shown to perform rather poorly for data analysis and visualization purposes [1]. Lindstrom et80

al. [10] developed a fixed-rate, near-lossless compression scheme targeting floating-point gridded81

data. While these compression schemes are useful for data storage purposes and transfer over net-82
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works, they do not enable the analysis of data for a band-/frequency-specific analysis, which is of83

great interest in the context of a scale-based analysis of phenomena exhibiting behavior at multiple84

scales. In our framework, we use cubic B-spline wavelets that significantly improve over linear85

wavelets, then only stream the coe�cients required for a specific scale, without decompression.86

This approach supports fast adaptive refinement of coe�cients to improve the level of detail of an87

approximation when requested.88

Several visualization frameworks and systems have been developed over the past years. Ahrens89

et al. [11] devised Paraview, which is the underlying system we used for our e↵orts discussed in90

this paper. Childs et al. [12] developed another system, called Visit. Both systems are built on91

the Visualization Tool Kit (VTK) [13] and provide a most of the commonly used and needed data92

visualization methods. Cedilnik et al. [14] presented several remote visualization schemes and93

implemented them in Paraview. These schemes are based on streaming compressed images and94

geometrical data over a network, but they do not address the problem of processing large amounts95

of data at the location where the data physically reside. In our framework, we compress data at96

the database level and augment existing features of Paraview, including decompression capability97

to represent reduced datasets supporting concurrent users in a single node.98

Finally, [15] provides an overview of visualization of large turbulence datasets, proposing the99

use of a GPU-based wavelet methods for data compression. Local large data can be processed100

quickly on a Desktop client’s GPU by using a bricking scheme that reduces workloads into smaller101

compute blocks. Remote visualization, however, has to contend with the existing server limitations102

as it is not feasible to transfer all the data locally. Additionally, the existing JHTDB framework is103

limited by monetary cost to the usage of headless nodes without a GPU. Our wavelet approach is104

CPU-based by design, and many times does not require a full wavelet computation of the domain.105

If a user requests a subset of a dataset, only that portion is compressed and cached rather than the106

entire domain as does a comparable bricking scheme. Once computed or recalled from cache, we107

can directly visualize the raw, compressed coe�cients without the need of a full decompression108

(reconstruction) of the data. With this process, our approach greatly reduces processing require-109

ments for scientific discovery as it allows multiple users to explore datasets in a single node. The110

bricking scheme proposed in [15] may still be useful for future larger datasets, as they become111
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memory bound.112

Several elegant techniques for the analysis of turbulent CFD datasets were recently developed.113

For example, Roussel et al. [16] discussed the use of biorthogonal (constant) Harten wavelets for114

the extraction of coherent vortices and found that biorthogonal wavelets can cause problems when115

modeling background noise after feature extraction. Laney et al. [17] developed an approach for116

analyzing Rayleigh-Taylor instabilities using the Morse complex and visualizing features based117

on it. Finally, Bremer et al. [18] introduced a method that employs a hierarchical segmenta-118

tion method to analyze and track isosurfaces in time-dependent datasets. While computationally119

expensive for large datasets, the flexibility o↵ered by our framework makes it possible the imple-120

mentation for feature-sets beyond that of the JHTDB, for reduced sets, or for datasets with high121

temporal fidelity.122

3. Background123

In this section, we give an overview of a public database framework and architecture available124

for remote data analysis. This section also introduces the wavelet techniques used for the proposed125

architecture.126

Accurate simulations of turbulent flows require solving all the dynamically relevant scales of127

motions. This technique is usually referred to as direct numerical simulation (DNS). Since tur-128

bulence is a strongly multi-scale phenomenon with a large range of dynamically relevant spatio-129

temporal scales, such computations are restricted to relatively simple flows and require the use130

of the largest supercomputers available. The pace and scale at which such simulations are per-131

formed only continues to increase; consequently, the simulations themselves are restricted to a132

small number of groups worldwide with access to large computational platforms. In addition, the133

large databases generated make the analysis, visualization and sharing of the results extremely134

challenging in their own rights. Even transferring the data resulting from these simulations from135

archive systems to the local scratch for further post processing is becoming very time consum-136

ing. Yet the petabytes of turbulence data, spanning a rapidly increasing range of flows, each with137

many di↵erent parameters, o↵er almost limitless information on many di↵erent aspects of the flow,138

from an infinite mathematically) hierarchy of turbulence moments and their Probability Density139

6



Functions (PDF), spectra, and correlations, to structure-functions, geometrical properties, etc. The140

ability to share such datasets with other groups in the open science community can significantly141

reduce the time to analyze the data (currently measured in years), help the creative process and in-142

crease the pace of discovery and, ultimately, advance our knowledge and ability to model turbulent143

flows.144

3.1. Johns Hopkins Turbulence Database145
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Figure 1: Architecture overview of the JHTDB. Multiple N server nodes create a database cluster to serve K users.

