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This paper compares the effectiveness of various multi-resolution geometric representation methods, such

as B-spline, Daubechies, Coiflet and Dual-tree wavelets, curvelets and surfacelets, to capture the structure of

fully developed turbulence using a truncated set of coefficients. The turbulence dataset is obtained from a

Direct Numerical Simulation of buoyancy driven turbulence on a 5123 mesh size, with an Atwood number,

A = 0.05,and turbulent Reynolds number, Ret = 1800,and the methods are tested against quantities pertain-

ing to both velocities and active scalar (density) fields and their derivatives, spectra, and the properties of

constant density surfaces. The comparisons between the algorithms are given in terms of performance, accu-

racy, and compression properties. The results should provide useful information for multi-resolution analysis

of turbulence, coherent feature extraction, compression for large datasets handling, as well as simulations al-

gorithms based on multi-resolution methods. The final section provides recommendations for best decompo-

sition algorithms based on several metrics related to computational efficiency and preservation of turbulence

properties using a reduced set of coefficients.

© 2015 Elsevier Ltd. All rights reserved.
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. Introduction

Most datasets encountered in physical applications, similar to

ost natural images, present lower dimensional structures whose

etection, extraction, and characterization are active areas of re-

earch. The search for more efficient algorithms to detect and ma-

ipulate such structures has led to the development of a multitude

f multi-resolution geometric representations, such as curvelet and

urfacelet transforms. The curvelet [1] and surfacelet [2] transforms

erform spatial partitioning in Fourier space at multiple resolutions

y creating bands using discrete frequency tiling that store localized

irectional coefficients.

One area which has seen significant interest in the application

f such methods is fluid turbulence. While turbulence is a strongly

ulti-scale phenomenon with a large range of dynamically rele-

ant spatio-temporal scales, coherent structures are almost always

resent, due to initial or boundary conditions, injection mechanisms,

r arising from internal dynamics. The characterization of these

tructures, which interact nonlinearly as they are advected by the

ackground flow and significantly alter the local topology, is one of
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he fundamental open questions in the study of turbulence. One of

he earliest applications of compression algorithms to turbulence is

one in Ref. [3]. The focus was on comparing the coherent vortex

imulation (CVS) decomposition based on a orthogonal wavelet ba-

is with the Proper Orthogonal Decomposition or Fourier filtering, as

pplied to a forced homogeneous isotropic turbulence Direct Numer-

cal Simulations (DNS) dataset. It is shown that CVS filtering, which is

ocal in both physical and spectral spaces, can separate the coherent

ortex tubes from the incoherent background flow. The latter is struc-

ureless, has an equipartition energy spectrum, a Gaussian velocity

robability distribution function (PDF), and an exponential vorticity

DF. On the other hand, the Fourier basis does not extract the coher-

nt vortex tubes cleanly and leaves organized structures in the resid-

al high wavenumber modes whose PDFs are stretched exponentials

or both the velocity and vorticity.

More recently, curvelets have been briefly evaluated by Ma et al.

4] in comparison to the classical wavelet transform. In their work,

ulti-scale geometric analysis is systematically applied to turbulent

ows in two and three dimensions using curvelets. The analysis is

ased on the constrained minimization of a total variation functional

epresenting the difference between the data and its representation

n the curvelet space. Constrained multi-scale minimization results

n a minimum loss of the geometric flow features and the extraction

f the coherent structures with their edges and geometry properly

reserved, which is significant for turbulence modeling. The results

f this work show that curvelets are very effective in edge and geom-

try preservation in turbulence data when compared to traditional
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wavelets under a specific series of tests and wavelet coefficient num-

bers. One goal of the present paper is to expand those tests to the full

range of coefficients for reconstruction of turbulence data as well as

include tests for quantities dependent on an active scalar field.

These methods have been primarily applied to the quantities di-

rectly related to the velocity fields although, recently, the curvelet

transform has been used to examine the multi-scale structure of

scalar fields, such as mass concentration [5]. These fields are, in gen-

eral, rougher than the advecting velocity and can present unmixed

patches in many practical applications (e.g. non-premixed combus-

tion). Thus, representation methods which are designed to capture

surfaces or edges, such as surfacelets or curvelets, appear naturally

more suited to capture these fields. For example, Ref. [5] introduces

a curvelet-based multi-scale methodology for the study of the non-

local geometry of eddy structures in turbulence data. The dataset is

from a 5123 DNS of passive scalar mixing in isotropic turbulence and

the curvelet transform is used to extract, characterize and classify

structures pertaining to the passive scalar. The classification is based

on differential-geometry properties, such as shape index, curvedness,

and stretching parameter, which define the geometrical signature of

the surfaces of constant scalar value. These properties are discussed

with respect to their relation to the dynamical behavior of passive

scalar stirring and mixing. Another goal of the present paper is to

compare the curvelet transform with other representation methods

for their ability to preserve these properties with a reduced set of

coefficients.

Accurate simulations of turbulent flows require solving all the dy-

namically relevant scales of motions. This technique, called DNS (see

above), has been successfully applied to a variety of simple flows,

however most practical flows would require mesh sizes outside the

range of the most powerful supercomputers for the foreseeable fu-

ture. The resolution requirements can be improved, especially in

problems with localized features, by employing an adaptive mesh

strategy. However, such approaches often introduce directional bias

and use lower order discretization methods, which decreases the ac-

curacy. Adaptive mesh strategies based on wavelet decompositions

have been proposed with explicit error control and higher order dis-

cretization schemes [6–8]. While these methods extend the range of

DNS applicability, accurately solving all the flow scales still imposes

severe limitations on the flows which can be simulated.

One of the avenues being explored for simulating, with feasible

meshes, flows with large range of scales, as encountered in most prac-

tical applications, explores coherent/incoherent decompositions al-

lowed by multi-resolution geometric representations [3,4,9,10]. This

approach relies on the ability of such methods to represent the co-

herent part of the flow with a significantly reduced set of coeffi-

cients (e.g. 1−5%of the coefficients to represent the whole flow) and

model the incoherent part using simplifying models (e.g. assume

Gaussian statistics). For such applications, the accuracy and com-

putational efficiency of the algorithms are both important. So far,

only the curvelet, Dual-tree, and orthogonal wavelet transforms have

been used in this context and no comprehensive comparison be-

tween these transforms has been made. Classical large eddy simula-

tion (LES) approaches for computing turbulence represent the flow

on a coarse mesh in either real or spectral spaces and model the

sub-grid contributions. While finding an optimal function set basis

to represent turbulence remains an outstanding open question, the

representation methods discussed in this paper may offer a better

framework for modeling the sub-grid terms in an LES type approach

than spectral or physical space based filters, due to their localiza-

tion in both spectral and real spaces. Here, we rely on this locality

to denote the coherent/incoherent decomposition as applied directly

to the primary variables, as opposed to CVS-type decompositions.

This is along the lines of the SCALES approach [9] and offers easy

generalizations to complex flows and direct connection to LES-type

approaches.
In addition, there is a significant cost associated with the stor-

ge of the data generated by turbulence simulations. Efficient lossy

lgorithms can take advantage of the coherent/incoherent decompo-

itions of the flow field and significantly reduce the archival require-

ents. Data retrieval can be optimized by extracting only the coher-

nt structures in the data for faster data visualization and analysis at

ultiple levels of resolution. By reducing the retrieval and transmis-

ion cost, projects such as the Johns Hopkins Turbulence Database

JHTDB) can be improved by reducing the amount of data processed

nd transmitted to a client [11]. By only sending structures at a reso-

ution relevant for analysis, the reduced cost can allow for real-time

emote data visualization and analysis of large datasets.

The focus of this paper is the comparison of new and exist-

ng methods used in analysis (feature identification, extraction, and

nalysis) and simulations (based on coherent/incoherent decom-

ositions) of turbulence. These methods include second-generation

avelets such as Haar, biorthogonal B-spline, Daubechies, Coiflets,

ual-tree, and newer methods such as curvelets and surfacelets. In

rder to make the comparisons as comprehensive as possible, a flow

as been selected in which the turbulence is accompanied by mix-

ng between initially segregated different density materials (see de-

cription below) which are subjected to a constant acceleration. The

arge scales of the flow are anisotropic and the interfaces between

he two materials become highly corrugated. The methods consid-

red are compared in their ability to capture the structures of both

elocity and density fields. It is hoped that this analysis will help both

he simulations of turbulent flows using multi-resolution geometri-

al representations as well as further the study of turbulence physics

sing such methods.

.1. Direct numerical simulation dataset

The dataset used in this paper is from a DNS of homogeneous

uoyancy driven turbulence on a 5123 periodic grid. The simulation

sed the variable-density version of the petascale CFDNS code [12]

o solve the incompressible Navier–Stokes equations for two misci-

le fluids with different densities, in a triply periodic domain. These

quations are obtained from the fully compressible Navier–Stokes

quations with two species with different molar masses in the limit

→ ∞ (c is the speed of sound) such that the individual densities of

he two fluids remain constant [13–15].

The two fluids are initialized as random blobs, consistent with the

omogeneity assumption. The flow starts from rest, with only a small

mount of dilatational velocity necessary to satisfy the divergence

ondition and turbulence is generated as the two fluids start mov-

ng in opposite directions due to differential buoyancy forces. How-

ver, as the fluids become molecularly mixed, the buoyancy forces

ecrease and at some point the turbulence starts decaying. For com-

arison between the different compression algorithms, density and

elocity fields are used at the time when the turbulent kinetic en-

rgy is maximum. At this time, the turbulent Reynolds number is

et = 1800and the turbulence is fully developed. The rest of the non-

imensional parameters characterizing the flow are Atwood number,

= 0.05,Schmidt number, Sc = 1and Froude number, Fr = 1. A simi-

ar dataset [16], on a 10243mesh, covering the whole range of turbu-

ence evolution, from buoyancy driven increase in turbulent kinetic

nergy to buoyancy mediated turbulence decay, has been recently

dded to the Johns Hopkins Turbulence databases [11].

