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ABSTRACT

Progressive refinement is a methodology that makes it possible to
elegantly integrate scalable data compression, access, and presen-
tation into one approach. Specifically, this paper concerns the ef-
fective use of progressive parallel coordinates (PPCs), utilized rou-
tinely for high-dimensional data visualization. It discusses how the
power of the typical stages of progressive data visualization can
also be utilized fully for PPCs. Further, different implementations
of the underlying methods and potential application domains are
described. The paper also presents empirical results concerning the
benefits of PPC with regard to efficient data management and im-
proved presentation, indicating that the proposed approach is able
to close the gap between data handling and visualization.

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Theory and Methods

1 INTRODUCTION

Data visualization usually involves large data sets to be handled
leading to two effects that hinder appropriate data analysis: (1)
long processing and transmission times and (2) clutter in the visual
data representation. In the past, solutions to solve both issues have
been proposed mainly by the use of established data management
solutions, like online analytical processing (OLAP), and scalable
visualization techniques. The loose coupling of these two com-
ponents, however, causes problems in interactive data exploration.
This especially applies for the highly redundant access to the differ-
ent level-of-detail (LOD) of the data causing existing management
solutions to handled already processed data multiple times. The use
of redundancies, however, is absolutely essential in visual data ex-
ploration usually performed by applying small incremental changes
to current data views only. This dilemma clearly indicates a gap be-
tween data management and visualization.

Progressive data displays [15] adopting the principle of pro-
gressive refinement (progression) from the domains of image
communication and volume rendering [11] unify all visualization
stages into a single strategy. Proper data management is achieved
by scalable data compression and random access allowing to
handle and transmit the different LODs of the data with high
resource efficiency. A novel kind of scalable data presentation is
achieved by incremental data reconstruction. The resulting data
previews support the analyst in gaining insight into the data early
and successively. Solutions based on this concept have already
been proposed for the visualization of hierarchical [15] and abstract
data [14]. The multiple problems imposed by more complex data
and their representation, however, have not been discussed so far.
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This paper discusses how progression can be made available
for the parallel coordinates (PC) plot. PC is probably the most
widely referenced technique to display multi-dimensional data [9].
It is founded on a projection of the data into two-dimensional space
that leads to dimension axes that are displayed as parallel line
segments. An individual data point is represented by a polyline
intersecting the axes dependent on its respective dimension-specific
values. One of the disadvantages of PC is the heavy over-plotting
even for a small number of data points (see Figure 1, d). Our goal
is to introduce novel ways for data management and presentation
for the PC display. The key contributions of this paper to the
current state of research can be stated as:

1. Discussion of means for combining scalable data compression
and representation for PPCs.

2. Discussion of means for demand-driven data ordering and
representation for PPCs.

3. Empirical evaluation of technical and semantic benefits of
progression for PPCs.

Section 2 is concerned with the analysis of progressive refine-
ment and its relation to research that was done for PC. All associ-
ated aspects, as scalable compression and visual representation as
well as options for a flexible demand-driven data ordering, are dis-
cussed in Section 3. Solutions for the associated problems either by
novel approaches or the application of existing research are intro-
duced leading to progressive parallel coordinates (PPC). Potential
application domains of broad impact are introduced in Section 4.
In order to show the achievement of our goals, Section 5 provides
empirical results regarding data management and presentation. In
Section 6 we conclude that PPC tightly combine both aspects lead-
ing to a much lower resource consumption.

2 RELATED RESEARCH CONCERNING PROGRESSIVE RE-
FINEMENT

Prior analysis [2, 15] has revealed that all progressive refinement
schemes first transfer the source data into an appropriate LOD hier-
archy before they are incrementally transferred and displayed. As
hierarchy-building is the most complex process in the whole refine-
ment process, this hierarchy is created and stored only once and
used multiple times for different demands. Thus, it must be highly
flexible and basically satisfy the following two requirements: (1)
scalability and (2) compression and random access to the encoded
data. Its visual representation during refinement must be carefully
chosen to avoid misinterpretations of the provided previews. The
need to serve different requests requires mechanisms for flexible
data ordering. Each of these requirements is now considered in
more detail with regard to data visualization and the PC plot.
Scalability Introducing scalability in the data is a current re-
search topic of broad interest. Many approaches and strategies for
either data [4], presentation [8], or image space [13] have already
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Figure 1: PPC can provide additional insight into the data, such as
outliers (a) or trends (b,c). This information is usually hidden by clut-
ter (d), but can be made visible by using an appropriate strategy for
hierarchy-building like clustering (a), wavelet transform (b), or recur-
sive interval subdivision (c). Due to the strongly decreased number
of displayed primitives (in %), early refinement stages are especially
well-suited to convey data properties covered within the fully detailed
display. This also reduces resource consumption.