The web services module provides an API where remote users may place requests to the database.

The Johns Hopkins Turbulence Database (JHTDB) is a public database system used for storing146

DNS datasets. Unlike other public databases, JHTDB also provides several remote tools that fa-147

cilitate the analysis and retrieval of turbulence data [4]. The DNS datasets available are: a) forced148

isotropic turbulence, b) incompressible magnetohydrodynamic (MHD) turbulence [3], c) forced,149

fully developed turbulent channel flow [19], and d) homogeneous buoyancy driven turbulence [2].150

The datasets consist of files with the values of the primary variables (e.g. velocity vector com-151

ponents, density, pressure etc.) specified at 10243 spatial points and multiple time-samples (up to152

1024). Planned for the future are datasets as large as 40963. The complete space-time history of153

turbulence is currently accessible to users remotely through an interface that is based on a Web-154
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services model. Users may write and execute analysis programs on their host computers, while the155

programs make calls that request desired parts of the data over the network. Users now are able156

to remotely calculate various statistical data by accessing the 230 Terabytes of DNS data using157

regular platforms such as laptops. Fig. 1 gives a brief overview of the JHTDB architecture used to158

support a database. Data are partitioned spatially and temporally across the cluster and accessed159

through a database access server hosting a Web services module. This module allows for schedul-160

ing and divides user requests to according to the partitioning of the data. Remote users interact161

with the database through SOAP and RESTful web protocols via wrappers in multiple languages162

such as Matlab, Python, C and Fortran.163

The architecture of the database is explained in detail, including descriptions for locally defined164

functions such as di↵erentiation and interpolation, by Li et al. [20]. In this paper, test calculations165

are performed to illustrate the usage of the system and to verify the accuracy of the methods166

in a parallel environment. The database is then used to analyze a dynamical model for small-167

scale intermittency in turbulence to show that these e↵ects di↵er considerably among themselves168

and thus require di↵erent modeling strategies in Lagrangian models of velocity increments and169

intermittency.170

Although a variety of remote analysis tools are publicly available through this cluster, there171

is currently no support for scalable remote visualization. In addition, the tools we have added to172

enable such support can also be used for novel turbulence analysis, including scale decomposition173

and coherent feature extraction.174

3.2. B-splines and Wavelets175

Wavelets are the generalization of the Fourier transform by using bases that represent both176

location and spatial frequency [21]. Previously, Farge [22] performed an initial analysis on the use177

of wavelets, for turbulence to characterize coherent and incoherent flow parts.178

In a more recent e↵ort by Pulido et al. [1], several multi-resolution representation methods179

were compared, including higher-order B-spline wavelets, for their ability to capture a broad range180

of quantities pertaining to the turbulence structure with a reduced set of coe�cients. Biorthogonal181

B-spline wavelets have compact support and the added advantage that their bases functions can be182

8



specified analytically. The wavelets used in this analysis are mostly second-generation wavelets in183

implementation [23].184

After a detailed analysis of multiple wavelets, Pulido et al. [1] showed that the higher-order185

B-spline families consistently ranked amongst the top for the metrics considered. Wavelets of186

lower-order (first, second) were not able to represent an original or derivative signal well and a187

wavelet of too high-order (sixth, seventh) introduced oscillations into the data. Based on this work,188

we selected cubic B-spline wavelets due to their overall very good performance for compression189

and analysis. By considering a sinusoidal signal instead of a typical binary, a wavelet transform is190

able to capture superior directionality of a dataset. Nevertheless, the wavelet framework presented191

in this paper has support for many other wavelet degrees and families such as Daubechies. The192

discrete versions of these signals are used in form of filters as described by [24].193