The rest of the paper is organized as follows. In Section 2, a back-

round is given of the geometric representation methods considered

n this paper. Section 3 summarizes the software used, threshold-

ng techniques, and properties for all of the different methods. The

esting methodologies are described and the results are quantified in

ection 4. Finally, Section 5 presents the conclusions with the rec-

mmendations of the best schemes suited for the representation and
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reservation of a variety of quantities relevant to fully developed tur-

ulence in the presence of an active scalar field.

. Background and methods

Wavelets are the generalization of the Fourier transform by using

ases that represent both location and spatial frequency [17]. A more

undamental background on wavelets can be found in Appendix A.

his section gives a brief overview of each of the representation

ethods used for comparisons. All methods considered in this pa-

er are the discrete versions of their respective continuous signals.

avelets used in this paper are second-generation wavelets in im-

lementation [18].

.1. Orthogonal wavelets and B-spline wavelets

The orthogonal Haar wavelet is the simplest transform and is best

nown for its top hat, piece wise signal and simplistic representation.

hese simple wavelets can decompose a discrete signal into two half

ignals represented by a 0 or 1 per each step as seen in Fig. A.21a in

he Appendix. Due to their simplicity, they are the fastest to com-

ute. Farge [19] performed an initial analysis on the use of wavelets,

ncluding Haar wavelets, to characterize coherent and incoherent

urbulent flow parts.

The orthogonal family of Daubechies wavelets are similar in

onstruction to Haar wavelets but requiring vanishing higher order

oments in the mother signal. Their construction and signals are

escribed in [17] and shown for completeness in Fig. A.21 in the

ppendix. As the Daubechies family increases in order, more distor-

ions are produced in the original mother signal. For our analysis, the

ower order 3rd , 5th, and 7th families of Daubechies wavelets are

onsidered. As one goes to even higher order families of wavelets, the

ider signals may cause overlapping in the analysis and introduce a

oss in quality as it is shown later. Goldstein et al. [9,10] used the 5th

amily of Daubechies wavelets for adaptive eddy simulations.

The orthogonal Coiflet family of wavelets were first proposed by

eylkin et al. [20], then implemented by Daubechies [21] and Tian

t al. [22]. As with Daubechies wavelets, Coiflets require vanishing

oments in the original reconstruction signal. Unlike Daubechies

avelets, Coiflets focus on vanishing moments in their scaling func-

ion in order to further improve the convergence of the original signal.

or this analysis, the first three orders are used: Coiflet-6, Coiflet-12

nd Coiflet-16. Their respective signals can be seen in Fig. A.21 in the

ppendix. Deriaz et al. [23] and Roussel et al. [24] have used Coiflet-

2 for coherent vortex extraction in homogeneous turbulence. Farge

t al. [3] used Coiflets for CVS decomposition to separate coherent

ortex tubes from the incoherent background flow in turbulence.

Biorthogonal B-spline wavelets are the natural extension to the

aar wavelet; similar in usage and implementation but differ in ba-

is functions [25]. B-spline wavelets contain basis functions repre-

enting sinusoidal signals of varying magnitudes. The construction of

oth the decomposition and synthesis filters depend on two control

arameters that select the family order and the number of discrete in-

erpolation points to interpret a continuous wave. At the lowest order,

onstant B-spline wavelets share the same basis function as the Haar

avelets and will therefore refer to this family as Haar wavelets for

he remainder of this paper. The first six families of B-spline wavelets

re considered for this paper: constant (Haar, 1st degree), linear (2nd

egree), quadratic (3rd degree), cubic (4th degree), quartic (5th de-

ree), and quintic (6th degree). Family characteristics are further de-

cribed in Appendix A.1.

Biorthogonal wavelets in their lowest order have had some limited

se in scientific computing. The lack of orthogonality in their higher

rder basis functions and associated computation cost has hindered

heir wider adoption so far. Adding to the slightly higher compute

ost, B-spline wavelets are also not as easily parallelized compared to
rthogonal wavelets. Parallelization is possible by using the second-

eneration construction of wavelets based on a lifting scheme [26].

oussel et al. [24] used biorthogonal (constant) Harten wavelets for

he extraction of coherent vortices and found that the biorthogonal

ature of the wavelets may cause problems in modeling background

oise after extraction. Their results showed an improvement by us-

ng orthogonal Coiflet-12 over Harten wavelets. These results are ex-

ected due to Harten signal being fundamentally similar to the Haar

ignal as part of the constant family of B-spline wavelets, as seen in

ig. A.22b in the Appendix. Thus, an increase in control points does

ot generally produce improvements in reconstruction in contrast to

ncreasing the family order. Nevertheless, while one expects a much

etter performance for higher-order B-spline wavelets, these meth-

ds have yet to be tested extensively for turbulent flows.

For simple applications, orthogonal wavelets have overshadowed

-spline wavelets; however, higher order transforms such as B-

plines may perform better in applications requiring the preservation

f structures. For example, Bertram et al. [27,36] have shown that

-splines do very well in representing smooth surfaces and curved

tructures with a minimal set of coefficients. For the purpose of this

aper, the lack of orthogonality is less important than the better

reservation of various turbulence quantities.

.2. Dual-tree wavelet transform

The Dual-tree complex wavelet transform (DTWT) is an enhance-

ent of the discrete wavelet transform [28]. The DTWT implements

hift invariance and directionality in multiple dimensions. The DTWT

erforms two discrete wavelet transform operations to construct a

ree-like structure. Two paths are branched off, each representing the

eal and imaginary components of the transform. The real component

s utilized to represent the majority of the energy in a dataset where

he imaginary component captures small-scale details. The DTWT ad-

resses issues present in real wavelets, those being oscillations, shift

ariance, aliasing, and lack of directionality. The redundancy of hav-

ng two branches provides additional information for analysis, ap-

roximate shift-invariance, and a perfect signal reconstruction unlike

he discrete wavelet transform. The DTWT contains filters designed

o represent many properties, such as approximate half-sample de-

ays, orthogonal or bi-orthogonal signals, finite support, vanishing

oments/good stop-band, and linear-phase filters [29]. The filters

onsidered in this paper include the Farras filter for the initial scale,

nd Kingsman’s Q-shift filter for the subsequent scales. The DTWT

as been extensively used by Nguyen et al. [30,31] for signal filtering

n Galerkin methods.

.3. Curvelets

The curvelet transform is a filter-based wave-signal decomposi-

ion algorithm that is designed to represent signals by their edges [1].

urvelets are a non-adaptive method for multi-scale signal represen-

ation. Curvelets are derived from ridgelets, which are linear features

hat represent different lengths with respect to scale in different po-

itions and as many orientations as can be defined for a dataset. Fig. 1

emonstrates the frequency tiling for the 2D and 3D discrete trans-

orm, the latter being used for this paper. The frequency tiling is de-

ned in Fourier space, where certain ranges of Fourier coefficients are

efined as the directional components of the curvelet transform. The

urvelet transform extends the bi-directionality of wavelets to mul-

iple directions where basis functions are localized to each direction.

ithin each direction, the degree of localization varies per scale al-

owing multi-resolution extraction of signals.

Due to the large number of orientations, positions and scales

vailable, the computation of this transform is expensive com-

ared to any of the simpler wavelets. The result of a decomposition
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a b

Fig. 1. Discrete Curvelet. The continuous curvelet transform is discretized in Fourier space for each dimension ω. Directional wedges are darkened in both figures where (a) 2-D

frequency tiling is performed along with (b) 3-D frequency tiling. Figure is reproduced from [1].
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produces a large number of complex coefficients where their ampli-

tudes refer to the underlying structure of the original dataset.

So far, curvelets have not been proven to have an orthogonal basis

function. The discrete implementation aims to decompose a dataset

based on the described band scheme and sub-components. For 3D

datasets, this scheme introduces modest levels of data redundancy

in order to properly encode directional/angular data. One of the ma-

jor incentives to consider curvelets is their ability to express orien-

tation versus its predecessors. Although curvelets have proven to be

superior in the field of 2D image processing, similar areas have not

been fully explored in 3D turbulence. Directional structures embed-

ded in the velocity gradient tensor or related to constant active scalar

surfaces present in 3D turbulent flows may lend themselves in struc-

ture and orientation to the curvelet transform. Opposite to wavelets,

curvelets take a bottom-up approach in extracting coefficients. The

largest, coarsest coefficients are first extracted in the first bands of the

decomposition and the smallest, finest coefficients are in the highest

bands. Curvelets have been used for geometric analysis of turbulent

data by Ma et al. [4] and Bermejo-Moreno and Pullin [5,34].

2.4. Surfacelets

The surfacelet transform uses a combination of directional filter

banks and contourlets in order to represent signal singularities that

lie on smooth surfaces. In order to analyze multi-dimensional signals

for multiple scales and directions, the directional filter bank (DFB)

was proposed by Bamberger and Smith for 2-D signals [32]. The DFB

is a tree-structured decomposition that creates 2k sub-bands with
Fig. 2. Discrete Surfacelet. Surfacelet frequency tiling of the N-dimensional filter bank (NDF

numbered angular direction. (b) Discrete 3D tiling highlighting a single angular direction. Fig
irectional partitioning as in Fig. 2(a). The value k is defined with

espect to the number of directions to be extracted. Do and Vetterli

ater constructed contourlets by combining the DFB with a Laplacian

yramid structure [33].

Previously restricted to 2D, these directional filter banks were

xtended into higher dimensions creating the N-dimensional direc-

ional filter bank (NDFB) by Lu and Do [2]. The surfacelet transform

ombines the extension of contourlets to 3-D space and the NDFB

n order to represent surface-like singularities in multidimensional

ata. The NDFB uses a frequency partitioning scheme that resembles

ectangular-based pyramids radiating out from the origin in different

irections and multiple tiles as seen in Fig. 2(b). Similar to curvelets,

he surfacelet partitioning is defined in Fourier space. Each direction

s represented by a number as seen in Fig. 2(a) within Fourier space.

he inclusion of higher dimension filter banks allows surfacelets to

ave the following distinct properties: directional decomposition and

onstruction, angular resolution, perfect reconstruction and small

edundancy [2].