been proposed. Probably the most significant methods in data space
are general (e.g., wavelet transform) or importance-driven transfor-
mations (e.g., principal component analysis), subsetting (e.g., ran-
dom sampling), segmentation (e.g., cluster analysis), and aggrega-
tion. With regard to progression all these approaches can be applied
as long as the process leads to a meaningful LOD hierarchy. Leaf
nodes of the hierarchy thereby are required to represent the original
data items and the inner nodes the aggregate items of all the items
associated with the respective subtree [5].

Most of the scalability approaches proposed in the literature are
designed for the geometry used by a specific visualization tech-
nique. YANG ET AL. [19] presented a framework for interactive hi-
erarchical displays and introduced many examples including multi-
dimensional data. More recently, the articles of ELLIS AND DIX
[4] and ELMQUIST AND FEKETE [5] covered more general aspects
and strategies for introducing scalability in visualizations.

Scalable presentation methods have also been proposed for PC.
Prominent examples are the methods by FUA ET AL. [6], YANG ET
AL. [19], and more recently ZHOU ET AL. [20]. They are mostly
based on hierarchical clustering and allow for a meaningful scal-

able representation. However, they do not touch on the data man-
agement aspects limiting the potential application domains to high-
performance systems. A strategy based on scalability in image-
space was proposed by NOVOTNY AND HAUSER [13]. It is funda-
mentally different from our approach that is applied in data-space.

Compression and random access In order to reduce resource
requirements, appropriate means to compress the LOD hierarchy
and to access its individual values in compression space must be
found. Hierarchical compression approaches remove redundan-
cies that exist between the different levels and usually transform
absolute to relative values allowing for quick random access to sin-
gle LODs. In visualization, most associated compression methods
have been developed for data with spatial references, such as vol-
ume data [11] or geometry [8], and cannot be applied broadly. A
generic approach for geometry compression has been proposed by
Deering [3]. It is referred to as AA-coding and can be meaningfully
applied where ranges of values continuously decrease. Not much
is known about a generic scalable compression of abstract or multi-
dimensional data. This is probably due to the fact that these data
sources cover a wide range of properties that must be taken into
account for meaningful compression. We adopt the principle of A-
coding to propose a novel compression and random access strategy
for multi-dimensional numerical data.

Visual representation The visual appearance of aggregated
values is important to interpret a data preview and thus is strongly
technique-dependent. Existing hierarchical representations for PC
mainly use polygons to show the distribution of the data [6, 19, 13,
20]. These polygons are usually colored to allow for visual distinc-
tion and made transparent to reduce the effect of over-plotting. We
adopt polygons as one option and propose a novel means to display
aggregated items.

Ordering The LOD hierarchy and means for random access
provide options to represent the compressed data in many different
ways. This, however, is highly dependent on the respective data
type. Different concepts for trees (node-of-Interest, [15]) or geom-
etry (geometry-of-Interest, [15]) have been introduced. Common
to all is that items-of-interest are handled and presented first. We
adopt and enhance this concept for the demand-driven presentation
of multi-dimensional data.

To summarize, technology related to progression has already
been proposed and can be used to solve selected aspects of its im-
plementation. An appropriate application of progression to multi-
dimensional data and PCs is still missing. This paper closes this
gap by proposing novel solutions and taking advantage of estab-
lished research.

3 PROGRESSIVE PARALLEL COORDINATES

In order to make progression available for PC, meaningful solutions
for all of its requirements must be provided. We present three differ-
ent approaches to achieve scalability of the source data. For com-
pression and random access we introduce a strategy that is based
on A-coding. We also discuss two strategies for an appropriate vi-
sual representation. Based on the created and compressed data hi-
erarchy, novel and widely applicable concepts for data ordering are
introduced later. All individual solutions are independent modules
within the progressive processing pipeline [15]. To accommodate
other needs, they can be easily substituted by different implemen-
tations.