4. Method194

The ability to e�ciently explore the large datasets stored in the JHTDB require that remote data195

exploration and visualization techniques are supported by proper multi-resolution technology. For196

this purpose, we decided to integrate wavelet methods as a module that is tightly integrated with197

the database cluster itself. Our integrated wavelet module supports the e�cient decomposition198

and reconstruction algorithms needed for the requirements of a remote, real-time-driven data ex-199

ploration framework using long-distance computer networks. Our wavelet implementation further200

supports various ways to e↵ectively select and combine those coe�cients of a wavelet decompo-201

sition that enable data-specific and user-specific reconstruction of data, emphasizing, for example,202

frequency and band-specific utilization of coe�cients for data analysis. In summary, our coupling203

of wavelet technology and the JHTDB now make it possible to browse massive datasets much204

more e�ciently than before, thereby greatly increasing the pool of scientific users of the JHTDB.205

The following section describes the current and augmented pipeline proposed in this paper. A206

diagram with the high-level structure of the system can be seen in Fig. 2. There are two primary207

augmentations made to the existing pipeline. The first is the addition of wavelet support to the208

database cluster as a computational module. The second is the addition of a new type of node, a209
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visualization node that hosts a visualization server and directly communicates with the database210

cluster.211
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Figure 2: Updated architecture overview for the JHTDB. With wavelet support implemented on both the database

cluster and the analysis node, many concurrent users are able to visualize stored datasets using the JHTDB and a

visualization node with commodity hardware.

4.1. Wavelet Integration212

Wavelet support is added directly to the existing compute capabilities of the JHTDB. Designed213

as a new database cluster’s computational module, wavelet decomposition, reconstruction, and214

coe�cient manipulation capabilities are added to the cluster itself and to the proposed visualization215

module.216

The wavelet CPU implementation is based on the GNU Scientific Library (GSL) [25]. A217

large number of modifications were made to the open source library. We enabled support for 3D218

wavelet decomposition, higher-order B-spline basis functions, border e↵ects, support for odd and219

non-power-of-two-resolution datasets, and parallel computation. Since the wavelets available in220

the GSL are discrete, filter-based, it is possible to consider additional discrete wavelets to be added221

to existing ones.222
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A wavelet operation (decomposition) is typically carried out when a dataset is first requested,223

prompting the computation of the wavelet coe�cients of the entire dataset. Coe�cients are cached224

for future requests of the same dataset. Once the coe�cients are computed, there are several225

distinct methods for manipulating the coe�cients involving the selection of specific or a series of226

coe�cients. This selection is typically known as hard thresholding. Unnecessary coe�cients do227

not need to be sent over the network. The thresholding process is a linear operation that can be228

performed e�ciently. Several thresholding methods exist that allow a user to construct and explore229

a reconstruction, or a specific feature-set of a large dataset. Some of these methods are included230

as available options and described below.231

A key benefit of using wavelets for data reduction rather than sampling data at lower resolutions232

is their ability to refine lower-resolution data representations into higher quality with low e↵ort.233

The first and default method of coe�cient selection involves the preservation of coe�cients up to234

a certain scale. When supporting many concurrent users accessing data and performing analysis235

over a network, this method is used to reduce bandwidth to the visualization node and memory236

requirements. This selection results in data compressed up to several resolutions at varying quality237

levels, where larger-scale, dominant features are preserved at the loss of small-scale features. As238

an example, a 10243 grid dataset can be decomposed into nine resolutions/scales, where scale one239

contains the coe�cients with the smallest (finest) features and scale nine the largest (strongest)240

features. In the scenario where few users are present, only the missing decomposition scales will241

be streamed to improve the data quality rather than having to resample the entire dataset again at a242

resolution closer to the original. Including all scales will result in a lossless reconstruction of the243

original dataset. This thresholding scheme is tested in Sections 5.1 , 5.2 and 5.3.244

The second approach to coe�cient selection is the isolation of specific bands, opposed to the245

accumulation, in order to extract structures that may exist in specific scales. This analysis-based246

approach that isolates structures by selecting specific scales is explored in Section 5.5. When co-247

e�cients are requested at a specific scale, all coe�cients excluding the pure lowpass subset are248

computed and transmitted to the user through the web services or visualization nodes. The advan-249

tage of using this method for scale-based analysis is the added capability of detecting features that250

might not exist in other scales.251
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The third and more costly thresholding method sorts all wavelet coe�cients by magnitude. A252

percentage of this ordered set of coe�cients can be requested by the user for a reconstruction.253

