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ABSTRACT
As more advanced and complex survey telescopes are developed, the size and scale of data
being captured grows at increasing rates. Across various domains, data compression through
wavelets has enabled the reduction of data size and increase in computation efficiency. In this
paper, we provide qualitative and quantitative tests of a new wavelet-based image compression
method compared against the current standard for astronomical images. The analysis is
improved by making use of state-of-the-art object detection systems to accurately measure
the impact of the compression. We find that a combination of lossy wavelet-based methods,
efficient quantization, and lossless dictionary compressors can preserve up to 98 per cent of
astronomical objects at a 10:1 compression ratio. This significant reduction in file size also
preserves astronomical object properties better than existing methods. These methods help
further reduce future workloads for image-heavy processing pipelines.

Key words: methods: data analysis – techniques: image processing – astrometry.

1 IN T RO D U C T I O N

The Large Synoptic Survey Telescope (LSST) is a wide-field survey
telescope that is currently being constructed and is projected to
produce hundreds of gigabytes of data per night. Transferring and
processing raw data daily becomes challenging as network and
input/output (I/O) systems become bottlenecks for this large data
transfer problem. In the past, lossless data compressors provided
sufficient data reduction but as data sets become larger and more
complex, lossy methods have become a necessity. Both transferring
data between on-site systems and sharing data for collaborative
research imposes significant bottlenecks making smart but lossy
data reduction schemes attractive.

The Flexible Image Transport System (FITS) data format is the
standard astronomical data container used in large by the astronomy
community. The subject of astronomical image data compression is
not entirely new.

There are a range of tools for generating FITS files that employ
different compression techniques. CFITSIO is a tool developed by
Pence (1999) that provides subroutines for reading and writing FITS
data files. A more recent codevelopment has been integrated called
FPACK and has been proposed for FITS file compression (Pence,
Seaman & White 2011). This tool provides several general pur-
pose compression algorithms: GZIP, RICE, HCOMPRESS, and PLIO.
The most popular and simplest method used for general lossless
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compression is GZIP (GNU 1997). Although lossless, GZIP provides
low compression ratios for large, dynamic data sets. Generally, the
RICE compression algorithm (Rice, Yeh & Miller 1993) provides
better lossless compression ratios and is faster than GZIP. HCOM-
PRESS (White, Postman & Lattanzi 1992) can be either a lossy or
lossless compressor based on the H-transform (Fritze et al. 1977).
HCOMPRESS uses a generalized 2D Haar, quantization, and quad-
tree coding to achieve its lossy compression. This method generally
compresses slightly better than RICE at the cost of more compute
time.

Previous work by Pence (2009) conducted a feasibility study for
the use of a more efficient compression algorithm named BZIP2 in
astronomical images. That work concluded that BZIP2 was an order
of magnitude slower compared to RICE and required significantly
larger block sizes to achieve same compression efficiency. Unlike
other compressors, JPEG2000 is keyed as a true image compression
standard that intends to take advantage of multidimensional data.
Similar applications by Peters & Kitaeff (2014), Kitaeff et al.
(2015), and Vohl, Fluke & Vernardos (2015) analysed the impact of
JPEG2000 lossy compression on radio astronomy imagery. Since
JPEG 2000 is a non-standard method for astronomical images,
several challenges may appear such as the inability to process
floating-point images, requiring the conversion to integers prior
to processing. This simplification of the data may lead to issues
when handling images with very high dynamic ranges in intensities.
Methods such as those in Vohl et al. (2017) overcome this by adding
32-bit support, but do not go in depth on the effects of achieving
‘extreme’ 35:1 compression. Compared to traditional observational
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Figure 1. The image compression pipeline has an image as input, applies cubic B-spline wavelet decomposition, and performs floating-point-to-integer
quantization for an initial lossy step. After, the encoding step efficiently stores lossy coefficients in a lossless format.

sky survey data, radio astronomy imagery is significantly noisier
and lacks the structures needed for general purpose compression
algorithms to excel.

Other methods have suggested the deviation from the FITS
file format to a more compression-friendly container such as
Hierarchical Data Format 5 (HDF5) in Price, Barsdell & Greenhill
(2014) and Masui et al. (2015). The advantage of switching to HDF5
is its availability of internal data filters. One such filter explored in
both works is BITSHUFFLE, a lossless compressor that shifts binary
data for more efficient encoding. As with other lossless compressors,
BITSHUFFLE is hardly able to achieve a compression ratio beyond
2:1, unable to achieve as much compression as other lossy methods.
Finally, singular value decomposition methods (SVD) such as those
in Kolev, Tsvetkova & Tsvetkov (2012) and Morii et al. (2017) are
used to compress astronomical movie data in a lossy representation.