3.1 Scalability

In this paper, we focus on multi-dimensional numerical data. Re-
cursive interval subdivision is a novel approach for hierarchy-
building and introduced first. From the class of existing strate-
gies for hierarchy-building, we selected the wavelet transform and
hierarchical clustering covering a broad range of abstraction ap-
proaches.
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Figure 2: Recursive interval subdivision of the values of a selected
dimension is based on incremental splits of a given interval in two
new intervals. This approach successively reduces the value range
leading to efficient and low-complexity forms of data compression
founded on A-coding.

3.1.1 Recursive Interval Subdivision (RISD)

RISD is a top-down approach and applied to each dimension of a
given data set independently. Starting with all the values of a se-
lected dimension, it divides a given interval into two new intervals
(see Figure 2). These two intervals form a new hierarchy level and
are again recursively subdivided until there is just a single value left.
This value represents a leaf node of the hierarchy. As illustrated in
Figure 3, the reconstruction of such a hierarchy leads to increas-
ing detail with each additional level. The value used for separation
is considered to be the aggregated item of the interval. Although,
different measures are imaginable, we propose to take advantage
of the median value as it is widely considered to represent a set of
numerical values meaningfully. Examples of a preview sequence
resulting from RISD are shown in Figure 4, a and b.

Due to the fact that each interval is subdivided into two new in-
tervals, RISD leads to a single binary LOD hierarchy for each di-
mension. As the median value represents a data value that exists
in the original data, there is no additional overhead by hierarchy-
building that might lead to an increased data volume.

3.1.2 Wavelet Transform

The wavelet transform is widely used in image communication and
was also applied to multi-dimensional numerical data. There are
two main approaches: the application of an n-dimensional wavelet
transform [12] leading to a single n-dimensional LOD hierarchy
or the independent application of a one-dimensional wavelet trans-
form to each of the n dimensions leading to n LOD-hierarchies.
Both can be applied for PPC.

The wavelet transform is typically implemented as a bottom-up
approach. Starting from the data values, aggregated values are cho-
sen from given intervals and further merged until there is only a
single value left — the root node of the hierarchy. The respective
value of an aggregate is computed by a wavelet kernel. Differ-
ent kernels exist, but there is basically no limitation by PPC. The
simplest kernel is the Haar kernel. It merges two values into one
resulting in a hierarchy similar to that of an average-based RISD.
We used Daubechies filters of different length in our experiments.
They exhibit better smoothing properties than a Haar wavelet-based
method, which in turn leads to higher visual coherence between the
different refinement levels and previews. Due to the fact that mul-
tiple values are aggregated, the kernel length influences the depth
of the hierarchy. The shorter the kernel, the deeper the hierarchy.
The previews shown in Figure 4, c, were created by using a filter of
length eight. For more detailed information to wavelets applied to
multi-dimensional numerical data the interested reader is referred
to [17] and [12].

Figure 3: lllustration of an LOD hierarchy for PPC constructed by
RISD: Inner nodes of the hierarchy represent aggregations associ-
ated with the corresponding data interval. All nodes of a hierarchy
level contribute to the visual appearance of the presentation at the
particular level (center). The presentation gains accuracy with each
incremental refinement stage. Only incremental data (A) are needed
to encode these changes efficiently.

3.1.3 Hierarchical Clustering

There are many different ways to cluster multi-dimensional data
hierarchically (see [6] for a classification and list), but a particular
method is however not relevant to this paper. We applied an existing
bottom-up approach that clusters the data in n-dimensional space.
This leads to a single n-dimensional LOD hierarchy. The clustering
strategy is based on the merging of data points that have a small
Euclidian distance to each other. If points are within a chosen range,
they are merged into a cluster. If there are no more points left that
can be merged, the lowest level of the hierarchy is considered to be
found. The procedure continues with the next higher level based
on the cluster centers used as aggregated items. Thus, clusters and
points are successively merged into super clusters until there is only
one cluster left. Selected previews resulting from such a strategy are
shown in Figure 4, d.