Coherent and incoherent feature extraction is also possible through this method and is discussed254

in [1, 16]. A parallel implementation of the quick sort sorting algorithm was added to the GSL to255

allow this type of analysis.256

A companion reconstruction framework is made available to the analysis node in order to cor-257

rectly refine additional coe�cients for data visualization. In practice, reconstruction is not required258

on the visualization node, further reducing the latency. With their spatial coherence to the data, co-259

e�cients themselves can be visualized after a simple scaling operation. Data reduction is achieved260

by utilizing subsets of coe�cients smaller than the size of a full-resolution dataset. Bandwidth and261

compute are therefore reduced between the communication pipeline of the database cluster and vi-262

sualization node allowing the node to exist outside of the cluster.263

When a user makes a request to the database cluster, coe�cients not in cache or stored already264

are computed through an on-the-fly data decomposition. After being cached, the coe�cients are265

transmitted to the visualization node where they are used to perform reconstruction on-the-fly if266

refinement is needed or used directly for visualization.267

4.2. Visualization Node268

The primary visualization tool used in this node is Paraview [26]. Paraview is an open source269

visualization software that can be adapted to many architectures and visualization applications.270

The extensive feature list Paraview provides, including visualization and analysis tools, makes it271

an ideal companion for a large database cluster.272

Modifications were made to the Paraview source to allow communication with the JHTDB273

to access both raw data or derived wavelet coe�cients from the cluster. Natively, the tool does274

not support data-level wavelet compression, therefore, our heavily customized GSL was adapted275

to provide Paraview with full support. The purpose of data-level compression is to significantly276

reduce the cost of analysis for large datasets while preserving relevant features and allowing a277

large number of concurrent users per visualization node. As an example, a full resolution 10243
278

grid at floating-point precision can consume a minimum of 4 gigabytes (GB) of RAM for a simple279
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full-scale analysis. By using wavelet compression at the first scale, the memory requirement can280

be directly reduced by 1/8th in size without significant loss of fidelity. On a commodity-based281

visualization node with 64GB of RAM, a 10 concurrent-user scenario can immediately be turned282

into one supporting 100+ concurrent users, and beyond with additional compression.283

The data analysis tools provided by Paraview also expand the computational capabilities of284

the JHTDB. A framework for user-driven analysis removes the restriction of only conforming to285

the functions provided by the database cluster. Instead, a user can use a large set of mathematical286

operators through Paraview to manipulate data remotely.287

Figure 3: Remote visualization web interface (left) and sample UI elements (center,right). A sample view of the

Paraview Web interface shows how many of the core paraview features are made available over the web. As an

example, a large turbulence dataset (left) can be volume visualized and made viewable on any light-weight web-

browser client.

Besides its analysis tools, Paraview provides several remote visualization capabilities through a288

direct client-server connection or a web interface. The web module (Paraview Web) allows remote289

users to access database datasets through a web browser in real-time. Paraview has compression290

capabilities already implemented at the image rendering level as well as some support for geometry291

processing [14]. Thus, it is possible to render data on the server itself and transmit a lower-quality292

image to a user in low-bandwidth remote settings. Interactive rendering framerates between a293

user’s local web client and the remote visualization server are mainly limited by their physical294

13



distance, impacting round-trip time over the Internet. If a dataset is small enough, with wavelet295

compression enabled, geometry data needed to render iso-surfaces, for example, can be transmitted296

directly to a remote user. Geometry can be rendered locally in our web client with a modern web297

browser that supports WebGL for higher framerates. As seen in Fig. 3, we support an interface298

that is similar to that of a standard Paraview desktop interface. A subset of the most frequently299

used Paraview tools that can be generalized to most datasets is available over the web, reducing300

time and resources needed to analyze and visualize large datasets in spatial and temporal space.301

We view the following operators as the most commonly used: Calculator, Contour, Clip, Slice,302

Volume, Threshold, Extract subset, Glyph, and Stream tracer.303

Our web interface significantly reduces the overall e↵ort required to perform large-scale data304

analysis when no additional software must be installed by a user. This also reduces the entry305

compute cost for performing data analysis since light-weight mobile devices may also be used.306

The design trade-o↵ for remote rendering versus sending entire datasets to a local client becomes307

even more significant as much larger datasets (40963) are planned to be made available for the308