One of the features of surfacelets is the frequency partitioned di-

ectional filter bank with multiple levels in a tree-like structure. As

pposed to curvelets, a single directional signal is spread out across

ts domain requiring the extraction of a lesser number of coefficients.

he introduction of this filter bank allows aliasing to occur for each

and in the frequency domain as opposed to being restricted to alias-

ree bands in curvelets. Due to the alias-free restriction, curvelets may

equire much more bands and coefficients to capture certain frequen-

ies. By utilizing the tree-structured NDFB, aliasing can be removed

n surfacelets by combining multiple levels and overall producing a
B) in Fourier space bounded by π on each dimension ω. (a) Discrete 2D tiling for each

ure is reproduced from [2].
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ess redundant extraction of coefficients compared to curvelets. The

urfacelet transform has not been previously tested in the context of

urbulence. The ability of identifying and preserving rough surfaces

ould make this transform well suited for representing material fields

n turbulent flow datasets.

.4.1. Orthogonality

Orthogonality is an attractive feature in mathematical transforms

ince it infers energy preservation. The wavelet families that are fully

rthogonal in this analysis are the Haar, Daubechies and Coiflet fam-

lies. The B-spline wavelets lose orthogonality due to their signal

nd become biorthogonal. Dual-tree wavelets contain two biorthog-

nal filter sets with slightly different frequency responses. When

ombined, the two biorthogonal filters can become near orthogo-

al through the use of long filters leading to a higher computation

enalty. Curvelets contain an orthogonal wavelet component during

heir directional, finest-scale decomposition but overall are not or-

hogonal. Candes et al. [1] claim that curvelets behave similar to an

rthogonal decomposition but are unable to prove it. Surfacelets, like

urvelets, are only orthogonal at their lowest directional component

ut not in their entirety. The issue of needing orthogonal wavelets

s not a priority in our analysis since the preservation of turbulence

tructures is prioritized over full preservation of energy. In Ref. [24], it

s stated that a drawback of using non-orthogonal wavelet methods

s a loss in energy. It is shown below that non-orthogonal methods

till preserve a large portion of energy and do better in representing

mooth structures compared to orthogonal methods that lack direc-

ionality support.

.4.2. Complexity and redundancy

Complexities are unknown for higher-order methods such as

urvelets and surfacelets but they are much higher compared to the

ther wavelets. Since they are based on discretizations of continu-

us signals, Haar, B-spline, Daubechies and Coiflet wavelets are of

inear complexity O(N) where N is the total number of points in the

ata. The efficiency of any method can be asserted by observing its

edundancy.

Redundancy represents a combination of computational effort

nd space consumption. Redundancy can also be seen in the num-

er of coefficients extracted and comparable to the ratio between the

otal number of elements in a dataset and the number of coefficients

xtracted. The number of coefficients extracted and ratios for a sam-

le 5123 dataset are shown in Table 1.

While Haar, B-spline, Daubechies and Coiflet wavelets have a

edundancy near 1, surfacelets and Dual-tree wavelets have a re-

undancy of about 3 to 4 in the 3-D scale. Curvelets also have a
Table 1

Coefficients. Number of extracted coefficients and ratio com-

pared to the total grid points of a 5123 dataset.

Method # of coefficients extracted Ratio

Source grid 134,217,728 1.00

Haar 134,217,728 1.00

Linear B-spline 138,553,029 1.03

Quadratic B-spline 136,538,751 1.02

Cubic B-spline 142,978,473 1.07

Quartic B-spline 145,512,802 1.08

Quintic B-spline 152,517,105 1.14

Daubechies-3 138,553,029 1.03

Daubechies-5 142,978,473 1.07

Daubechies-7 147,717,100 1.10

Coiflet-6 138,553,029 1.03

Coiflet-12 145,512,802 1.08

Coiflet-18 152,517,105 1.14

Dual-Tree 536,870,720 4.00

Surfacelet 459,538,432 3.42

Curvelet 553,095,117 4.12
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edundancy between 4 to 5 if they use wavelets for their finest scale,

r 40 if they use curvelets again. Curvelets and surfacelets are more

edundant due to their native multi-resolution storage components

nd Dual-tree wavelets due to the capture of directional features. Al-

hough this is the case, the curvelet, surfacelet, and Dual-tree wavelet

mplementations with the lowest redundancy are used for the course

f this paper. To formulate a fair comparison, a number of four direc-

ional bands for curvelets is used and matched by surfacelets. For fur-

her tests which measure the amount of the energy acquired per each

and, the number of extracted bands is increased to better measure

he energy distribution per band for both methods. Our redundancy

valuations are similar to those presented in Ref. [2].

.4.3. Coefficients and their storage components

Haar, B-spline, Daubechies and Coiflet wavelets have no specific

ulti-band coefficient extraction scheme and therefore typically de-

ompose N3 coefficients, where N is the grid size in each direction.

he implementations used in this paper support wavelet signal ex-

rapolation on boundary data through symmetrization. This results

n numbers of coefficients slightly larger than a ratio of 1.0 com-

ared to the original dataset but also in much more accurate repre-

entations of the boundaries. Curvelets and surfacelets require multi-

and storage schemes and, therefore, they extract many more coef-

cients, as suggested by their redundancy amounts. Similarly, Dual-

ree wavelets are also very redundant since they also extract four sets

f directional coefficients per scale. Curvelet coefficients are stored

ith respect to their extraction based on their frequency partition-

ng per scale and direction. Surfacelet coefficients are similarly stored

ut differ in partitioning schemes in scale and direction compared to

urvelets. Table 1 shows the number of extracted coefficients in the

ystem for our sample dataset.

. Implementation and thresholding techniques

For this paper, the discrete variants of all of the methods are

tilized. The original software provided by the respective authors

f each method is used, except for B-spline, Daubechies and Coiflet

avelets. Although some methods such as curvelets provide parallel

nd out-of-core methods to increase the computation speed which

ay be beneficial in high performance computing environments, the

ingle threaded implementations of all methods is used for fair com-

ute benchmarks. Haar Wavelets, B-spline, Daubechies and Coiflet

avelets are tested through the GNU Scientific Library (GSL). The GSL

as modified to add support for 3D wavelet decomposition, as well

s expand the variety of wavelets supported. All methods use their

++ variants and are compiled in Windows 7 Professional 64-bit us-

ng Microsoft Visual Studio 2008.

The term thresholding is used to summarize the act of selecting

istinct coefficients, after a decomposition operation, using a cer-

ain criterium. In general, the magnitude of these coefficients for all

ransforms represents the energy for that specific component. Typ-

cal thresholding is done by considering a set of coefficients where

ll values are sorted by magnitude. Once sorted, a subset of coeffi-

ients may be chosen by percentage or by a specific number. Hard

hresholding is defined by the selection of only specific coefficients

nd removing the rest. This approach is utilized for the extent of this

aper when comparing the different representation methods. Hard

hresholding is used either a priori or, after domain-specific knowl-

dge of the data is gained, the coefficients are thresholded for specific

agnitudes above a certain value.

For this paper, the decomposition of the original turbulent fields

nto coherent/incoherent parts is targeted in addition to the ability

f the multi-resolution methods to reproduce turbulence structures

ith a minimal set of coefficients. The ansatz that the coherent, non-

niversal part of the flow can be captured with a reduced set of coeffi-

ients and, thus, does not require the representation and preservation
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a b

Fig. 3. Total kinetic energy and density variance. The ratios of total kinetic energy (a) and density variance from the original data compared to the compressed fields by percentage

of coefficients. Large gains in accuracy occur up to 1% coefficients, when all methods capture more than 98% of the kinetic energy and 96% of the density variance.
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of the highest frequency, smallest coefficients is tested. In representa-

tions and analysis of developed turbulence, the hope is that these co-

efficients correspond to some universal properties (often understood

and describable as white noise).

Specialized optimal values for thresholding are only available for

orthogonal methods and Gaussian noise [3,24]. For example, the

maximum quadratic error, E|| f̂ − f ||2
2,N

/N,between the denoised sig-

nal, f̂ ,and the original signal, f, can be minimized using the minimax

threshold [43]. Here, ||v||2
2,N

denotes the usual l2
N

norm and N is the

resolution. For large data samples, this threshold approaches its up-

per bound defined by ε = (2σ lnN)1/2,where σ is the variance of the

noise. For turbulence data, however, the noise is likely not identically

distributed Gaussian (both spatial correlation and non-Gaussian PDF

are likely present) and the noise level is not known a priori.

In order to compare the methods considered, the hard threshold-

ing of the coefficients based on the percentage of coefficients in the

system is used. The minimax threshold was derived for selected or-

thogonal methods and approximated to be below 0.5% coefficients.

Due to the large differences in the ratio of captured kinetic energy

between methods, a larger percentage amount was selected for a

fairer comparison. As in Ref. [3], comparisons are made after the se-

lection of 3% coefficients. However, unlike CVS type decompositions,

where the vorticity field is decomposed, thresholded and then recon-

structed, while the coherent and incoherent velocity parts are ob-

tained from the corresponding vorticity parts via the Bio-Savart law,

here, the thresholding is performed on the decompositions of the pri-

mary variables, velocity and density. The motivation, described in the

Introduction, follows from the applications considered in the compar-

ison of the methods: LES-type simulations of more general flows than

incompressible single-fluid turbulence and turbulence data compres-

sion for storage, analysis and visualization.

Fig. 3 compares the amounts of kinetic energy and density vari-

ance captured by several of the methods, as a function of the per-

centage of the coefficients. The ratios to the kinetic energy and den-

sity variance in original fields show that, even at low percentage of

coefficients, both quantities can be well captured. Large gains in accu-

racy occur up to 1% coefficients, when all methods capture more than

98% of the kinetic energy and 96% of the density variance; the further

increase in the number of coefficients above 1% results in smaller ac-

curacy gains. Both surfacelets and curvelets are able to more accu-

rately capture the kinetic energy below extreme percentages of 0.4%

coefficients but are then overtaken by other methods. The 3% coef-

ficient mark ensures that the kinetic energy captured exceeds 99%
 P
nd density variance exceeds 98% for all methods. The remaining 97%

oefficients are also computed to estimate the residual coherence or

eparture from a Guassian, white noise.