When lossy compression is used, the goal is to preserve as many
astronomical objects as possible without significantly altering their
science-critical characteristics, such as the total flux, the spatial
extent and profile of the flux, and the orientation of the source profile
on the sky. In a typical pipeline, object detection and extraction
is performed by widely used tools such as Source Extractor
(SEXTRACTOR) by Bertin & Arnouts (1996) or the techniques
of Zheng et al. (2015), which attempt to extract and characterize
these astronomical objects.

The work presented in this paper introduces a new wavelet-based
lossy image compression method for astronomical images. This
new method is able to achieve extreme levels of compression
while preserving features of interest (astronomical objects). To
accurately measure the impact of compression, state-of-the-art
detection systems are used to accurately measure differences, both
qualitatively and quantitatively.

This paper is structured as follows. Section 2 gives an overview on
the construction of the method and usage to achieve these results.
Section 3 evaluates the performance, cost, and accuracy of our
method by comparing the obtained results with those of competing
methods. Section 4 provides conclusions and points out possible
directions for future work.

2 ME T H O D

2.1 Implementation

A combination of several techniques can be used in a pipeline;
see Fig. 1, where the data compression pipeline is depicted with
its main components marked in the centre. Once a FITS image
is read, the largest data reduction occurs in the initial wavelet
decomposition and wavelet coefficient floating-point-to-integer
quantization. Using the native hierarchical structure generated by a
wavelet decomposition, the highest magnitude wavelet coefficients
are preserved with high precision and the lowest magnitude at

a lower precision via quantization. Once completed, a lossless
encoding step is performed where, optionally, further compression
can be achieved, at the cost of compute time. Like compression,
decompression only requires us to decode the stored coefficients
and perform a wavelet reconstruction, returning the coefficients to
real space.

We present a data reduction pipeline with flexible components,
trading-off lower file sizes for higher computation time. As a result
of the compression, a significantly larger subset of astronomical
imagery can be stored, processed, and transferred. The complete
method named SNOWPAC (SpliNe Wavelet Packing And Compres-
sion; Pulido 2019) is made available in both C++ and MATLAB

variants. The end of a typical processing pipeline may contain
additional astronomical object detection components that quantify
the number of stars and galaxies in a certain region of the sky. The
usage of wavelet methods in our pipeline leads to advantageous
properties such as data streaming, selective decompression of data
subsets, and denoising of astronomical images.

2.2 Wavelet compression

The wavelet transform is a generalization of the Fourier trans-
form, using bases that represent both location and spatial fre-
quency (Daubechies 1992). Typical wavelet signals contain several
vanishing moments that allow for a sparse but accurate representa-
tion of an input data set, with only a small number of coefficients.
A signal is decomposed through multiple steps involving ‘folds’
at the largest scale until data are reduced to the smallest scale.
A 2D example for an astronomical image is shown in Fig. 2.
Here, a fold is performed twice for each dimension until a set
of low- and high-pass coefficients is obtained. The upper-left quad-
rant demonstrates the capability of wavelets to preserve coherent
features (astronomical objects) and, at the same time, to filter out
small-scale signal behaviour usually correlated to Gaussian noise.
Additionally, this behaviour creates a multiscale structure where
each fold represents features at a certain resolution. This capability
allows a compressor to reduce data to extreme levels without losing
important objects, even at medium to high levels of dynamic range.
Additionally, a 2D transform can be expanded to 3D data arising
in multiple applications, such as stacked imagery, supporting the
signal acquisition, and preservation of many images of the same
sky region.

Unlike the classical and simple Haar wavelet, biorthogonal B-
spline wavelets are an extension with similar usage and implemen-
tation, providing the capability to capture more complex behaviour
via their basis functions (Cohen, Daubechies & Feauveau 1992).

In a recent study by Pulido et al. (2016), several multiresolution
representation methods, including higher order B-spline wavelets,
were tested for their ability to capture a broad range of quantities
pertaining to turbulent data representation using a reduced set of
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Figure 2. 2D data decomposition. Decomposition of an astronomical image
using two levels produces a series of low- and high-pass coefficients using
cubic B-spline wavelets. Astronomical objects are preserved, while small-
scale noisy artefacts are filtered out.

coefficients. The higher order B-spline families consistently scored
at or near the top based on the metrics considered. One of the most
important metrics was the preservation of coherent structures using
the least number of coefficients through hard thresholding. Here,
the fourth family of B-spline wavelets (cubic) is considered as the
method of choice for compression and analysis. A cubic B-spline
wavelet transform can capture and preserve directionality well. This
characteristic is particularly important in the effort to preserve the
structures of astronomical objects with high accuracy. We employ
the discrete version as described by Shensa (1992) in our processing
pipeline.