JHTDB.309

5. Tests and Discussion310

In this section we provide results when benchmarking the architectural improvements pre-311

sented in this paper with two datasets available in the database cluster. All datasets are split312

spatially between eight database nodes and a single visualization node is used. The first dataset313

is a DNS of homogeneous buoyancy driven turbulence (HBDT) [2]. The second dataset is a DNS314

of forced magnetohydrodynamic turbulence (FMHDT) [3]. Both datasets consist of 1024 files315

corresponding to di↵erent time instances. Each file stores density, three velocity components,316

and pressure for the first dataset and three velocity components, pressure, three magnetic field317

and magnetic vector potential components for the second dataset at 10243 grid points. E�ciency318

is determined for computation overhead, bandwidth savings, and total latency from a complete319

analysis pipeline for single and multiple time steps. Quality is examined for di↵erent scales and320

resolution levels. Finally, we provide an example of scale-based analysis through the use of the321

added wavelet framework.322
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5.1. E�ciency323

We have also performed a series of benchmarks for a scenario where a single 10243 dataset324

is accessed and visualized by a single user at multiple scales. The visualization node hardware325

consists of a dual-socket, Intel Xeon E5440 at 2.83 GHz with 32GB of system RAM. The node326

is headless and does not have a GPU, therefore rendering is done on the CPU using Windows’327

Advanced Rasterization Platform included with Windows Server Datacenter edition.328

Our benchmark simulates a scenario where data are decomposed by the database compute329

module on-the-fly, cached, and reconstructed if necessary on a visualization node. This bench-330

mark executes a fixed analysis pipeline that generates volume and isosurface visualizations. These331

isosurfaces are computed at the mean of the data range. As of result, the number of possible332

concurrent users can be estimated by both time and memory requirements.333

Fig 4 contains performance timings and memory usage metrics of the execution of this analysis334

pipeline on an original quality DNS dataset (HBDT) and at reduced resolution using wavelets.335

Compute times are based on an average of 3 runs. Visualization times are based on a single336

threaded versions of the framework with no GPU, where 1 thread is used per user.337

Each decomposed scale is represented by the spatial size of the coarse coe�cients to the power338

of 3. The scales considered here range from scale 1 using 5123 coe�cients (finest) to scale 3339

using 1283 coe�cients (coarsest) and beyond. These sizes are indicative of the amount of data340

manipulation that has to be done during analysis. Data retrieval times are measured considering341

the initial (cache-miss) request for a dataset. A wavelet decomposition is measured by first being342

computed on the full scale data and only served up to the requested level. As a caching step,343

we store the data as its scale 2 coe�cient state as seen in Fig. 4. To compute scale 3, we can344

decompose the data down one level incurring a small compute cost or if scale 1, we can reconstruct345

the coe�cients up one level.346

As observed, data retrieval times di↵er significantly due to the varying sizes of compression347

levels and number of coe�cients. During the initial scales of a wavelet decomposition, compute348

times are relatively larger due to the large amount of fine coe�cients computed. Additional levels349

are subsequently computed much quicker as data are recursively reduced. Although decomposition350

times are significant when computing coe�cients on-the-fly, the total time is still less, nearly351
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Figure 4: Benchmark. Intermediate and total time spent from request to visualization of a full resolution, 10243

dataset. Wavelet decomposition is performed on-the-fly before any caching is done (top) and once cached, only

coe�cients are served (bottom).

matching the data retrieval time of an entire dataset alone. By enabling compression, there still352

exists a net decrease in latency from initial query to final image. By reducing the amount of spatial353

data to process, the performance of downstream analysis operators significantly increases.354

Unfortunately, due to storage limitations, a separate database of wavelet coe�cients cannot355

be made available in parallel with the existing raw data. In the ideal case, a database of wavelet356

coe�cients at all scales equal in size with the current datasets could enable minimal times for357

the features presented in this work. As compression still provides other benefits, we compute358

coe�cients on-the-fly and use limited local storage as cache.359

A data analysis pipeline can put significant burden on a system depending on the size of the360

dataset. As seen in Fig. 5, when considering the visualization pipeline, a high temporary memory361
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Figure 5: Memory Benchmark. Usage on the visualization node performing an analysis pipeline for a 10243 dataset.