Hard thresholding at equivalent percentage of coefficients is a

ood indicator of the potential of the different transforms considered

n this paper. For Haar, B-spline, Daubechies and Coiflet wavelets,

hich do not have explicitly defined multi-bands, the coefficients can

e ordered and thresholded without ambiguity. However, in general,

ransforms with multi-band support decompose into a series of coef-

cients for multiple bands. These bands are further subdivided into

larger series of angular directions. These transforms also extract

eal and complex coefficients. These features add additional layers of

omplexity and expand the capabilities of thresholding coefficients.

he same number of bands and number of directions are extracted

hen comparing both surfacelets and curvelets.

More advanced thresholding schemes were tested for these multi-

and methods, including the localization of features by scale and di-

ection. Due to the difference in directional representation of each

ethod, to perform a fair comparison, coefficients are thresholded

y their largest magnitudes as a whole per direction and bands. Al-

hough thresholding coefficients per individual band or per angle

ay be more intuitive in finding specific features, reconstruction

ehavior is more consistently obtained when considering all coeffi-

ients as a whole. Each method has various parameters that change

heir functionality such as number of bands to decompose and vari-

bles related to the behavior of their filters. More modern, higher-

rder methods such as curvelets and surfacelets contain band sys-

ems with multiple levels of redundancy in order to capture angular-

ty based on their filter type.

Due to each method having different filters, basis functions and

ack of complete orthogonality, the relation between coefficients

rom different methods with respect to a given frequency is not triv-

al. Such a relation can be estimated by performing a power spectrum

nalysis in Fourier space, which is also covered in the results section.

. Results and discussion

.1. Test types and definitions

A series of tests are performed that compare the compressed

atasets to the originals for quantities related to the velocity and den-

ity fields. For the velocity field, the comparison metrics used are the

DF of the velocity field itself and of enstrophy (� ≡ |�ω|2), as well
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s enstrophy peak signal-to-noise ratio (PSNR) and mean square er-

or (MSE) and the PDF of the unbiased measure of the state of the

eviatoric strain rate tensor, s∗[39]. For the density field, the com-

arison metrics used are the density PSNR and MSE, density power

pectrum, coherent/incoherent representations of the density field it-

elf and iso-density surface corresponding to the pure light fluid. The

ure light fluid iso-density surface is also characterized using several

ifferential geometry tools: surface area, mean and Gaussian curva-

ures as well as the surface signature.

Previous comparisons related to the coherent/incoherent decom-

ositions of turbulent fields have been restricted to orthogonal and

iorthogonal (Harten) wavelets as applied to velocity and enstrophy

DFs, kinetic energy spectrum and the PDF of helicity and Lamb vec-

or (e.g. [24]). While CVS type decompositions have been mainly used

o investigate the coherent/incoherent parts of the flow, here the de-

omposition is performed at the level of the primary variables, ve-

ocity and density. This approach is not entirely new, for example it

s the base of the SCALES method [9] and has also been used for the

nalysis of a passive scalar [5]. Here, the results presented address

more complex flow and encompass more representation methods,

ith more quantities related to the velocity field (e.g. the state of the

eviatoric strain rate tensor) and, for the first time, quantities related

o an active scalar field and its constant property surfaces.

For all tests, the strongest 3% coefficients are referred to as defin-

ng the coherent part and the weakest 97% coefficients as defining

he incoherent (residual) part of the respective turbulent quantity.

subset of methods are compared looking at the progression of

econstruction for the number and percentage of coefficients. It is

oted that the relationship between percentage and number of co-

fficients is not the same for all methods as some methods such as

urvelets and surfacelets may extract many more coefficients com-

ared to the B-spline wavelets. The subset of methods include Haar,

ubic B-spline, Daubechies-5, Coiflet-12, Dual-tree wavelets, sur-

acelets, and curvelets. For clarity, Dual-tree wavelets are only added

n a subset of the figures, especially where they excel beyond the

ther methods; nevertheless, they are added in all the tables. These

ethods were selected as representative for each class of methods

onsidered.

Finally, the last set of tests evaluate the performance and mem-

ry requirements of each of the methods. The performance is evalu-

ted based on the runtime of each transform during its decomposi-

ion phase for a single scalar field. Only the single-threaded variant

f each of the methods is considered. The hardware used to perform

hese tests contains an Intel Core i7 930 processor running at 3.80GHz

nd 48GB of DDR3 RAM.

.1.1. Definitions and discussion on the quantities used for comparisons

The definitions and short explanations for the various test metrics

nd turbulence quantities used in this paper are given below.

PSNR in Eq. (1) is the primary measurement to evaluate point-

ise accuracy. The signal-to-noise-ratio (SNR) was used in Ref. [38]

n a similar analysis to compare the effects of compression on data.

SNR is used in this paper rather than SNR since it better reproduces

he behavior of the representation methods over all percentages of

oefficients thresholded. MSE is superior in showing the behavior at

ower percentages with the eventual drop-off to zero due to numeri-

al precision.

SNR = 10 · log10

(
MAX2

MSE

)
, (1)

here MAX is the maximum possible value in the range of the data

nd MSE is the mean square error.

Velocity (�u) and vorticity (�ω ≡ ∇ × �u) PDFs have been been used

o ascertain the ability of orthogonal and B-spline wavelets to de-

ompose turbulence fields into coherent and incoherent parts in Ref.

24]. This was accomplished by comparing the PDFs corresponding to
he fields reconstructed using the largest 3% of the coefficients with

he PDFs of the original signal and the PDFs corresponding to the

elds reconstructed using the remaining 97% of the coefficients with

Gaussian. While these quantities, together with the helicity (�u · �ω)

nd Lamb vector (�u × �ω), are useful in assessing the representation

f turbulence with a limited number of coefficients, they do not fully

ddress the local structure of turbulence and, thus, the incoherence

f the turbulence data. Therefore, here, we also consider the quan-

ity s∗, which uniquely defines the state of the deviatoric strain rate

ensor for incompressible flows [39]:

∗ =
(

−3
√

6αβγ

(α2 + β2 + γ 2)
3/2

)
, (2)

here α, β and γ are the eigenvalues of the deviatoric strain rate

ensor, S ≡ 1/2(∇�u + (∇�u)T ),or by components, Si j = 1/2(∂ui/∂x j +
u j/∂xi). For the flow considered here, the divergence of the velocity

s not zero, but it is small at the time when the flow is being analyzed.

n addition, the enstrophy PSNR and MSE are also shown.

The pure light, pure heavy and mixed fluid regions are defined as

ll the points with density values satisfying the relations [14]:

≤ ρ1 + 0.05(ρ2 − ρ1), (3)

≥ ρ2 − 0.05(ρ2 − ρ1), (4)

.45(ρ2 − ρ1) ≤ ρ ≤ 0.55(ρ2 − ρ1), (5)

here ρ1 and ρ2 are densities of the two pure fluids. For compar-

ng the different representation methods, in this paper we focus on

he surface bounding the pure light fluid regions, which is defined by

he formula ρ(x, y, z) = ρl ≡ ρ1 + 0.05(ρ2 − ρ1). This surface is visu-

lized using the coherent and incoherent parts of the density field. In

ddition, the ability of the representation methods to capture the sur-

ace area, mean and Gaussian curvatures and surface signature with

reduced set of coefficients is also discussed. The area of the surface

efined by ρ(x, y, z) = ρlcan be calculated using Theorem 1.2.4. from

ef. [40], by replacing the Borel measurable nonnegative function �

ith the delta function, δ(ρ(x, y, z) − ρl),to obtain:

Aρl
=

∫
�

|∇ρ|δ(ρ − ρl) dv. (6)

f one further assumes homogeneity of the flow, so that av-

rages can be calculated as volume averages, then SAρl
=

|∇ρ||ρ=ρl
〉 f (ρl)V,which is the product of the conditional av-

rage of the density gradient magnitude and density PDF at

f (ρ(x, y, z)) = f (ρl),and the total volume of the flow. For a uni-

orm discrete representation of the data, as obtained from DNS, the

urface area formula becomes

Aρl
=

( ∑ ||∇ρ||
n(ρmax − ρmin)

)
(2π)

3
, (7)

here n is the ratio between the total number of points, N, and the

umber of bins, nb, used to calculate the density PDF. The discretiza-

ion errors becomes small for large values of n, nb. Following Ref. [5],

he surface signature is defined as the joint PDF of the absolute value

f the shape index, S, and curvedness, C:

=
∣∣∣∣
(−2

π

)
tan−1

(
H√

H2 − K

)∣∣∣∣, (8)

=
√

2H2 − K, (9)

here H and K are the mean and Gaussian curvatures. Since the same

urface is considered for all the representation methods and this sur-

ace may be multiply connected, the curvedness is not normalized

sing the surface area and volume as done in Ref. [5].
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Fig. 4. Residual velocity PDF. The PDF is obtained from the remaining 97% coefficients

in the vertical velocity transform. Two Gaussian signals matching the variances of the

curvelet and B-spline wavelet results are plotted.
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4.2. Quantities related to the velocity field

In this section, quantities related to velocity field are compared for

the representation methods discussed, with respect to their ability to

separate the flow into coherent and incoherent parts and represent

the turbulence structure with a reduced set of coefficients. Some of

the quantities considered here (velocity and enstrophy PDFs) have

been investigated in previous studies; however, only the orthogo-

nal (Coiflet) and bi-orthogonal (Harten) wavelets have been explored.

Here, we calculate these quantities as a consistency check with the

previous studies and also for comparison with the additional rep-

resentation methods considered. In addition, several new metrics

are examined to better assess the capturing of the local turbulence

structure.