2.3 Hard thresholding and quantization

Hard thresholding selects only distinct coefficients up to a certain
cut-off threshold, while setting to zero all other coefficients, after a
wavelet decomposition has been performed. The primary criterion
for selecting a cut-off threshold is a coefficient’s (absolute) magni-
tude. Coefficient magnitude can be understood as signal energy for
a frequency (or basis function). Thresholding is done by sorting the
coefficients by magnitude and selecting the largest ones, either via
a cut-off percentage or a threshold value.

Figure 4. Coefficient magnitude sorting. This plot shows the magnitude-
sorted cubic B-spline wavelet coefficients for an LSST data set. Many low-
magnitude redundant coefficients exist, making possible a lower precision
representation using quantization without significant data information loss.

This lossy compression approach is not sufficient for achieving
a large enough reduction for astronomical images. Controlling
the precision of a quantized data representation of coefficients is
preferred.

Fig. 3 shows a comparison between hard thresholding for a fixed
percentage of coefficients (10 per cent relative to original size) and
a floating-point-to-integer quantization for a compression ratio near
10:1 and the effect on object detection. Both reduction techniques
produce similar results in terms of detected objects, but there are
differences. Most significantly, an object’s shape is better preserved
when using all wavelet coefficients at a reduced precision rather than
using a subset of large magnitude coefficients via hard thresholding.

Fig. 4 shows the coefficients sorted by magnitude. For a typical
sky survey data set, many low-magnitude coefficients exist that can
be reduced in precision via quantization, with little impact as long
as high-magnitude coefficients are preserved with higher precision.
This principle is used to achieve lossy compression.

A wavelet transform produces a floating-point data set. Typically,
FITS images are integer data. First, we convert them to floating-
point representation. For efficient data reduction we apply floating-
point-to-integer quantization across all wavelet coefficients (see
Section 2.3). By performing requantization, we efficiently encode
integer coefficients.

We use a highly efficient floating-point-to-integer quantization
method that shifts the decimal of the floating-point representation
to the right, to preserve the integer portion and truncate the fractional
half. This method is available in HDF 5’s (Folk et al. 2011)

Figure 3. Coefficient quantization versus thresholding. The shown objects result from performing lossy coefficient operations, illustrating their preservation
properties. Quantization of all coefficients using a 10:1 ratio (left), hard thresholding using 10 per cent coefficients (centre), and original data (right) show that
pronounced stars and galaxies indicated by red ellipses are preserved after a binary image operation during object detection.
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Table 1. Floating-point-to-integer quantization. Using a
weight as input, a quantization operation shifts the decimal
during conversion to control the amount of bits needed for
storage.

Original value: 116618.821101
Weight Shifted Q integer Bits

0.01 1166.188211 1166 12
0.1 11661.88211 11661 15
1 116618.8211 116618 18
10 1166188.211 1166188 22
100 11661882.11 11661882 25

‘scale offset’ filter and ensures minimal additional loss in precision
when combined with wavelets, as most of a coefficient’s entropy is
captured in its integer component. For example, a coefficient value
of 3027.567812346 is converted to the integer 3027 567, using a
three-decimal scale off-set shift of 1000. Table 1 lists the number
of bits used to represent a floating-point value as an integer.

This technique allows us to control the precision of coefficients.
By using the natural wavelet hierarchy, coefficients at the lowest
bands have the largest magnitudes and importance. Therefore, one
should preserve them at higher precision compared to those at the
highest bands, having lowest magnitudes. Example weights for an
extraction of eight levels are [100, 10, 10, 10, 10, 10, 1, 1], where
more bits are used at the lowest and less bits at the highest levels.

2.4 Encoding

The simplest and most common encoding method available is run-
length coding (RLE), which efficiently packs wavelet coefficients
after quantization. RLE counts the number of repeated byte spaces
in a data set and compacts the representation with a single value.

As a more valuable option, we use off-the-shelf, dictionary-based
lossless compression methods to expand the overall capabilities of
our method. The LZ4 method (Collet 2011) is characterized by its
extremely high speed, coming at the expense of low compression
ratios; the BZIP2 method (Steward 1996) leads to high compression
ratios, coming at the expense of low speed. The GZIP technique,
traditionally applied to sky survey data sets, exhibits performance
that lies somewhere in the middle, producing average compression
ratios and computation times. When combined with the floating-
point-to-integer quantization method used in the previous section,
applying lossless compression on the lossy represented coefficients
demonstrates to be an efficient way to pack coefficients for storage.

2.5 Decompression

Decompression of astronomical images using the pipeline shown
in Fig. 5 takes much less effort than compression. Decompression
merely decodes the coefficients for reconstruction and reapplies
inverse weights for requantization.

2.6 Object detection

Analysis on astronomical imagery is typically performed after data
acquisition, including object detection of stars and galaxies. By
using these methods, we can quantify the impact on compression
and decide which method best preserves additional properties in
images.