Analysis is done at several compression levels.

requirement was observed when computing isosurfaces and increased with the size of the dataset.362

During the isosurface computation for a 10243 data frame, the amount of RAM neared the 32GB363

virtual limit for the visualization node. If surpassed, this may cause the analysis node to incur a364

very high time penalty cost as the system would need to swap data out of RAM to the hard disk.365

The benefits of data analysis on spatially smaller representations of the data are both a reduction366

in compute cost and memory requirements, those of which significantly impact the total time to367

perform this analysis pipeline.368

As more scales are requested, the wavelet machinery must perform more steps and decompose369

the data further, therefore increasing the decomposition compute cost. In addition to the reduced370

total compute cost, a larger amount of concurrent users can be supported as a direct result of cubic371

B-spline wavelet compression. Based on maximums in Fig. 5, a memory-bound node to 32GB372

can support many concurrent users: <200 users at level 3, <75 users at level 2, <14 users at level373

1, and a single user with no compression.374

Further improvements are made by storing coe�cient representations of the original data,375

e↵ectively nullifing the on-the-fly wavelet decomposition computation time. The result of this376

implementation can reduce the total request time down to 2.9 seconds if we consider a Scale 3377

visualization of the data. Overall, the small initial cost of computing wavelet coe�cients can be378
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greatly o↵set by the time saved during the transmission and analysis phase of the dataset. By379

incorporating wavelets, inexpensive commodity hardware can be used to augment the turbulence380

database cluster.381

5.2. Quality382

Performing wavelet compression up to certain scales does not always incur obvious costs in383

quality. When a dataset is reconstructed up to a certain scale, the coe�cients used for the recon-384

struction include those below it. As an example, reconstructing scale 3 will also include those385

in 4, 5,...,Nth scale where N is the largest (coarsest) scale possible. Peak signal-to-noise ratio386

(PSNR) is compared for various scales in Fig. 6 and Mean square error (MSE) in Fig. 7. As387

expected, the inclusion of more scales produces more accurate representations for each dataset.388

Primary quantities such as density and horizontal magnetic field are more sensitive to truncation389

errors over the whole range of scales, while the reconstruction quality for derived quantities, such390

as vorticity, stays relatively constant over the intermediate scales. This is expected since derived391

quantities depend more on the small scales. Nevertheless, the error levels are relatively small for392

all these quantities beyond scale 3. The compact support of cubic B-spline wavelets and thus,393

strong localization properties, allows them to represent turbulence data relatively accurately with394

a significantly reduced number of coe�cients.395

A qualitative analysis is performed on a subset of the compressed field using a volume visu-396

alization in Fig. 8. The first scale in compression shows very little changes to the HBDT scalar397

density field. At the initial scale, flow characteristics are preserved well at the data level and visual398

fidelity is hardly a↵ected. A more pronounced e↵ect begins to form after the second compression399

scale where oscillations start to form around the selected structure. This scale already represents400

a 1/64th resolution size of the original. While the third scale represents a very large reduction in401

size, overall features are still preserved but oscillations near the edges begin to intensify.402

The preservation of smooth surfaces and localized features becomes important for preserving403

derivatives quantities. These characteristics are explored with comparisons of derived isosurfaces404

in Fig. 9. As with the previous analysis on the HBDT scalar density field, the first two compression405

scales preserve the overall smoothness and local features of turbulence data. Beyond Scale 3, the406
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Figure 6: PSNR up-to each scale. Higher values are better.

preservation of interactions between small, localized features can no longer be guaranteed and407

data artifacts such as ripples begin to appear along isosurfaces. Alternatively, in some turbulence408

applications the interactions between large-scale features are of interest. For this type of analysis,409

the large-scale interactions inside the compressed flow are still well represented with even coarser410

decompositions than Scale 3.411

5.3. Temporal Analysis412

A direct benefit of integrating our wavelet framework with a database is the reduction in e↵ort413

to perform temporal analysis. Although neither HBDT nor FMHDT datasets are spatially very414

large at a grid resolution of 10243 compared to the largest simulations performed to date, they415

span a time interval represented by at least 1000 time frames. A temporal benchmark has been416

performed on a shared resources server visualizing 60 time steps of a 5123 HBDT density subset.417

As seen in Fig. 10, the summation of each time step includes the cost of requesting a new dataset418

from the database, wavelet decomposition and reconstruction (for Scale 2), and volume visualiza-419

tion. In addition, cached benchmarks for both datasets are available by using the databases native420

caching functionality. As observed, there is a significant improvement in latency when considering421

a cached version of the data, but more importantly a compressed Scale 2 equivalent of a dataset.422
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Figure 7: MSE up-to each scale. Lower values are better.