4.2.1. Velocity probability density function

The velocity PDF itself is Gaussian in most fully developed turbu-

lent flows and this is reflected in the PDF of the fields obtained from

the largest 3% of the coefficients obtained for all methods considered

here (not shown). Fig. 4 compares the PDFs of the residual vertical

velocity PDF for a subset of the methods, which includes one method
a b

Fig. 5. Enstrophy PSNR as a function of the percentage of coefficients (a) and number of coeffi

point-wise reconstruction. Cubic B-splines have the highest quality through all percentages a
or each of the classes considered. All methods yield symmetrical

esidual velocity PDFs; however, Haar and curvelet transforms lead

o exponential shapes, while the others are closer to Gaussian shapes.

he Kurtosis values are: 6.13 (Haar), 6.44 (cubic B-spline), 4.62 (sur-

acelet), 7.10 (curvelet), 5.79 (Daubechies-5), and 6.10 (Coiflet-12). In

ddition, the field’s extrema are the smallest for the cubic B-spline,

ith relatively close values for the other high order wavelet meth-

ds. The surfacelet transform has slightly larger extrema, but still in

he range of the higher order wavelets, while the curvelets and Haar

avelets have much larger extrema. Thus, while there is no bias to-

ards positive or negative values, the residual still retains large ve-

ocity values.

.2.2. Vorticity peak signal-to-noise ratio and mean square error

Velocity PDF, while useful as a first metric to assess the residual

art of the velocity field, does not contain any spatial information.

he next quantity considered for assessing the representation meth-

ds is the vorticity. Fig. 5 shows the PSNR for enstrophy (vorticity

quare) as a function of the percentage of coefficients retained. In

his case, the signal is obtained from three lossy scalar components,

s each velocity direction is separately represented, then each vor-

icity component is calculated from the reconstructed velocities. The

ubic B-spline wavelets are observed to have the highest overall re-

onstruction accuracy spanning all percentages, including below 10%

oefficients (Fig. 6).

Table 2 shows several numerical results for 3% of the coefficients

etained (coherent part). All the B-splines methods above linear show

onsistently high values for PSNR and low values for MSE and max-

mum error (L∞ norm), with the best results obtained for cubic B-

plines. Overall, all wavelets methods give close results (except the

aar wavelets, which is expected), with slightly worse values ob-

ained for Daubechies and Coiflets (in this order). The surfacelets

ield results within the range of Coiflets (but worse than higher order

oiflets) and curvelets show the largest point-wise departure from

he original signal (in all three metrics considered in Table 2) for 3% of

oefficients retained. Interestingly, for each family there is an optimal

rder which yields the best point-wise representation, so that further

ncreasing the order of the method starts to deteriorate the results.

hus, the discrete signal in lower families tends to not have enough

epresentation to capture the original field while the higher order

epresentations within each family introduce oscillations which re-

uce the overall quality.

The main focus for the remaining tests will be on the subset

f representation methods, consisting of Haar, cubic B-splines,
cients (b) retained for reconstruction. Higher PSNR values represent a more accurate

nd number of coefficients.
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Fig. 6. Enstrophy MSE variation with the percentage of coefficients retained for re-

construction. Lower MSE values represent a more accurate point-wise reconstruction.

Cubic B-splines have the lowest MSE at very low percentages of coefficients, but are

matched by Daubechies-5 and Coiflet-12 wavelets at higher percentages.
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Fig. 7. Residual vorticity PDF. The PDF is obtained from the remaining 97% coefficients

in the vertical vorticity transform. Two Gaussian signals matching the variances of the

curvelet and B-spline wavelet results are plotted.

Fig. 8. PDF of s∗ corresponding to the remaining 97% coefficients. Although all meth-

ods yield a near-horizontal PDF, indicating a quasi-Gaussian white noise residual,

quadratic B-spline wavelets are observed to have residual signal closest to a Gaussian.
aubechies-5, Coiflet-12, Dual-tree wavelets, surfacelets and

urvelets. The 3% thresholding for the velocity representation

aptures 94.4%, 99.4%, 99.6%, 99.6%, 98.1%, 97.7%, and 95.4% (respec-

ively) of the total enstrophy for this subset. Within each class of the

ethods, the total vorticity captured using this thresholding gener-

lly increases as the order of the method increases, but decreases

sing the highest methods.

.2.3. Vorticity probability density function

Vorticity PDF, computed for the remaining 97% coefficients, is

hown in Fig. 7. Similar to velocity, all methods yield symmetrical

esidual PDFs. Haar and curvelet transforms lead to wide tails shapes,

hile the others have sharper shapes, but still different than Gaus-

ian. The Kurtosis values are: 7.415 (Haar), 9.27 (Cubic B-spline), 8.72

Surfacelet), 23.9 (Curvelet), 8.26 (Daubechies-5), and 8.70 (Coiflet-

2). The field’s extrema are the smallest for the cubic B-spline, with

elatively close values for the other high order wavelet methods. The

oderate increase in family order for B-splines achieved the small-

st extrema compared to constant B-splines (Harten-3) used in Ref.

24]. The surfacelet transform has slightly larger extrema, but still in

he range of the higher order wavelets, while the curvelets and Haar
Table 2

Enstrophy comparison at 3% coefficients. The methods with the most

accurate properties are represented in bold. Cubic splines have the

best point-wise characteristics for enstrophy representation com-

pared to any other method using these metrics.

Method PSNR MSE Max error

Haar 48.786 1.9921x10−8 5.1897x10−2

Linear B-spline 60.691 1.3756x10−8 0.9685x10−2

Quadratic B-spline 63.692 0.6893x10−8 0.8786x10−2

Cubic B-spline 64.030 0.6377x10−8 0.7181x10−2

Quartic B-spline 63.645 0.6969x10−8 0.7374x10−2

Quintic B-spline 62.099 0.9947x10−8 1.1021x10−2

Daubechies-3 61.437 1.1586x10−8 0.7198x10−2

Daubechies-5 63.010 0.8065x10−8 0.8216x10−2

Daubechies-7 61.784 1.0695x10−8 1.2053x10−2

Coiflet-6 57.632 2.7824x10−8 1.2457x10−2

Coiflet-12 61.865 1.0499x10−8 0.9154x10−2

Coiflet-18 61.504 1.1407x10−8 1.0614x10−2

Dual-Tree 60.132 1.5648x10−8 1.3191x10−2

Surfacelet 59.319 1.8867x10−8 1.1105x10−2

Curvelet 52.929 8.2165x10−8 4.8001x10−2
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avelets have much larger extrema. Similar to velocity, while there is

o bias towards positive or negative values, the residual still retains

arge vorticity events.

.2.4. The state of the deviatoric strain rate tensor

Previous studies, while examining several wavelet transforms for

heir ability to represent quantities related to the velocity field, have

ot investigated in detail the local structure of turbulence. The state

f the strain rate tensor can identify the tendency of the flow to or-

anize in certain types of structures (e.g. stable-focus/stretching or

nstable-node/saddle/saddle) characteristic of fully developed turbu-

ence [41,42] and may be a better indication of the residual coherence

han velocity or vorticity PDFs. One quantity which can uniquely de-

ne the state of the deviatoric strain rate tensor, s∗, Eq. (2), was first

erived in Ref. [39]. For most fully developed turbulent flows, the PDF

f s∗ peaks at 1, while it becomes flat for a Gaussian signal. Therefore,

structureless incoherent part of the flow should exhibit a flat s∗ PDF;

hile the departure from a flat PDF indicates that the residual is not

tructureless. Fig. 8 shows the PDF of s∗ for the velocity field recon-

tructed from the remainder 97% of the coefficients and the skew-

ess and kurtosis of the PDFs are tabulated in Table 3. A flat PDF has
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Table 3

Statistical properties of residual s∗ . The methods with the best

properties are represented in bold. Skewness and kurtosis are

computed for the remaining 97% coefficients for all methods.

A flat PDF (corresponding to a Gaussian noise residual) has a

kurtosis of 1.8. All methods have skewness close to zero, while

quadratic B-spline wavelets have the kurtosis closest to 1.8.

Method Skewness Kurtosis

Haar −0.018671 1.7837

Linear B-spline 0.000594 1.7502

Quadratic B-spline −0.010178 1.7970

Cubic B-spline −0.000261 1.7622

Quartic B-spline −0.000031 1.7774

Quintic B-spline −0.000402 1.7675

Daubechies-3 −0.002019 1.7605

Daubechies-5 −0.000803 1.7627

Daubechies-7 −0.000893 1.7773

Coiflets-6 0.000221 1.7485

Coiflets-12 0.000523 1.7566

Coiflets-18 −0.000581 1.7663

Dual-Tree 0.005532 1.8299

Surfacelet −0.007940 1.9495

Curvelet −0.010240 1.9269
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skewness zero and kurtosis equal to 1.8. We observe that for most

methods, the remaining signal is mostly Gaussian noise in the re-

maining 97% coefficients. The method closest to a flat s∗ PDF is

the quadratic B-splines, while surfacelets and curvelets present the

largest departures from a flat PDF.

4.3. Quantities related to the density field

Previous comparisons between representation methods have

been focused on quantities related to the velocity field only. Since
Fig. 9. Density visualizations. 2D center slices for a subset of the methods are compared at 3%

wavelets, curvelets, and surfacelets. The white iso-line represents the boundary of the pure

The rest of the methods are able to better reconstruct the original field. (For interpretation o

of this article)
any flows occur in the presence of passive or active scalars, here

e are also comparing the representation methods with respect to

heir potential to separate the scalar field into coherent and incoher-

nt parts and represent the structure of the field with a reduced set

f coefficients.

In this flow, the scalar (density) is an active scalar, since the differ-

ntial buoyancy force which drives the turbulence is generated by the

ariations of density. Since density comparisons have not been per-

ormed before, visualizations of the density field itself and constant

ensity surfaces are also shown, together with the tools considered

bove, namely PSNR, MSE and PDFs. The ability of the representa-

ion methods to reproduce the density power spectrum with a lim-

ted number of coefficients is also discussed. For the surfacelet and

urvelet transforms, the power spectra are calculated for each band

eparately, which shows the wavenumbers captured by each band, as

ell as the overlap between bands. In order to characterize the repre-

entation of constant density surfaces, surface area, mean and Gaus-

ian curvatures, as well as the surface signature are also calculated.