In Zheng et al. (2015), an improved method for detecting objects
of interest (galaxies and stars) in astronomical images was recently

presented. This new method combined various global and local
subroutines to improve detection over existing methods. In this
work, after a global detection scheme is applied, refinement is done
by dividing the entire image into several irregularly sized subregions
using the watershed segmentation method. A more refined detection
procedure is performed in each subregion by applying adaptive
noise reduction and a layered strategy to detect bright objects and
faint objects, respectively. Finally, a multithreshold technique is
used to separate objects that initially blended together. On both
simulated and observational data, this method detected more real
objects than SEXTRACTOR at comparable object counts. The method
also had an increased chance of successfully detecting very faint
objects, up to 2 mag fainter than SEXTRACTOR on similar data.
Because of the improved detection properties of this method and
its measurable ability to extract faint objects, it is best suitable for
testing compression.

3 TESTS AND RESULTS

3.1 Data sets

The following data sets are used to evaluate the accuracy of these
methods.

3.1.1 DLS data set

The Deep Lens Survey (DLS) data set (Wittman et al. 2002)
used for testing is taken from a deep BVRz’ imaging survey that
covers 20 deg2 to a depth of approximately 28th mag (AB) in
BVR and 24.5 in z (AB). Our subsample includes four FITS files
of size 4096 × 4096. The survey was taken by the National
Optical Astronomy Observatory’s (NOAO) Blanco and Mayall 4-m
telescopes. The images correspond to four waveband filters of the
same sky area: R, V, B, and z.

Because of the observational nature, there is no ground truth
catalogue. To generate one, we compare the objects detected in
different bands to gather a coinciding subset of detected objects that
are likely to be real. Since the R band is used as a detection band
by the DLS survey due to its excellent depth and seeing, detection
results of other bands are often verified against it. To compare all
types of compression methods, we focus on the R-band FITS file1

due to its prominence in sky survey analysis. In addition, for several
levels of lossy compression we detect objects and their properties
to compare to the original.

3.1.2 LSST data set

The LSST data set (LSST Science Collaborations 2009) is a simu-
lated set of images that use target parameters for the future LSST
project. Using GALSIM, the lens properties and other characteristics
of the telescope can be simulated to produce expected outputs for
the upcoming observational data sets. Our sample set of FITS files2

is of size 4000 × 4000 containing several bands. Unlike the DLS
data set, which represents a series of stacked images, this simulated
data has noise added to replicate that of the future telescope. Each
pixel in an image represents about 0.2 arcmin of real space, so
we can expect a single fits file to represent 800 × 800 arcmin2 or
0.05 deg2 depth covered by these images.

1http://dls.physics.ucdavis.edu/imdownload.html
2https://www.lsst.org/scientists/simulations/phosim
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Figure 5. Decompression pipeline. The decompression pipeline requires much less effort than the compression pipeline. Decompression can be performed
efficiently and, in some cases, can omit reconstruction altogether for fast data analysis.

Table 2. Comparison between compression methods. Traditional
lossless compression methods result in larger file sizes, while our
lossy method achieves a high compression ratio while preserving
98 per cent correct objects.

Compression type Size (MB) CRatio Time (s)

None 64 1.0 –
LZ4 17.92 3.57 11.87
GZIP 15.04 4.26 18.89
BZIP2 9.54 6.71 14.42
SNOWPAC 6.55 9.77 10.32

The LSST data contain the simulated raw output of a single
survey image therefore it is difficult to run object detection for
validation on it. Without a form of pre-processing, object detection
methods will introduce a significant amount of false positives (FP)
without stacking. The object detection method used for this analysis
is intended to be used on stacked sets of images. As a pre-processing
step, we have emulated the effects of image stacking on one of the
regions for the LSST data, which in-turn removes the most obvious
pixel-sized artefacts. Thereafter, we can run compression and object
detection schemes on this data.

3.2 Compression types

In Section 2.4, we discussed the usage of various alternative lossless
compression schemes to efficiently encode our coefficients. One
might ask, why not use these directly on the original data? Table 2
explores that comparison between these traditional compression
techniques alongside the wavelet encoding pipeline we have intro-
duced in this paper.

Compared to the alternative lossless methods, we can use our
lossy method combined with the high efficiency of BZIP2 encoding
to achieve compression ratios as high as 9.77:1 preserving over
98 per cent correct objects, compared to stand-alone applications
of LZ4 (3.57:1), GZIP (4.26:1), and BZIP2 (6.71:1). Additionally,
because the quantization of our coefficients reduces the complexity
of the representation of the data through bit reduction, BZIP2
operates much faster compared to the original data. As a result, our
method overall, i.e. computation of the B-spline wavelet transform,
quantization, and encoding, operates faster when paired with BZIP2
(10.32 s) compared to lossless BZIP2 stand-alone on the original data
(14.42 s). When comparing a MATLAB implementation of SNOWPAC

against the lossy methods implemented in C inside of FPACK, we
found that both HCOMPRESS and RICE to be faster in compute time.
A faster, more optimized C++ version of SNOWPAC is planned to
be released in the future to achieve faster performance compared to
the current MATLAB version.