3.2 Compression and Random Access

An LOD hierarchy is highly redundant. For compression we take
advantage of its inherent property that each aggregated item has
a similar value with regard to all values of the associated subtree.
In terms of signal processing this value represents the power that
is inherent in all detail values and can be removed without loss of
information. In order to achieve that, we adopted the general A-
coding approach proposed in [3] for the compression of numerical
data. Instead of storing absolute values for all hierarchy nodes, rel-
ative values are used. Starting from the root node, they can simply
be found by removing the power associated to an aggregation item
from all direct child nodes.

By taking advantage of the increasingly smaller distances be-
tween parent and child nodes within the hierarchy (see Figures 2
and 3), compression is achieved by reducing the number of bits
needed to encode these distances. While all bits are required to en-
code the value associated to the root node, much less bits are needed
at the leaf nodes. Only the associated parent nodes are required to
decode individual values allowing for random access.

This strategy offers a good trade-off in complexity and compres-
sion efficiency, and ensures that all data values can be reconstructed
without loss. It is also highly generic. We applied A-coding to all
discussed scalability approaches. Dimensions were compressed in-
dependently.



Figure 4: Visual representation of the LOD hierarchies resulting from RISD by lines (a) and polygons (b), from a wavelet transform by lines (c),
and hierarchical clustering by polygons (d). The individual previews represent the refinement stages 1, 3, 6, 9, 11, and 14 (from left to right). The
strongly different representations and refinements of an identical data set can be used to convey different properties of the data. Refinement to

the highest LOD leads to the traditional PC plot for all approaches.

3.3 Visual Representation

The scalable display of a PC plot requires appropriate means for
the representation of its aggregated items. To achieve this, we pro-
pose a novel approach that is based on polylines. We also show how
polygons can be used for PPC. The resulting representation and re-
finements depend on the purpose of the progressive display and also
on the used decomposition strategy.

3.3.1 Polylines

The merit of a polyline-based representation of aggregated items
lies in its ability to highlight data properties that are of interest to
the viewer. If the underlying principles used to generate the aggre-
gated values are known in advance, the associated information is
inherently conveyed.

All hierarchies created by the discussed scalability approaches
can be represented by polylines. The resulting previews, however,
strongly differ from the representation of all data points. Therefore,
polylines should only be used when the aggregates have a mean-
ing to the viewer. Aggregates resulting from RISD represent me-
dian values, the aggregates resulting from the wavelet transform
and clustering average values of the given value range. Initial pre-
views of the refinement sequence shown in Figure 4, a and c, clearly
convey these properties of the underlying data set. As shown in Fig-
ures 1, b and c, this can help to detect global trends within the data.

Statistical values must be considered in context in order to be
meaningful. We encoded the number of data points within a certain
interval in the thickness of a line. This also conveys the approxi-
mate distribution of the data (see Figure 4, a and c). To improve
visualization quality, we applied transparency that has a constant
value for all lines and refinement stages.

3.3.2 Polygons

Polygons allow one to create the appearance of the fully detailed
view (see Figure 4, b and d), and thus are the most natural choice for
the representation of aggregated items in PC. They are especially
meaningful when a range of values is to be conveyed.

All introduced strategies for hierarchy-building can be used to-
gether with a polygon-based representation. Each refinement stage
leads to two (RISD, Haar wavelet) or more (Daubechies wavelets,

clustering) new bands that are specified by the boundaries of the
interval associated to an aggregate. Despite the use of much less
graphical primitives in the previews, the use of polygons leads to
over-plotting making the distinction of individual polygons diffi-
cult. To overcome this problem, we take advantage of transparency
that is adaptive to the size of the primitives. It is usually high in first
refinement levels and decreases towards the detailed values.

3.4 Ordering

The introduced data compression technology provides means to
randomly access individual values within the LOD hierarchy. This
flexibility can be used to design each preview and the whole re-
finement strategy dependent on pre-determined or current demands.
This has crucial advantages for static and interactive visualizations.

The most simple ordering strategy is data-driven refinement. To
support this functionality, the hierarchy is traversed breadth-first
creating a single preview for each hierarchy level (see Figure 3).
Ordering, refinement, and display of the data in a nearly arbitrary
fashion is made possible by the modular hierarchy and options for
random access (see Figure 5). For the introduced compression ap-
proach, this is only constrained by the requirement that all asso-
ciated parent nodes of a considered node must be transferred first
to enable its decoding. This, however, is not a strong limitation in
most application domains. Two novel ordering concepts based on
the general item-of-interest principle are proposed.