.3.1. Density visualization

The subset of the methods described above are visually com-

ared by using the center 2D slice of the dataset (Fig. 9) and a

og-difference map comparing this slice to the original (Fig. 10) for

he density field reconstructed from the 3% largest coefficients. Ex-

ept the Haar wavelets, which approximate curved variations by a

taircase-like variation, the rest of the wavelet methods reconstruct

he density field reasonably well. The closest results with the original

ataset is obtained using cubic B-splines see also Fig. 10), followed

y Daubechies-5, Dual-tree, surfacelets and curvelets (in this order).

oth curvelet and surfacelet transforms show relatively large differ-

nces between the original field and the field reconstructed for the

% percent largest coefficients.

The residual parts based on the remaining 97% coefficients are also

ompared and visualized in Fig. 11. Similar to Fig. 10, Cubic B-spline
coefficients. From left to right: original, Haar, cubic B-spline, Daubechies-5, Dual-tree

-light fluid (blue). Haar wavelets perform noticeably worse and have strong artifacts.

f the references to color in this figure legend, the reader is referred to the web version



J. Pulido et al. / Computers and Fluids 125 (2016) 39–58 49

Fig. 10. Density logarithmic difference between the original 2D center slice for methods at 3% coefficients and plotted in a logarithmic scale. From left to right: Haar, cubic B-spline,

Daubechies-5, Dual-tree wavelets, curvelets and surfacelets. Haar wavelets have the most visible error, and cubic B-spline wavelets the least.
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avelets perform the best, as they exhibit the least amount of resid-

al density in their remaining coefficients. The Haar wavelet recon-

truction contains the most remaining structures. Daubechies-5 and

ual-tree wavelets contain slightly more residual density than cubic

-splines. Relative to cubic B-splines, curvelet and surfacelet coeffi-

ients contain larger amounts of remaining structures. Between the

wo multi-band methods, the curvelets reconstruction leads to the

east structureless residual density field.

.3.2. Density peak signal-to-noise ratio and mean square error

Fig. 12 shows the PSNR variation as a function of the percentage

nd number of coefficients, while Fig. 13 shows the MSE variation

or the subset of the methods defined above. As the number or per-

entage of coefficients are increased, the amount of increase in ac-

uracy is similar across all methods tested. Numerical results for all

ethods at 3% coefficients are presented in Table 4. Similar to vortic-

ty PSNR and MSE, at low percentages of coefficients used in recon-

truction, cubic B-spline wavelets are superior by having the highest

SNR and lowest MSE. The higher-order B-spline wavelets (quadratic,

ubic, and quartic), in general, out-perform the rest of the methods

ested. When comparing methods within each individual family at 3%

oefficients, there is an observed parabolic behavior in reconstruc-

ion quality where the best reconstruction is achieved by using the

iddle members. These results are consistent to those obtained for

orticity, since the lower families tend to not have enough represen-

ation to capture the original density field, while the higher fam-

lies introduce oscillations which reduce the overall quality of the

epresentation.

Surfacelets have the benefit of a PSNR that is close to B-splines and

low point-wise maximum error while achieving multi-band func-

ionality. As expected, curvelets perform better than Haar wavelets

ut not as well as the remaining methods. When increasing the
umber of coefficients, curvelets do not surpass the PSNR quality

f the alternative methods mainly due to the high levels of redun-

ancy needed to support energy separation in bands and directional

oefficients. By decreasing the number of bands, curvelets can be

ade to extract a smaller number of coefficients causing a left-ward

hift of the PSNR plot. Even though this will increase the point-

ise accuracy of the curvelet transform for a given percentage of

oefficients, it will still be lower than that obtained using cubic B-

pline wavelets. Daubechies wavelets generally perform better than

oiflets, but both are still below B-spline wavelets. When consider-

ng the accuracy for percentages of coefficients above 20%, the high-

st member of B-spline wavelets family tested, quintic, is the most

ccurate.

When instead comparing total number of coefficients, which is

ore relevant for compression and storage purposes, cubic B-spline

avelets once again provide the most accurate reconstruction using

he least number of coefficients. The relative ranking in reconstruc-

ion quality from previous tests is observed again for quadratic, cu-

ic, and quartic B-splines. These methods once again show slight im-

rovement in accuracy when the number of coefficients is increased.

inally, due to the number of bands extracted causing high redun-

ancy levels, the PSNR results for curvelets and surfacelets are gener-

lly worse than the rest of the methods. After a certain point, sur-

acelets manage to overtake the accuracy results of Haar wavelets

espite extracting significantly more coefficients. When compar-

ng both band-based methods, surfacelets perform better than

urvelets.

.3.3. Residual density probability density function

Density PDF, computed for the remaining 97% coefficients, is

hown in Fig. 14. Similar to velocity, all methods yield symmetrical

esidual PDFs. Haar and curvelet transforms lead to widest tails, while
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Fig. 11. Residual density visualization. The remaining density residing in the weakest 97% coefficients is shown for Haar, Cubic B-spline, Daubechies-5 and Dual-tree wavelets,

curvelets and surfacelets (left to right). Cubic B-spline wavelets show the weakest structures in the remaining density. Curvelets and surfacelets extract many more redundant

coefficients, and their remaining structures are clearly visible.

a b

Fig. 12. Density field PSNR as a functions of the percentage of coefficients (left) and number of coefficients (right). Higher PSNR values represents a more accurate point-wise

reconstruction. The cubic B-splines provide the best accuracy at the lowest percentages and number of coefficients compared to other methods. Although not shown, for larger

percentages of coefficients retained (i.e. > 20%), within each class, higher order methods such as quintic B-splines perform slightly better.
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the other methods have narrower shapes, but still wider than a Gaus-

sian. The Kurtosis values are: 8.00 (Haar), 6.63 (Cubic B-spline), 4.38

(Surfacelet), 5.53 (Curvelet), 5.79 (Daubechies-5), and 6.20 (Coiflet-

12). The field’s extremas are the smallest for the cubic B-spline, with

relatively close values for the other high order wavelet methods. The

surfacelet transform has slightly larger extremas, but still in the range

of the higher order wavelets, while the curvelets and Haar wavelets

have much larger extremas.
.3.4. Density power spectrum and multi-band analysis

In order to examine how the coherent and incoherent part of the

ensity are distributed across scales, Figs. 15 and 16 compare the

ower spectrum at coherent 3% coefficients, and the remaining 97%

oefficients. All methods capture the large and part of the inertial

ange scales, and the results depart from the original spectrum at

mall scales. The wavelet methods introduce small scale noise, which

ranslates into increased values at higher wave-numbers. Within



J. Pulido et al. / Computers and Fluids 125 (2016) 39–58 51

Fig. 13. Density field MSE variation with the percentage of coefficients. Lower MSE

values represent a more accurate point-wise reconstruction. The error becomes in-

distinguishable for more than 10% coefficients used in the reconstruction. The results

show that cubic B-splines have the lowest MSE at very low percentages of coefficients.

Fig. 14. Residual density PDF. PDF for the remaining 97% coefficients. Two Gaussian

signals matching the variances of the curvelet and B-spline wavelet results are plotted.

Table 4

Density comparison at 3% coefficients. The methods with the most

accurate properties are represented in bold. The cubic B-splines

have the Cubic splines have the best point-wise characteristics

for enstrophy representation compared to any other method using

these metrics. Although not as accurate from the point of view of

PSNR and MSE, quartic B-splines exhibit a more consistent maxi-

mum point-wise error throughout the entire dataset.

Method PSNR MSE Max Error

Haar 30.114 1.0791x10−5 5.0793x10−2

Linear B-spline 37.940 1.7807x10−6 1.9407x10−2

Quadratic B-spline 41.095 8.6113x10−7 1.4169x10−2

Cubic B-spline 41.282 8.2476x10−7 1.1944x10−2

Quartic B-spline 40.553 9.7552x10−7 1.1424x10−2

Quintic B-spline 39.753 1.1729x10−6 1.4073x10−2

Daubechies-3 38.029 1.7442x10−6 1.5653x10−2

Daubechies-5 39.858 1.1449x10−6 1.5414x10−2

Daubechies-7 39.142 1.3502x10−6 1.6532x10−2

Coiflet-6 34.760 3.7028x10−6 2.2010x10−2

Coiflet-12 38.860 1.4406x10−6 1.4867x10−2

Coiflet-18 38.830 1.4505x10−6 1.5929x10−2

Dual-Tree 39.020 1.3884x10−6 1.4690x10−2

Surfacelet 38.169 1.6892x10−6 1.3875x10−2

Curvelet 33.075 5.4580x10−6 2.8111x10−2
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Fig. 15. Density power spectrum for the coherent density field. The k−5/3variation is al
ach class, higher order methods capture better the high frequency

eatures of the density field. The Dual-tree wavelet transform is able

o provide the closest reconstruction, using 3% of the coefficients,

o the original spectrum. The same order of B-spline family is able

o achieve the next closest reconstruction. On the other hand, the

urfacelet and curvelet transforms tend to smooth out the high fre-

uency components and the resulting spectrum is lower than the

riginal spectrum at high wave-numbers. Both methods also capture

large amount of energy in the remaining 97% coefficients due to

heir high redundancy.

To compare the surfacelet and curvelet band systems with re-

pect to the wavenumber coverage, a number of 6 bands are cho-

en, where band 0 represents the largest features and band 5 repre-

ents the smallest. As previously explained, a larger number of bands

re used in this set of the calculations to better distribute the en-

rgy and better measure the strengths of each method with respect

o the coherent/incoherent decomposition and capture of the flow

tructure within each band. Except band 0, the curvelet bands are

arrower than the surfacelet bands, providing more localization in

avenumber space (Fig. 17). This can be seen, quantitatively, from

able 5 which measures the contribution of each band to the total

ensity variance. As proposed by Pullin et al. [5], the integral veloc-

ties for each band despite the different length of scales sum up to
so plotted for comparison. A close-up for higher wavenumbers is provided in b).