An additional advantage our method is the ability to achieve
further compression by reducing the precision of coefficients
further, and is explored in the follow-up sections. When the wavelet
coefficients are quantized to integers, the complexity of the data
is reduced therefore running an off-the-shelf compressor such as
BZIP2 or LZ4 will reduce the overall compression time compared
to running them on the original data set. The outcome is that our
method has a lower total compute time and a higher compression
ratio at the cost of losing numerical precision.

The choice of the quantization precision (weights) for the smallest
coefficients has the most impact on compression ratios on data sets,
since that is the step of our method that poses the most risk of losing
data fidelity. These changes are evaluated in the next sections.

Besides lossless methods, we also compare against lossy methods
available in FPACK (Pence et al. 2011), which include HCOMPRESS

and RICE. Both methods were tested using recommended parameters
from the FPACK user manual, which include RICE quantization levels
of 8, 4, 2, 1, 0.5, and HCOMPRESS scales of 0.5, 1, 1.5, 2, 2.5, 3, 4 and
a texture size of 256 × 256. The lossy compressor PLIO is available
in FPACK, but was unable to process our both data sets reporting a
‘data out of range for PLIO compression (0–2∗∗24)’ error. In addition,
the JPEG2000 implementation available in MATLAB was unable to
process floating point FITS imagery. Because of these issues, both
of these compressors were omitted.

3.3 Evaluation – data set 1

We evaluate the impact of our compression scheme by controlling
the quantization amounts for wavelet coefficients on the DLS data
set. We then compare several quantities related to the detection of
objects in the imagery, such as the number of objects detected and
preserved compared to the original, uncompressed data set.

Fig. 6 compares the ratio of correctly detected objects per
compression ratio relative to the original data set. The accuracy ratio
is a function of objects that are verified against the ground truth, over
the total number of objects in the ground truth. The compression
ratio is a function of the original file size over the compressed file
size. When comparing our method against HCOMPRESS and RICE,
we are able to achieving a higher compression ratio while preserving
a significant amount of correct objects. Additionally, our method is
able to achieve extreme levels of compression (25:1 ratio) and stay
above an accuracy ratio of 0.925. We observe a staircase effect with
HCOMPRESS, where accuracy is greatly affected for decimal-valued
scales such as 0.5, 1.5, and 2.5.

To compare all methods as equitably as possible, we have selected
the compressed data sets closest to a 10:1 compression ratio as seen
in Table 3. From this data, the original ground truth contained
1433 objects. The general behaviour across all lossy compression
methods shows that the total number of detected objects increases as
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Figure 6. Detection accuracy versus compression ratio on DLS. Detection
rates for our method are better preserved as we achieve higher levels of
compression.

Table 3. DLS 10:1 compression ratio comparison. At near a 10:1 compres-
sion ratio, all methods begin to introduce noise resulting in more objects
being detected incorrectly. From these compression types, our method
resulted in the highest compression ratio while nearly matching HCOMPRESS

in accuracy, and surpassing RICE in all metrics.

Compressor CRatio Total Correct Accuracy FP

None 1.0 1433 – – –
HCOMPRESS 9.61 1487 1379 0.962 108
RICE 10.08 1471 1352 0.943 119
SNOWPAC 11.64 1453 1369 0.955 84

more noise is introduced through data precision loss. As expected,
the number of correctly detected objects drops and increases the
likelihood of FP. Our method shows that we are able to achieve
the highest compression ratio, reduce the number of FP in detected
objects, and achieve near the highest accuracy (true positives) for
correct objects while compressing an additional 2.00 ratio over
HCOMPRESS.

Alongside detection rates, we examine the effect on objects’
R mag ranges and their quantities in Fig. 7. We map the distribution
of objects throughout different R mag ranges and observe the
residual behaviour. All methods perform similarly, showing that
the total flux of each object is being preserved extremely well, as
represented by the very small residuals. This behaviour holds true up
to a certain point; an R mag of −10. After that point, much elevated
amounts of residuals are observed for RICE and HCOMPRESS that
represent larger deviations from the original R mag distribution.
Our method, SNOWPAC, is able to achieve some of the lowest
residuals across all levels in latter R mag ranges while achieving
the highest compression ratio overall.