Figure 5: Ordering dependent on pre-defined or current interests:
Different traversals of the LOD hierarchy lead to different previews.



Figure 6: Cluster-of-interest refinement to prioritize and refine on a cluster basis. Red polygons represent clusters selected for refinement in the
next preview, orange polygons clusters that are currently refined. Interesting clusters can be pre-defined or interactively selected.

Cluster-of-interest (COI) This concept refers to the inde-
pendent refinement of individual clusters and is meant to be used
with LOD hierarchies obtained by multi-dimensional clustering ap-
proaches. It allows one to highlight one or multiple selected clusters
and to refine the associated values earlier than others (see Figure 6).
As a result, outliers can be emphasized (see Figure 1, a) or clusters
at different detail levels compared.

Dimension-of-interest (DOI) This concept refers to the pri-
oritized refinement of individual dimensions and can be applied to
scalability approaches leading to a single LOD hierarchy for each
dimension (RISD, wavelets). DOI is especially useful when there
are dimensions that are more important than others, e.g., as deter-
mined by methods proposed in [1] and [18]. An example for RISD
assuming an interest ordering of dimensions is shown in Figure 7.

It is worth noting that in data transmission environments it must
be ensured that each received data value can be identified to recon-
struct the LOD hierarchy. We used a simple protocol assigning to
each data value a unique id for this purpose.

Figure 7: Dimension-of-interest refinement prioritizing important di-
mensions. In this example importance decreases from the left to the
right axis. Dimensions may also be prioritized interactively.

4 APPLICATIONS

In this section, we present application domains for PPCs that can
strongly benefit from their support for efficient data management
and provided means for improved data presentation. The given
examples are of broad impact in data visualization and shows the
wide applicability of the approach.

4.1 Data Management
4.1.1 Interactive Visualization

Interaction is an important part of data visualization systems. PPCs
can support many different demands a user might have during

browsing the data. Common data exploration is supported by two
means: (1) scalable data representation based on the LOD hierarchy
and (2) efficient strategies for data handling and transfer.

Many interactive data exploration techniques, such as hierar-
chical parallel coordinates [6], show the data at multiple levels-
of-detail. Calculating meaningful LODs is often a complex task.
PPC efficiently supports any kind of hierarchical data exploration
by transferring and storing the data in a scalable manner by a one-
time pre-process. The resulting aggregations can then be accessed
quickly, multiple times, and during different sessions. Due to the
introduced COI and DOI orderings, previews can show aggregated
and data items together not limiting the user in the exploration pro-
cess. Data refinement can easily be adapted to the individual and
even frequently changing interests of the analyst.

Networked displays that require data transmission before data is
to be displayed can take full advantage of this functionality. The
tight coupling of random access and demand-driven ordering of
still encoded data pieces ensure that all requests can be served in
a resource efficient manner. Interactive changes during an ongoing
refinement require only a re-ordering of data pieces that have not
yet been transmitted enabling truly non-redundant data dissemina-
tion. The fact that only selected data pieces are transmitted leads
to the crucial advantage that the transferred data volume does no
longer depend on the original data source, but on the current inter-
ests of the analyst only. This is of strong advantage especially for
very large data sets and strongly resource-limited devices.

4.1.2 Device Adaptation

The variety of available viewing devices increases steadily mak-
ing a meaningful adaptation of the displayed data mandatory. It
is not surprising that most existing solutions are based on scalable
data representation [13]. PPCs are inherently scalable and therefore
well-suited for device adaptation.

Device adaptation involves many different system parameters

Figure 8: PPC applied to quickly adapt the presentation to the screen
estate available on the respective viewing device.



and is highly complex. Prior research has already made sugges-
tions for the use of progressive data displays for low-complexity
device adaptation. Common to all available solutions is that the
data is refined incrementally until the handling and display of addi-
tional items exceeds the device’s capabilities in terms of computing
power, bandwidth, or screen estate. Such solutions are fully sup-
ported by PPC and can be applied without modifications making
PC plots instantly available for a broad variety of viewing devices
(see Figure 8). More details to the implementation of such device
adaptation strategies can be found in [14].