52 J. Pulido et al. / Computers and Fluids 125 (2016) 39–58

Fig. 16. Density power spectrum for the residual density. The k2 variation corresponding to a Gaussian signal is also plotted. A close-up for higher wavenumbers is provided in b).

a

b

Fig. 17. Density power spectrum band-based decomposition using six bands for (a)

curvelets and (b) surfacelets. Higher level surfacelet bands are wider compared to

those of curvelets.

Table 5

Band contribution to density variance.

Band Surfacelet 〈 ρ ′2 〉 i/ 〈 ρ ′2 〉 Curvelet 〈 ρ ′2 〉 i/ 〈 ρ ′2 〉
Original 1.0000000 1.0000000

0 0.6785391 0.8000469

1 0.2080657 0.1447320

2 0.0861972 0.0465525

3 0.0237471 0.0080909

4 0.0032868 0.0005679

5 0.0001637 0.0000095
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irtually 1 although regions overlap. This shows both methods, al-

hough overly redundant, are able to preserve energy well when fac-

oring in all bands. From the point of view of flow analysis, the nar-

ower curvelet bands may allow better representation of specific flow

tructures associated with certain frequencies. However, the wider

ands surfacelets provide lead to better overall representation of the

ata in terms of percentage of coefficients as seen in Fig. 12 above.

.3.5. Pure light fluid isosurface visualization

So far, the performance of the representation methods has been

nvestigated with respect to describing various turbulent fields and

heir separation into coherent and incoherent parts. However, in tur-

ulence problems involving scalar mixing, e.g. pollutant dispersion

r non-premixed combustion, accurately capturing constant prop-

rty surfaces is also very important. Fig. 18 visualizes isosurfaces of

ure light fluid obtained using the reconstruction based on 3% coef-

cients. Although the wavelet methods may have higher point-wise

SNR, the curvelet and surfacelet isosurfaces are much smoother and

ery near to the original dataset. Both curvelets and surfacelets sac-

ifice point-wise accuracy in exchange for superior curved structure

epresentation.

Among the other methods, the Haar wavelets have the coarsest

epresentation of isosurfaces, as expected. The representation be-

omes very blocky and it has the highest visible difference compared

o the original isosurfaces. The coarsening effect is amplified when

erivatives are calculated making the Haar wavelets unsuitable

or the preservation of constant property surfaces. Although cubic

-splines, Daubechies, and Coiflets are able to reproduce smoother

urfaces than Haar wavelets, there are visible ripples in the isosurface

isualization related to the sinusoidal-like reconstruction signal that

hese methods are representing (seen in Fig. A.21 in the Appendix). In

omparison, curvelets, surfacelets and Dual-tree wavelets, which are

esigned to preserve smooth structures, perform much better. The

xchange of point-wise accuracy for smooth structure preservation
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Fig. 18. Density Isosurface comparison. Isosurfaces representing the pure light fluid are constructed using the largest 3% coefficients. From left to right: original, Haar, cubic

B-spline, Daubechies-5, Dual-tree wavelets, curvelet, and surfacelet transforms. Haar wavelet isosurfaces are extremely blocky. Surfacelets and curvelets provide the smoothest

representation, with cubic B-splines, Daubechies, and Dual-tree having noticeable ripples in their isosurfaces.
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y these methods can be seen by comparing Fig. 10, showing the

og-difference of the 2D slice, and Fig. 18, showing the pure light

uid isosurface. Surfacelets are able to provide the smoothest recon-

truction at 3% coefficients with the lowest difference to the original

isualization.

.3.6. Pure light fluid isosurface area, mean and Gaussian curvatures

In addition to qualitative results by visually comparing the

moothness of isosurfaces, quantitative assessments can also be

ade using differential geometry tools. In this section, the surface

rea and average mean and Gaussian curvatures for the light and fully

ixed isosurfaces obtained using the largest 3% of the coefficients are

ompared with the original field, while in the next section the sur-

ace signature is discussed. The averages are calculated as sums over

ll points on the surface divided by the number of points. The defini-

ions and formulas used are given in Section 4.1.1. Table 6 shows the

atios of this quantities to the original dataset for all methods consid-

red. Values closer to 1 indicate better quality of the reconstruction.

n general, the surface area is relatively well captured by all methods

with larger departures from the original for the light fluid isosur-

ace), while the average mean and Gaussian curvatures can be sig-

ificantly under- or over-predicted without an overall winner. Even

hough surfacelets and curvelets show smoothest surfaces, they can

till miss both the surface area and average curvatures.

At the time during the flow evolution when the methods are com-

ared, there is relatively little pure light fluid left, while the fully

ixed fluid occupies a larger volume. Consequently, the surface area

f the mixed fluid isosurface is overall better captured by all methods.

he large blockiness in the Haar wavelets representation of constant

roperty surfaces can be clearly seen in the large departures from 1 in

ll entries of Table 6. For the pure light fluid isosurface, again, within
ach class, the middle members provide the best quality reconstruc-

ion. Thus, lower families tend to not have enough representation to

apture all the folds in the original surfaces, while the higher fami-

ies introduce oscillations which affect the curvature of the surface.

uch a trend is not seen for the fully mixed fluid isosurface, which

as more folds and wrinkles due to the larger volume encompassed.

n this case, the oscillations introduced by the higher order methods

ay help capture more of the details of the surface when they over-

ap to the surface wrinkles; however, such a match cannot not lead to

consistent trend.

.3.7. Surface signature of the pure light, pure heavy and mixed

uids isosurfaces

The surface signature can provide details on the structure of the

urface [5]. Following the definition given in Section 4.1.1, Fig. 19 com-

ares the surface signature properties of the original dataset and a

ubset of the methods.

There is a large disparity between the original dataset, the Haar

avelets and the remaining schemes. To start, the original surface

ignatures characterize all coarse and fine features in the dataset.

he dark region near the center of the 2D histogram of the original

urface signature corresponds to the fine features of the isosurfaces.

one of the methods is able to reproduce the fine portion of the

riginal dataset. In general, all higher order methods over-predict

he amount of small scale features of the pure fluids isosurfaces and

nder-predict this amount for the mixed fluid isosurface. This is

onsistent with the representation of the average mean and Gaussian

urvatures discussed in the previous section. Again, at the time in

he flow evolution when the comparison are made, the amount of

ixed fluid is much larger than either pure fluids and, consequently,

he mixed fluid isosurface presents more folds and wrinkles. The
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Table 6

Isosurface area and average curvatures. Methods closest to 1.0 are in bold. Ratios of surface area and average mean and Gaussian curvatures for

the pure light and fully mixed fluids isosurfaces reconstructed using 3% coefficients to the original dataset.

Pure light fluid Fully mixed fluid

Method Surface area Mean curvature Gaussian curvature Surface area Mean curvature Gaussian curvature

Haar 1.346 0.523 219.030 0.991 0.627 11.483

Linear B-spline 1.173 0.298 0.577 0.983 0.914 0.655

Quadratic B-spline 1.143 0.453 0.829 0.971 0.880 0.835

Cubic B-spline 1.014 1.192 1.078 0.995 0.981 0.625

Quartic B-spline 0.954 2.867 1.346 0.995 0.947 0.682

Quintic B-spline 0.988 2.607 1.259 0.994 0.968 0.661

Daubechies-3 1.080 1.745 0.094 0.991 1.020 0.590

Daubechies-5 1.024 2.710 1.356 0.994 0.264 0.605

Daubechies-7 1.017 3.985 1.505 0.991 1.060 0.609

Coiflet-6 1.199 1.355 1.062 1.001 0.960 0.531

Coiflet-12 1.053 2.164 1.051 0.998 0.970 0.613

Coiflet-18 1.015 3.073 1.250 0.999 0.903 0.574

Dual-Tree 0.987 2.643 1.085 0.965 0.900 0.653

Surfacelet 0.921 2.862 1.994 0.957 0.995 0.931

Curvelet 1.183 2.005 1.126 0.920 0.891 0.574

Table 7

Performance. Compute time in seconds, memory usage in megabytes

(MB) and Efficiency as compute time per coefficient in seconds ∗ 10−7.

The simplest methods are faster to compute compared to the higher or-

der methods. Surfacelets have the best efficiency by extracting the most

coefficients for their measured compute time.

Method Compute (s) Memory (MB) Efficiency

Haar 16.390 1065 1.2211

Linear B-spline 17.282 1072 1.2474

Quadratic B-spline 17.601 1080 1.2891

Cubic B-spline 22.320 1092 1.5611

Quartic B-spline 24.304 1106 1.6703

Quintic B-spline 30.373 1179 1.9914

Daubechies-3 18.866 1057 1.3616

Daubechies-5 21.863 1090 1.5291

Daubechies-7 25.342 1125 1.7156

Coiflet-6 20.130 1059 1.4528

Coiflet-12 25.221 1113 1.7333

Coiflet-18 30.045 1152 1.9699

Dual-Tree 79.667 4096 1.4839

Surfacelet 31.666 4928 0.6891

Curvelet 77.660 8214 1.4041
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oscillations introduced by the representation methods discussed will

over-predict these features for the pure fluids isosurfaces and under-

predict for the mixed fluid isosurface. In addition, the departure from

the original dataset can not be attributed to Gaussian white noise.

These results underline the specific problem of representing turbu-

lence fields with non-physics based, universal basis functions. While

in many problems the details of the small scales are not important,

there are instances, e.g. reaction fronts in non-premixed combustion,

when the lack of accurate representation of the scalar fields can lead

to serious errors. For these cases, physics based sub-grid modeling

can remedy the situation; however, finding optimal such models is

still an outstanding open question.