A per object R mag analysis is shown in Fig. 8, where each
object’s original R mag is compared as a function of the R mag
difference. All methods perform within a (+/−) 1 R mag difference
up to about an R mag of −12, then objects and their quantities
begin to deviate for some objects. Beyond this range, our method
has more objects clustered near zero signifying a better preservation
of R mag compared to the other methods. One point to note is the
range between −17 and −13, where SNOWPAC has slightly more
error than HCOMPRESS and RICE. Despite this small fluctuation in

Figure 7. R mag difference of compressed DLS data. The original R mag
quantity (magenta) is used to compare against the residual of lossy
compression methods. SNOWPAC (blue) has the least amount of missing
R mag quantity for its detected objects compared to HCOMPRESS (black)
and RICE (red). Bright and large objects are preserved well in general, but
fainter objects classified by their R mag are better preserved.

Figure 8. R mag difference scatter plot for compressed DLS data. The
original R mag quantity is compared for each detected object and the
difference is plotted. In general, all methods perform well up to R mags
of −12, where then quantities tend to deviate more than (+/−) 1. Notably,
SNOWPAC has more objects with less error at larger ranges, but introduces
a small amount of error in ranges between −17 and −13 compared to the
other methods.

error, the detection results were not affected as observed in the rest
of the analysis in this section.

To further evaluate the quality of lossy compression, three
compression methods near the same compression ratio (10:1) are
explored in derived object properties in Figs 9–11.

One important property of detected and classified objects is their
ellipticity, which is used to distinguish stars from galaxies and must
be preserved, along with the angle of the major axis, in order to
properly measure weak gravitational lensing. Fig. 9 compares the
difference of the major axis in ellipticity and how it degrades. Lossy
compression of medium and large objects shows to have minimal
impact on the direction of the major axis. The clustering of objects
towards the bottom of the y-axis shows that this property is preserved
very well across different compression types. When evaluating the
smallest objects, high levels of lossy compression may cause these
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Figure 9. Object angle difference. From left to right: HCOMPRESS, RICE, and SNOWPAC on DLS data. Angle distributions exhibit clustering towards the bottom
and left, indicating that many objects are detected with low error. Larger amounts of clustering for smaller objects can be observed for SNOWPAC, indicating a
lower error compared to the rest. Large and middle-sized objects have similar behaviour across all compression methods.

Figure 10. Object area difference. From left to right: HCOMPRESS, RICE, and SNOWPAC on DLS data. Sorted by the length of the major axis of objects, larger
objects have their area most affected by lossy compression. While both HCOMPRESS and RICE have tighter bounds in area difference, there is more variance
in preservation quality compared to SNOWPAC. While SNOWPAC has a few objects with higher residual area, a larger portion of objects are between 1 and 10
compared to the other methods.

Figure 11. Object position difference. From left to right: HCOMPRESS, RICE, and SNOWPAC on DLS data. Sorted by R mag intensity, most objects tend to
have their centre positions preserved pretty well. As subpixel accuracy is used, SNOWPAC is observed to have consistently lower difference amounts compared
to the rest.

objects that are oftentimes circular in nature to swap their major and
minor axes. Although we have corrected this by comparing only the
shortest difference between these two axes, the small and circular
nature still prompts for larger shifts in direction for a small subset
of the faintest objects. The clustering for the small objects towards
the bottom-left shows a greater preservation of ellipticity for our
method compared to HCOMPRESS and RICE.

Fig. 10 derives the area for each detected object relative to the
original data set. Objects in the figure are sorted by the length of
the major axis, meaning larger objects will be to the right of the
plot. At a 10:1 compression ratio, areas of the largest objects start to
have noticeable differences. While SNOWPAC has more objects with
lower error, the maximums of the larger objects are impacted more
than HCOMPRESS and RICE. This can be attributed to the underlying
B-spline-based method that tends to erode high-frequency regions

around objects. Larger objects seem to be the most susceptible to
this but overall more objects with lower errors are achieved.

Fig. 11 uses a flux-weighted, mean position for the area pixels to
derive the centre position of objects allowing for subpixel accuracy.
At a 10:1 compression ratio, all objects are within 2 pixels accuracy
to the original with the majority being within a single pixel accuracy
and below. The distribution of object positions shows two visible
clusters of data points forming, those between a 10−2 and 100 error
and another between 10−3 and 10−2. All three methods work within
similar ranges in accuracy, but SNOWPAC achieves more objects
with lower error (bottom) and has a tighter set of clustered points
for slightly less accurate objects (top) compared to the rest. The
tighter clustering of object errors showing low variance is preferred
as it makes error more predictable. Finally, SNOWPAC is observed
to have more objects with a smaller difference clearly visible by
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Figure 12. Detection accuracy versus compression ratio. The constant,
sparse object nature of the LSST data allows our method to achieve higher
detection rates and compression ratios. Other methods exhibit significant
drop-offs in accuracy. The RICE compressor is unable to reduce the data any
further.