Figure 8: Volume visualization of HBDT density. A close-up of a feature to show the compression characteristics of

cubic B-spline wavelets at each data level. From left to right: original, scale 1, scale 2, scale 3. Visible di↵erences are

minimal between the original and scale 1. Scale 2 begins to exhibit lossy features and by scale 3, most of the features

begin to lose their finer structures around the edges.

The summation of time to visualize 60 time steps is 3024 secs (1370 secs cached) for the non-423

compressed data, and 1019 secs (191 secs cached) for a Scale 2 compression. The visualization424

results can be seen in Fig. 11. Qualitatively, HBDT volume density can be visualized at a reduced425

scale with no significant compromise on the final visualization.426
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Figure 9: Isosurface visualization of HBDT density. A close-up of a feature to show the compression characteristics of

cubic B-spline wavelets at the data level. From left to right: original, scale 1, scale 2, scale 3. Structures are generally

well preserved up to Scale 2, where lossy features begin to appear. At scale 3, most of the features begin to lose their

finer structures around the edges of isosurfaces appearing as artifacts.

Figure 10: Temporal visualization benchmark. Volume visualization for 60 timesteps was performed for a 5123 subset,

and a Scale 2 (2563 equivalent) wavelet. Total visualization times are 3024s (1370s cached) for non-compressed, and

1019s (191s cached) for Scale 2 compression.
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Figure 11: Temporal volume visualization of HBDT density. Wavelet integration and caching capabilities make it

possible to quickly visualize multiple datasets to improve temporal understanding of a turbulence dataset. These four

time steps represent frames 60,75,90,105 out of the 1024 total frames.

5.4. Scale-based Wavelet Analysis427

This section provides an example of scale-based analysis through the use of the added wavelet428

framework. Scales are extracted from a dataset by isolating the coe�cients extracted in each429

individual decomposition step. Compared to the previous section where we preserve coe�cients430

up-to a specific scale, this section involves looking at each scale individually.431

Fig. 12 shows the two datasets with two basic quantities specific to each dataset decomposed432

into several scales. Each scale contains amounts of positive (red) and negative (blue) quantity cap-433

tured per scale, where the sum of all individual scales results in the original. Three-dimensional434

turbulence is a strongly multi-scale phenomenon, with local and non-local interactions among the435

various scales. When the range of scales is large enough, which is the case with most practi-436

cal flows, the energy is transferred from the energetic large scales (where the energy is usually437

deposited) to the smallest scales (where the energy is usually dissipated).438

This ”cascade” of energy paradigm involves a hierarchy of vortex sizes and structure shapes.439

Unfortunately, the usual decompositions in Fourier space are non-local in physical space and spe-440

cific physical structures can not be easily associated with certain scales.441

5.5. Significance of wavelet analysis442

Multi-resolution geometric representation methods have emerged as more appropriate tools443

for scale decomposition and better connection with flow features. For example, using the curvelet444
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Figure 12: Turbulence visualization by scale. Homogeneous Buoyancy Driven Turbulence (Left) and Forced

Magneto-Hydrodynamic turbulence (Right) are decomposed into several scales exhibiting multi-scale phenomena.

Globular (blob) structures can be observed at the coarser (higher) scales (circles), while tube structures (squares)

and sheet-like structures (hexagons) emerge out of finer scales. By adding all scales, the original dataset can be

reconstructed losslessly. 23



transform, [27] [28] have shown a geometrical progression from blobs through tubes to sheet-like445

structures with decreasing physical scale in a simple forced turbulence flow. Such knowledge can446

be useful to understand and characterize the cascade process and also to inform physics-based447

subgrid models used in a↵ordable coarse mesh computations.448

The flows exemplified here are more complex than those used in the past for this type of anal-449

ysis. In addition, to demonstrate the remote analysis of large datasets, we are using B-splines450

wavelets, which have been scarcely used before for such analyses, but can have distinct advan-451

tages [1].452

The HBDT flow represents the mixing between initially segregated fluids with di↵erent den-453

sities as they start moving under the influence of gravity (or external acceleration). The fluids are454

initially at rest and organized in pure-fluid random patches. As the buoyancy force starts mov-455

ing the two fluids, the velocities increase in magnitude, while hydrodynamic instabilities, such as456