4.4. Performance and memory usage

Performance is evaluated by measuring the runtime of each trans-

form during its decomposition stage for a single scalar field from the

dataset. Only the time taken during decomposition is presented as

the synthesis operation generally takes the same amount of time. As

before, the single-threaded variant of all methods is evaluated. Mem-

ory usage is defined as the storage space consumed for the decom-

posed coefficients and does not include the space used to hold the

input of the original dataset.
The results in Table 7 represent the compute time required only

or the forward transform of a targeted 3% coefficients, averaged over

he series of five runs. The amount of effort required in extracting

he strongest 3% coefficients is evaluated. During this evaluation, it is

onsidered that the multi-band transforms can be performed with-

ut the need to extract all coefficients. The term ‘Efficiency’ is de-

ned as the amount of effort needed to compute one coefficient. Ef-

ort is a function of time taken over the total number of coefficients

xtracted. Due to their simplistic nature, the lowest-order wavelets

erform the fastest and require the lowest amount of storage. The

ncrease in wavelet complexity and family order coincides with the

ncrease of compute time as well as number of coefficients extracted

nd memory usage. Surfacelets provide the best of compromises in

erms of compute time per coefficient, overall compute time, and the

bility to extract multiple bands from the data at a comparable cost

o other methods. The curvelet transform takes the longest amount

f time to compute due to the extraction of many coefficients. When

equesting the same number of bands as surfacelets, curvelets take

uch longer to compute and extract more coefficients.

In terms of efficiency, the surfacelet transform is the clear win-

er. Although the curvelet transform may take long to compute, it

oes performs remarkably well for the amount of coefficients ex-

racted compared to the simpler B-splines and Daubechies wavelets.

he curvelet transform implementation provided by the respective

uthors contains a message passing interface (MPI), out-of-core C++

mplementation where an almost linear speedup is observed in re-

ation to the number of additional processors used when increased

y powers of two. Although costly in performance, the MPI imple-

entation makes the curvelet transform readily usable for large sci-

ntific computing applications where distributed compute nodes can

e used to offset their high compute cost and memory requirements.

. Conclusions

We have compared the effectiveness of various multi-resolution

epresentation methods, including B-spline, Daubechies, Coiflet and

ual-tree wavelets, curvelets and surfacelets, to evaluate these meth-

ds’ ability to capture the structure of fully developed turbulence

sing a truncated set of coefficients. The methods were tested by

onsidering quantities pertaining to both velocity and active scalar

density) fields and their derivatives, spectra, and the properties of

onstant density surfaces. Previous comparisons related to such de-

ompositions of turbulent fields were restricted to orthogonal and

iorthogonal (Harten) wavelets as applied to velocity and enstrophy

DFs, the kinetic energy spectrum and the PDF of helicity and Lamb

ector [24] and the curvelet transform as a multi-scale analysis tool of
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Fig. 19. Surface signatures. Surface signatures described as a joint probability density function of the shape index, S, and curvedness, C, together with their marginal PDFs. From

top to bottom: original, Haar, cubic B-spline, Daubechies-5 wavelets, curvelets and surfacelets. From left to right: pure light, fully mixed and pure heavy fluid isosurfaces.
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urbulence [4,5]. While CVS-type decompositions have been mainly

sed to investigate the coherent/incoherent decomposition of flow,

ere the decomposition is performed at the level of the primary vari-

bles, velocity and density. This approach is not entirely new, for ex-

mple, it is the base of the SCALES method [9] and has also been used
or the analysis of a passive scalar [5]. The results presented address

more complex flow and encompass more representation methods,

ith more quantities related to the velocity field (e.g., the state of the

eviatoric strain rate tensor, which may be a better measure of the lo-

al flow coherence/incoherence than the velocity and vorticity PDFs)
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Table 8

Summary. Compilation of the best respective methods for each test performed.

Test type Best method Runner-up

Velocity PDF Cubic B-spline Daubechies-5

Vorticity PSNR and MSE Cubic B-spline Quadratic B-spline

Vorticity PDF Cubic B-spline Quadratic B-spline

Strain rate tensor Quadratic B-spline Cubic B-spline

Density visualization Surfacelets Cubic B-spline

Density PSNR and MSE Cubic B-spline Quadratic B-spline

Density PDF Cubic B-spline Daubechies-5

Density power spectrum Dual-Tree Quintic B-Spline

Isosurface Visualization Surfacelets Curvelets

Curvature quantities Cubic B-spline Surfacelets

Surface signatures All methods except Haar –

Performance Surfacelets Haar
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and, for the first time, quantities related to an active scalar field and

its constant property surfaces.

In addition, comparisons between the algorithms are given in

terms of performance, accuracy, and compression properties. The

results provide useful information for multi-resolution analysis

of turbulence, coherent feature extraction, compression for large

datasets handling, as well as simulations algorithms based on multi-

resolution methods.

A list of recommended methods for each test is provided in

Table 8. In general, any method is superior to Haar wavelets as well as

the constant members of the wavelet classes considering our series of

tests. On the other hand, the results show that increasing the family

order above a certain value is not always the ideal solution towards

higher accuracy. At 3% coefficients, large structures within the flow

are well preserved and at that percentage it is not necessary to go to

very high order methods. Since the results are very similar across the

higher orders of B-splines, it is not recommended to go above cubic

B-splines, sacrificing more compute time and questionable accuracy

gains. Daubechies wavelets are generally overshadowed by B-splines

so their use is not recommended unless orthogonal properties must

be preserved. Although Coiflets have a few advantages to Daubechies

in derived surface quantities and preservation of kinetic energy, their

representations of curved surfaces and scalar quantities are not ideal.

Dual-tree wavelets contain properties that make them useful for

curved surface preservation and energy separation, especially above

3% coefficients, but at the cost of high redundancy, point-wise accu-

racy, and a large compute cost. Based on their overall performance,

the cubic B-spline wavelet is recommended as the general method

for the turbulence data applications considered here. Surfacelets and

curvelets have specific applications and advantages where they are

able to identify specific features at different scales in turbulence,

taking full advantage of the multi-scale interface of these methods

but further analysis is required. Both surfacelets and curvelets pro-

vide superior representation of smooth surfaces compared to any

other method for general applications in turbulence. Surfacelets are

recommended over curvelets since they are much more efficient in

computation, reconstruct more accurately at the same number of

coefficients, and capture curved surfaces closest to the original data

even compared to all the methods tested.

The selection process described in this paper should be useful in

several areas, including multi-resolution analysis of turbulence, co-

herent feature extraction, compression for large datasets handling, as

well as simulations algorithms based on multi-resolution methods.

While some of the algorithms discussed have already been used for

simulations algorithms based on multi-resolution methods and oth-

ers for multi-resolution analysis of turbulence, this survey offers a

comprehensive view of most of the methods which are candidates

for multi-resolution analysis and computation of turbulence. In ad-

dition, with the continuous increase in the computational platform

speed and size, we would like to stress the emerging importance
f compression algorithms for large dataset handling. For example,

ulti-resolution visualization for large datasets [37] and simulation

pplications for in-situ analysis and visualization can be facilitated

hrough the use of these algorithms. Projects such as the JHTDB [11]

an be improved to support multi-resolution analysis and visualiza-

ion to both reduce storage and transmission costs as well as cre-

te faster data visualizations of interesting structures. Opportunities

or remote visualization are also available through the application of

hese methods at the data and image level.
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ppendix A. Wavelet construction and their signals

Wavelet signals in general have several vanishing moments. This

roperty allows for a sparse but accurate representation of an input

ataset with only a small number of coefficients. A signal is decom-

osed through multiple steps involving “folds” at the largest scale

ntil it reaches the smallest data scale. For the 3-D Wavelet Trans-

orm, an input data of size X (length) by Y (width) by Z (height) is

rocessed by utilizing the 1-D signal decomposition step in the mul-

iple dimensions. After a single iteration of the 1-D decomposition for

ach dimension, the result consists of a series of seven high-pass co-

fficients and one set of pure low-pass coefficients shown in Fig. A.20.

ny region that has full or partial high-pass coefficients such as WHLL

nd WHHH can be used to describe the original data at that resolution.

he low-pass coefficients WLLL are recursively computed by halving

he size of each dimension per iteration until the data can no longer

e halved further. This method can be described as a top-down ap-

roach, where the small-scale features in the data are captured ini-

ially and for each iteration, larger features are described. The finest

oefficients, smallest in magnitude are extracted first and in the end,

he coarsest, largest in magnitude coefficients are extracted.

The continuous representations of the wave signals we use here

an be found in Fig. A.21.

1. B-spline wavelet families

When increasing the family order for B-spline wavelets, an im-

rovement is expected in the representation of non-rigid surfaces.

he change in signal behavior by increasing the family order can be

een in Fig. A.21. An increase in the number of control points within

ach family generally introduces a large number of oscillations in the

ata and reduces the overall quality of a reconstruction. The effect

f increased control points on the constant family of signals can be

een in Fig. A.22. As a result, the B-spline wavelets chosen for this

aper were tested with the least number of control parameters per

amily. Rather than increasing the number of control point parame-

ers, an increase in family order enhances the complexity of the signal

nd improves the quality of a reconstruction. The discrete versions of

hese signals were used in form of filters as described by Shensa [35].

y considering a sinusoidal signal instead of the top-hat, a wavelet

ransform can capture superior directionality of a dataset.

http://dx.doi.org/10.13039/100000015
http://dx.doi.org/10.13039/100006168
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Fig. A.20. Signal Decomposition. Decomposition of a wavelet for dataset X using a single step in three dimensions with the remaining coarse (WL) and fine (WH) coefficients. For

each subsequent step, the low-pass coefficients WLLL are iterated upon. .

Fig. A.21. Wavelet mother reconstruction signals. As the family order increases, signals in the frequency domain become more complex creating more vanishing moments. The

following signals represent biorthogonal wavelets: (a) Haar, constant (b) linear B-spline (c) quadratic B-spline (d) cubic B-spline (e) quartic B-spline and (f) quintic B-spline.

Orthogonal signals are also shown in comparison as (g) Daubechies-3 (h) Daubechies-5 (i) Daubechies-7 (j) Coiflet-6 (k) Coiflet-12 and (l) Coiflet-18.

Fig. A.22. Constant biorthogonal B-splines and control points. As the number of control parameters increases, signals become more complex. The reconstruction wavelet functions

presented are subsets of the constant biorthogonal wavelet family using (a) 1 control point, Haar (b) three control points, Harten and (c) five control points.
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