Table 4. LSST 10:1 compression ratio comparison. The best compression
possible by RICE is 6.86 therefore that is used. At near a 10:1 compression
ratio, our method allows for higher number of correct objects, a higher
accuracy ratio and better compression ratio.

Compressor CRatio Total Correct Accuracy FP

None 1.0 401 – – –
HCOMPRESS 9.63 374 373 0.930 1
RICE 6.86 389 387 0.965 2
SNOWPAC 9.79 396 391 0.975 4

the clustering seen between a difference of 0.001 and 0.01 while
achieving the highest compression ratio overall.

3.4 Evaluation – data set 2

The LSST data set poses several more challenges due to its noisy,
non-stacked nature but contains a lesser amount of astronomical
objects per observable area. We compress the data set at various
compression ratios and show the results in Fig. 12.

The LSST data are less object dense when compared to the DLS
due to its higher resolution and smaller subsection of the sky. Objects
also tend to be more elliptical. We extract a total of 401 objects
and were able to preserve nearly 97.5 per cent of the originally
detected objects with a 10:1 compression ratio. Because of the data
being less object dense, we achieve higher compression results than
HCOMPRESS and RICE; however, lossy compression in general may
compromise the future ability to stack multiple images to detect
objects too faint to be detected on a single image. The data sets with
input parameters closest to a 10:1 compression ratio were selected
and analysed starting in Table 4.

The highest compression ratio achievable by RICE was 6.86
and therefore used in this comparison. Both our method and
HCOMPRESS achieved a near 10:1 ratio, without method com-
pressing slightly better. Despite having the best compression for
this comparison, we achieve a 0.975 accuracy ratio when versus
HCOMPRESS’ 0.930 and RICE’s 0.965.

Fig. 13 compares the flux property of objects that were detected
and their R mag ranges. As shown, all of the methods are able to

Figure 13. R mag of compressed LSST data. The original R mag quantity
(magenta) is compared against the residual of various lossy compression
methods. All methods are able to reproduce the original data well, but
only SNOWPAC (blue) has the least amount of missing R mag compared to
HCOMPRESS (black) and RICE (red). Specifically, objects with the smallest
flux are better preserved.

Figure 14. R mag difference scatter plot for compressed LSST data. The
original R mag quantity is compared for each detected object and the
difference is plotted. The distribution of delta R mag shows that SNOWPAC

preserves this quantity more accurately than HCOMPRESS and RICE.

preserve flux well up to a certain range. For ranges that correspond to
some of the faintest objects, SNOWPAC is able to preserve the R mag
slightly better despite being able to achieve a higher compression
ratio (9.79) compared against both RICE (6.86) and HCOMPRESS

(9.63). The largest amounts of residual can be found for both of
the other methods when they failed to detect objects in the −5.0 to
−7.0 range. Effectively, objects in those flux ranges are completely
lost while our method is able to preserve even at that scale.

For objects that are detected across all methods, Fig. 14 plots
each object’s original R mag as a function of the R mag difference.
Despite having the highest compression ratio overall, SNOWPAC

shows to have the least amount of delta R mag compared to
HCOMPRESS and RICE. There are a notable quantity objects with
less error and the overall spread is less. This holds true despite
RICE unable to compress beyond a ratio of 6.86, while our method
reaches 9.79.
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Figure 15. Object angle difference. From left to right: HCOMPRESS, RICE, and SNOWPAC on LSST data. Our method is able to achieve higher amounts
of clustering towards the bottom portion of the angle-difference plot. SNOWPAC and RICE have similar amounts of error, despite having varying greatly in
compression ratios.

Figure 16. Object area difference. From left to right: HCOMPRESS, RICE, and SNOWPAC on LSST data. Sorted by the length of the major axis of objects, larger
objects’ areas are affected the most by lossy compression. Even while having the highest compression ratio, our method is able to preserve objects with higher
precision having less impact on the object area computation.

Figure 17. Object position difference. From left to right: HCOMPRESS, RICE, and SNOWPAC on LSST data. Sorted by the value of R mag, most objects for all
methods have a centre computation error of at most 1.5 pixels. The majority of centres are within subpixel accuracy, with both SNOWPAC and RICE having the
lowest. RICE has lower observable error only because it is unable to compress above a ratio of 6.86, compared to SNOWPAC’s 9.79.

Additional insight can be gathered by analysing the objects and
their ellipticity. Fig. 15 compares the quality of the major axis
when computing the ellipticity of detected objects. In general,
lossy compression of all types has little impact on the direction
of the major axis signified by the clustering on the lower left.
Nevertheless, the direction of the major axis is preserved very well
for our method and RICE. SNOWPAC achieves similar results as
RICE, despite having a larger compression ratio (9.79 versus 6.86).
Additionally, when comparing SNOWPAC and HCOMPRESS with
their similar compression ratios, SNOWPAC has tighter clustering
for small object errors signifying a greater preservation of object
properties.