4.2 Data Presentation

Data presentation by narrative visualization strategies has gained
increasing interest [16]. PPC supports such data presentations espe-
cially in their author-based and passive forms, as the Martini glass
style [16]. Progressive story-telling can mainly by accomplished
by a well-designed preview sequence allowing for an incremental
build-up of insight about the data. First levels may show a coarse
overview consisting of a few simple items or properties only. In
the following, interesting parts of the presentation can be further
refined to convey associated details. Thereby, context is always
provided by the higher level aggregations of unrefined items. An
implementation of such a story based on PPC is straightforward
as the overview is inherent in the LOD hierarchy and the interest-
driven refinement sequence can be achieved by the introduced data
ordering concepts. Data ordering may be initially pre-defined and
interactively modified to accommodate individual interests.

The different line-based representations were designed to convey
information about statistical properties of the data. Thus, no spe-
cific sequencing, but only simple data-driven refinement is needed
to create narrations that aim to convey statistics about the under-
lying data set. Two typical examples are illustrated in Figure 1.
Telling stories about outliers in a data set can be achieved by tak-
ing advantage of the proposed hierarchical clustering approach. It
keeps outliers separate during hierarchy-building positioning them
at high levels. Thus, they will appear in early refinement levels and
shown in relation to the data clusters (see Figure 1, a). Another ex-
ample is the support for the visualization of trends. The proposed
RISD and wavelet-based hierarchy-building are based on the aver-
aging of values. As shown in Figure 1, b, ¢ and d this leads to an
inherent highlighting of trends that are otherwise hidden by clutter.

5 RESULTS

In this section we show the results obtained from our implementa-
tion of PPC. Thereby, we focus on aspects related to our goal for
efficient data management and means for improved data presenta-
tion. We also comment on some of the drawbacks of the approach.

5.1

We discuss aspects that are valid for stationary and networked en-
vironments: complexity of hierarchy-building and encoding, the re-
sulting data volume, and the time required for decoding and dis-
play. Ordering has very low complexity and is therefore neglected.
The results were obtained by a PPC implementation in JAVA taking
advantage of the PREFUSE toolkit [7]. The experiments were ex-
ecuted on a modern desktop computer equipped with an Intel Core
17-920 and 6GB RAM.

Data Management

5.1.1

Due to their inherent scalability, PPCs are basically not limited in
the number of data points that can be processed. Most resources are
consumed by one-time hierarchy-building. The results we obtained
regarding the computing power required by the introduced scala-
bility approaches and compression using A-coding are depicted in

Complexity of Hierarchy-Building and Encoding
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Figure 9: Time needed to calculate and A-code the LOD hierarchy
for data sets of different volumes using the discussed scalability ap-

proaches.

Figure 9. We experimented with data sets ranging from small vol-
umes to volumes that are still challenging for current data manage-
ment and display solutions for PC.

RISD and wavelet transformation exhibit a similar performance
for all data sets. The gain in higher detail levels is based on the fact
that the used wavelet transform was implemented in C++. Thus, it
is up to 10 times faster. As the complexity of the RISD algorithm
is comparable to the used wavelet transform, similar performance
of its C++ implementation can be expected. The complexity of the
used hierarchical clustering approach increases exponentially with
each additional detail level. This is due to the fact that it compares
in a pair-wise fashion the different points to form clusters. It shows
highest complexity.

A-coding has very low complexity as only the relevant distances
of a data value to its parent value must be determined. This method
only requires fast memory look-up operations and simple calcula-
tions.

5.1.2 Data Volume

Figure 10 illustrates the volumes of the data set plotted in Figure 1
(50,000 points, five dimensions) resulting from the application of
no, constrained range-, and A-coding. The shown accumulated
contributions for each level indicate the amount of data required to
provide a certain LOD. The hierarchy was created using RISD.
For all set-ups very little data is required to provide the first pre-
views (see also Figure 1). The assessments obtained for the applica-
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Figure 10: Data volume (blue bars) associated with the different re-
finement stages using RISD for no, constraint range coding, and A -
coding. The computing power (red line) needed to decode and dis-
play A-coded data shows the correlation with data volume and the
low complexity of the processes.