Kelvin-Helmholtz instability, start to generate vortical motions at the interfaces between the fluid457

patches. Thus, unlike previous applications of multi-resolution representation methods where the458

scalars were passively advected by the velocity field, in this case the density represents an active459

scalar, which feeds back into the velocity evolution. The full field showed in Fig. 12, first col-460

umn, top, is taken at the time when significant mixing and vorticity generation has already been461

produced, while both light (blue) and heavy (red) pure fluids are still present. Moving downwards462

along the first column in Fig. 12, one can look at the density field structure from small to large463

scales464

At the level of the largest scales, the density exhibits a globular (blob) structure, with no465

specific orientation bias. However, at the next two finer scales, the physical structure shows the466

emergence of tubes preferentially oriented in the direction of gravity. As the scales become finer,467

the tubes also become narrower and lose the vertical orientation. Finally, at the smallest scales, the468

tubes are almost completely vanished and replaced with sheet-like structures. However, unlike the469

passive scale case studied before, these structures are more di�cult to identify, as globular (blob)470

structures are still present and dominate the range of values shown in the legend. While the general471

picture encountered before in the passive scalar case of blobs to tubes and to sheets is still present472

approximately, we note that the presence of blobs at the finest scale is consistent with the mixing473
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asymmetry identified in the variable density case, with the pure heavy fluid mixing slower than474

the pure light fluid [29, 30, 31]. Thus, these results show that the current subgrid models based475

on passive scalar considerations need to be revisited for variable density flows to account for the476

presence of unmixed (or less mixed) fluid blob structures down to the smallest scales.477

A relatively di↵erent behavior is observed in the scale decomposition of the horizontal vorticity478

for the HBDT flow. Since the vorticity is primarily generated at the interface between the fluid479

blobs by fluid instabilities, there is a good correlation between density and vortical fields in the480

full signal. Nevertheless, the tube like structure is less apparent at intermediate scales, as well as481

alignment with horizontal or vertical directions. The alignment is mostly with the interfaces of the482

fluid patches. This, again, makes modeling of such a flow more complicated, since the subgrid483

models for the velocity field need to account for the structure of the active scalar (density) field.484

The FMHDT flow [3], is also more complicated than previous attempts to characterize turbu-485

lence using multi-resolution representation methods. In this case, again, there is a full feed-back486

between the velocity and magnetic fields. Using the previous representation, we decompose the487

horizontal magnetic field seen as an active scalar. At large and intermediate scales, there is a good488

correlation between the vorticity and magnetic fields which tend to consist of structures elongated489

in the x-direction. These structures become narrower and sheet-like at smaller scales, where most490

of the correlation between the two fields is no longer present. However, even at the smallest491

scales, there are regions of intense vorticity and magnetic field which are relatively well correlated492

between the two fields, while the rest of the structures remain poorly correlated. Again, this under-493

lies the di�culty in understanding the cascade process and constructing subgrid models for such494

strongly coupled flows.495

6. Conclusion496

We have introduced a new, improved system architecture for a public database cluster of large497

turbulence datasets. Until recently, the visualization and analysis of such datasets has been re-498

stricted to a few groups worldwide with access to large supercomputers. The public Johns Hop-499

kins Turbulence database (JHTDB) simplifies the access to multi-Terabyte turbulence datasets and500

facilitates the computation of statistics and extraction of features through the use of commodity501
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hardware. Visualization support has been added for this database and wavelet analysis tools have502

been implemented to expand the capabilities for this database cluster. Finally, wavelet compres-503

sion has been introduced at the data-level to reduce access costs, reduce bandwidth and improve504

latency between database components. This component also reduced the memory footprint of505

datasets required for data analysis, e↵ectively adding support for many concurrent users. The pa-506

per demonstrates the new tools both for enabling remote visualization and turbulence data analysis507

for two of the datasets hosted by JHTDB. These tools should help to extend the reach and analysis508

power and ultimately the goals of such public databases.509

For future work, we would like to move the visualization node away from the JHTDB and into510

the cloud through Amazon Web Services (AWS). Currently, the user-interaction latency is limited511

by the physical distance between a user and the location of the JHTDB. In this paper, We’ve re-512

duced the amount of data needed to visualize so it may be feasible to make transfers external to513

the visualization node from the database. Additionally, if we dynamically and transparently allo-514

cate nodes for a user on AWS, and select a location that is physically the closest, user-interaction515

latency would be significantly reduced.516
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