Likewise, Fig. 16 compares the area of each detected object
relative to the original data set. The index of objects is sorted by
the length of the major axis, objects to the right of the figure are the
largest in size. While achieving the highest compression ratio, our

method is also able to preserve the physical properties of objects
the best by having the lowest error in area computations.

Fig. 17 analyses the effects of lossy compression on deriving
the centre position of objects. The index of objects is sorted by
their respective R mag value, meaning left-to-right denotes fainter
to brighter objects. In general, medium- to high-R mag objects are
affected the most by compression and the centre-pixel computation
of objects. At most, objects are 1.5 pixels off-centre and the majority
lie within subpixel accuracy. Similar to the DSL data, the LSST data
show an observable clustering behaviour of two clusters of objects
with error. Comparing HCOMPRESS and SNOWPAC, though both
achieve similar compression ratios, SNOWPAC has more objects
tightly clustered towards the upper regions and more numerous
amounts of objects towards the bottom region. Although RICE is able
to achieve more objects with lower error as seen by the clustering
of object errors towards the lower regions, our method is able to
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nearly match RICE’s detection performance with over an additional
+3.0 compression ratio in savings.

3.5 Discussion

The selection of both types of data was made to test the effects of
high- and low-density objects with lossy compression. While one
data set has a wider view of the sky with many more astronomical
objects, the other has a narrower, better well-defined series of objects
at a lower count. The selection of these different ranges of data
shows the flexibility of our compressor and its ability to preserve
features at different density scenarios. Less object-dense data sets
such as the LSST are able to achieve significantly higher ratios and
accuracy compared to more dense data sets, highlighting one of the
strengths of our compressor. Across several bands, we found that
general compression performance was similar, which is expected,
since it will adapt its top wavelet components to the point spread
function (PSF) of the specific image being compressed.

We have selected input parameters for all methods to achieve
extreme, medium, and low compression scenarios, shown in Figs 6
and 12. As shown in these sections, conservative compression
ratios of about 5.0 on sparse-object data sets can achieve nearly
an accuracy ratio of 0.99, and a compression ratio of about
10:1 an accuracy ratio of 0.975. The scaling of accuracy versus
compression ratio makes our method the ideal choice for the general
purpose compression of astronomical images. File sizes can be
significantly reduced, much lower than standard GZIP by simply
using higher quantization and the native wavelet hierarchy structure.
As observed with DLS, a massive reduction can be made up to 25:1
compression ratio and still preserve 0.93 accuracy ratio of detected
objects.

The compute trade-off for using BZIP2 versus LZ4 for encoding
quantized coefficients may be significant in lower performing sys-
tems. BZIP2, while extremely efficient in compression capabilities,
is several magnitudes slower than LZ4. It is in this case that we
would recommend using our method with LZ4 for high-performance
applications. The general case, when file size and compression
ratio are the priority then BZIP2 would suffice for general lossy
compression of astronomical images.

4 C O N C L U S I O N S

Future sky survey telescopes will generate truly massive data sets,
creating challenges for data representation, storage, transfer, and
analysis. Lossy data reduction methods, exceeding the compres-
sion capabilities of lossless compression methods, are necessary
to reduce data sizes significantly. Lossy data compression has
become more acceptable in many domains, and it is therefore
crucial to understand what is lost when utilizing lossy methods.
We have introduced and characterized a cubic B-spline wavelet-
based lossy compression method that achieves high levels of data
size reduction without significant loss of astronomically relevant
objects.

Using qualitative and quantitative analysis, we have shown
that SNOWPAC can conservatively preserve up to 98 per cent of
astronomical objects while achieving a 10:1 compression ratio,
achieving better performance than both RICE and HCOMPRESS.
This level of reduction is critical to support image-intensive data
processing pipelines and minimize bottlenecks in integrated systems
and network-based collaborative research. The method exhibits high
fidelity with respect to original magnitudes and object shapes and
orientations, which are critical for weak-lensing applications. The

implementation of our method is freely available (Pulido 2019), in
C++ and MATLAB.

The current implementation uses fixed configurations of weights
needed for quantization. This current implementation has made little
effort to optimize the weights used for quantization, increasing the
possibility of higher compression ratios in future versions. It is
possible to make the software more flexible by having it explore
image data for signs of structures of different scales to automatically
adjust the weights, thereby permitting the adaptation of threshold
values to the specific signals in an image.

Wavelet methods have also been studied for the purposes of cat-
aloguing and object measuring performed directly on compressed
data, since relevant object features are often captured in encoded
form in specific scales of a wavelet representation. Taking advantage
of this fact should lead to significant data processing acceleration,
compared to data processing methods that can be applied only to
decompressed images.
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