tion of no compression show that the data increases exponentially
with each incremental hierarchy level. The increase is smaller at
higher-detail levels as interval subdivision does often not lead to the
same depth for all subintervals. As the data is stored in a common
data type, the data volume is largest. Contrary, constraint range
coding determines the range of all values in order to calculate the
minimal number of bits required to store an individual value. All
values are encoded in the resulting precision. This leads to a re-
duction of the required data volume, as often not the full preci-
sion provided by common data types is required. The best com-
pression performance is achieved by A-coding determining the re-
quired number of bits for each individual interval and value. While
its performance is almost identical at first decomposition levels, the
number of used bits decreases constantly. Compared to the other
strategies, there is hardly any increase in the volume by data resid-
ing at higher hierarchy levels. With regard to all data, /A-coding
requires only 10% of the data volume compared to no compression
and 20% compared to the simple constraint range strategy. In other
words, A-coding reduces the response times of PPC in networked
environments by factor 10.

5.1.3 Decoding and Display

To illustrate the efforts required to provide the different incremen-
tal previews, we assessed the time that is needed to partially decode
and display the associated data using A-coding. We used the same
data set as for the illustration of the required data volume. Fig-
ure 10 shows the expected correlation between execution time and
the amount of data to be handled. As decoding of A-coded data has
little complexity, these processes are fast.

5.2 Data Presentation

Although it is widely accepted that hierarchical approaches
can improve data presentation, this has never been verified for
progressive data displays. We conducted a user study in order to
evaluate whether PPC can provide a better conveyance of data
properties compared to traditional PC. We focused on the detection
of patterns often stated in the literature as one of the advantages of
PC [10]. Our study was designed to answer the following questions:

Q1 | Do PPC achieve a higher correctness in the detection
of patterns within the data?

Q2 | Do previews enable the viewer to detect patterns be-
fore all data is available?

Q3 | Do PPC lead to an improved user experience?

5.2.1 Design and Methodology

We used the Amazon Mechanical Turk micro-task service as the
general test environment. 43 distinct participants covering the
whole spectrum of common users were recruited (no (13%), ba-
sic (37%), advanced (30%), and expert (14%) knowledge in data
visualization; 6% did not state their expertise).

We created a test series comparing the performance of PC and
PPC for various set-ups. It consisted of 20 individual test pages
of identical structure. Section 1 asked for user expertise. Sections
2 and 3 each consisted of identical questions concerning two dif-
ferent data sets either visualized by PC or PPC. To answer Q1 we
provided two multiple choice questions: ”Can you spot any of the
example pattern in the plot? Where?” and ”Which of the exam-
ple pattern is it?”. To answer Q2 we asked: ”In what refinement
level did you spot the pattern first?”. Section 4 was dedicated to
receive user feedback to answer Q3. We required the participants
to state their opinion to assistance (”What kind of presentation did
assist you most in decision making?” and acceptance (”What kind
of presentation did you like more?”.

With regard to the many options to design a PPC plot, we
selected multi-dimensional clustering for hierarchy-building and

transparent polygons for data representation. The data were refined
uniformly with one hierarchy level per preview. We used 20 arti-
ficial data sets with different properties. One out of four different
patterns had been included in each data set at an arbitrary dimen-
sion. These patterns are common and identical to the ones used in
[10]. To increase the difficulty of the task, we added noise in dif-
ferent levels (0%, 10%, 20%, 40%, 50%). Each data set contained
2000 5-dimensional data points that were randomly distributed. We
decided to use small data sets to guarantee appropriate data pro-
cessing on all hardware of the heterogeneous Mechanical Turk en-
vironment. A PC plot was represented by a static image, a PPC
by a JAVA applet, both of dimensions small enough to cause visual
clutter with all considered set-ups.

Data sets Assistance / Acceptance
® PPC PC

40%

f

Participants
=

e @ ® 0 o o o

° .':”o .

00000 ¢

Gowp?2 | Gowp3  Gowpd  Group5 | Groupb | GroupT PPC PC PPC PC

Figure 11: The number of refinement levels required to detect a pat-
tern (left) indicates that the majority of users (encoded by point size)
achieved the task by previews only. The median of the stated levels
(yellow reference lines) is significantly different to the number of all
available levels (black reference lines). There was also a large pref-
erence for PPC with regard to assistance and acceptance (right). We
interpret this as an indication for an improved user experience.

5.2.2 Results

Before analyzing the given answers statistically, we removed the
data of three participants who misused our test platform. They were
identified by their arbitrary answers to the questions.

Correctness in pattern detection Although PPC always
exhibited a higher average accuracy and much lower standard
deviation, we found no significant difference in the correctness of
pattern detection compared to PC. Similar results were obtained
for all individual data sets and also when correctness is compared
between different noise levels. This can be explained by the fact
that the only difference between both approaches lies in the many
additional previews to the data provided by PPC. If they do not
highlight possible patterns, the correctness of their detection will
not be higher. This was obviously the case for the applied generic
hierarchical clustering and shows that a proper LOD hierarchy is
important for the conveyance of data properties.

Q1 - Reasoning: The tested implementation of PPC did not
achieve a significantly higher correctness in pattern detection.

Refinement level of detection Our results show that the
majority of PPC users detected the embedded pattern during
refinement (cf. Figure 11, left). The respective refinement
levels exhibit a Gaussian distribution that is centered around the
median. This allows for the conclusion that participants either
saw the pattern at a refinement level that is close to the median or
required all details which corresponds to the standard PC display.
Depending on pattern and noise level, the distribution is often
skewed towards the need for less refinement levels. Thus, most of



the perceived detections took place in the second and third quarter
of the refinement process. We conclude that the provided visual
aggregations achieved a close imitation of the data representation
in high LOD levels and pattern detection can be accomplished
much earlier than with PC. The associated saving in data volume
required to detect the patterns is significant. This, in turn, leads
to even higher gains in data management efficiency. Calculated
across all tests and data sets, only 37.04% of all available data were
required to achieve similar results in pattern detection.

Q2 - Reasoning: The tested implementation of PPC enabled the
viewer to detect patterns long before all data is available.

User preferences As shown in Figure 11, right, there was
a strong response for the progressive approach when participants
were asked for assistance and acceptance. 54% of all users voted
for PPC in both aspects. The majority of them (58%) stated that
PPC assisted them better in accomplishing the task than PC. We re-
late this to the many uncluttered views, the incremental build-up of
insight, and the animated data display provided by PPC.
Q3 - Reasoning: The tested implementation of PPC led to an im-
proved user experience.

5.3 Drawbacks

Progressive refinement is based on a single data hierarchy that is
incrementally streamed to the client. This also imposes drawbacks.
Probably the largest issue is the lack of support for data sets that
change frequently. In this case the hierarchy must be renewed of-
ten and data communication started from scratch leading to higher
resource consumption. Another drawback directly related to the hi-
erarchy is the inability of progression to handle data sources that
cannot be aggregated. Many and meaningful levels of aggregation
are required. When only a limited number can be provided, the
available functionality is strongly constrained. Transferring data in
a hierarchical representation usually also introduces redundancies.
This, however, is not a strong limitation as the redundancies can
be removed by suitable compression or appropriate scalability ap-
proaches, e.g., RISD.

6 CONCLUSIONS AND PossIBLE FUTURE RESEARCH

We introduced progressive parallel coordinates (PPC) with the goal
to overcome existing data management and presentation issues
caused by the handling of large data volumes. The advantages of
PPC are explained by efficient data compression, access, and trans-
fer as well as their tight coupling with the final display. Data pre-
views support gaining insight early on with much less data and vi-
sual clutter. The application domains for PPCs are broad and timely.
The results we obtained from empirical tests show that the volume
of the data to be stored or transmitted can often be decreased be
a factor of 10. Options for random access decrease the data to
be transmitted to the essential pieces making possible the handling
of large volumes on strongly resource-limited hardware. In a user
study we revealed that by using PPC on average only 37% of all
data is required to achieve a similar degree of pattern detection as
with the standard approach. Although it was preferred by the ma-
jority of participants, we also found that the tested implementation
of PPCs did not lead to higher detection accuracy.

Future research could be directed at each of the requirements of
PPC. One example is hierarchy-building and recursive interval sub-
division that might focus on different statistical measures. The con-
ducted user study represents a first attempt only to quantify the eli-
gibility of PPCs. A more comprehensive study may obtain a better
understanding concerning their ability to convey data properties. In
conjunction with the development of components able to highlight
patterns, outliers, or trends, this may provide the required profound
evaluation of the merits of PPCs for data presentation.
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