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Abstract—The recent development of methods for extracting determined by specific combinations of developmental regulator
precise measurements of spatial gene expression patterns fromfactors that form part of complex genetic regulatory networks
three-dimensional (3D) image data opens the way for new ultimately coordinating the expression of all genes. As a resull
analyses of the complex gene regulatory networks controlling yho geveloping embryo exhibits an extraordinarily complex set o

animal development. We present an integrated visualization and - . :
analysis framework that supports user-guided data clustering to spatial and temporal gene expression patterns. The basic struct

aid exploration of these new complex datasets. The interplay of Of the genetic regulatory network is defined by the genom
data visualization and clustering-based data classification leads to sequence. However, we currently cannot adequately decipher tt
improved visualization and enables a more detailed analysis than information or correctly predict how patterns of gene expressio
previously possible. We discuss (i) integration of data clustering eyglve.

and visualization into one framework; (ii) application of data The Berkeley Drosophila Transcription Network Project (BD-
clustering to 3D gene expression data; (iii) evaluation of the

number of clusters k in the context of 3D gene expression NTP) is generating _multlple complemgntary datasets to addre:
clustering; and (iv) improvement of overall analysis quality h€se challenges using the eaByosophila developmental regu-
via dedicated post-processing of clustering results based onlatory network as a model. These data sets inclizdetro- and
visualization. We discuss the use of this framework to objectively in vivo DNA binding data for key transcriptional regulators and,
define spatial pattern boundaries and temporal profiles of genes of particular relevance to this work, 3D gene expression data th;
and to analyze how mRNA patterns are controlled by their gescribes the spatial output of the network at cellular resolutio
regulatory transcription factors. for multiple time points [1], [2].

Index Terms— bioinformatics visualization, multimodal visu- A large variety of questions can be addressed using these ne
alization, integrating Infovis/Scivis, visual data mining, three- 3D gene expression datasets [2], [3]. For some analyses, su

dimensional gene expression, data clustering, cluster visualiza- 55 logic-based network models, it is helpful to have an objectiv
tion, gene expression pattern, temporal expression variation, gene description of the pattern of a gene at a particular time point

regulation, spatial expression pattern . ) . .
9 P P P i.e., to define which cells do or do not express a gene. Analysi
of the temporal dynamics of gene expression, i.e., how patterr

I. INTRODUCTION change over time, is essential for gaining a deeper understandil

NDERSTANDING the control of embryo development ISof complex network |nter_ relationships. Knowledge of the |npuj[
C o , . -and output of a network, i.e., the response of the gene expressi

a fundamental question in biology. A cell's unique fate is . . .
network at timet =t ; to the input of the expression levels of
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using two-photon microscopy (see Figure 1, left). Each image i
segmented to extract information, such as nuclear positions ar
volumes, as well as expression values in the neighborhood of ea
nucleus for the chosen genes [2]. The resultRugntCloud file

_ _ N contains information about either protein or mRNA expressior
Fig. 1. 3D images, each containing a whole embryo (left), are transformgdl the genes. It is not practical to obtain the expression of mor
into PointCloud files containing information about cell positions and th f . ingl b due to the limited b
expression of the measured genes. Our visualization tool, PointCloudXpl n arew ggngs 'r.' a single embryo, due (o the hmite ,”Qm €
(PCX), uses a 3D physical model to visualize the embryo (middle). To provi@d different distinguishable fluorophores as well as the difficulty
an overview of all cells in PCX, the embryo is projected onto a rectangulgs adding multiple labels to embryos.

plane using cylindrical projection (right) along with annotations indicating ; ; : .
the anterior (A), posterior (P), dorsal (D) and ventral (V) orientation of the To allow relationships between multiple transcription factors

embryo. Here, the expression pattern of the gera skipped (eve) is shown and their targe_t genes to be co_mpareq in a common coordina
in red and the pattern ofnail (sna) in green. framework, PointClouds are registered int&/atual Embryo us-

ing both morphology and a common reference gene to determir

compute relative concentrations of gene products. Data clusteriged| correspondences [6], [7]. Because the spatial patterns of tf
has already proven to be very powerful at revealing details frofenes change rapidly during stage 5, we stage the embryos ba:
conceptually simpler forms of expression data, such as that frg invagination of cell membranes and group the PointCloud
microarray experiments, that are not easily detected visually jiito six temporal cohorts [2].
raw data. Appropriately defining clustering parameters, such asFor temporal comparisons, different cohorts are matched usir
the number of clusters, as well as validation and interpretatigiie cellular flow fields that predict the positions of individual cells
of clustering results, is a non-trivial endeavor. To overcomg each time point [3], [7]. This method enables us to follow gene
these difficulties in both visual analysis and data clustering, w&pression levels within a particular cell over time using only
have adapted data clustering for 3D gene expression analyfi$a measured in fixed embryos. Hence, each cell in the Virtu:
by integrating it into PointCloudXplore (PCX). PCX is a Vvi-Embryo contains gene expression levels for each of the six tim
sualization tool that features linked physical and informatiogteps. This cellular-level link between embryos of different age:
visualization views specifically developed for visualization of 3lnakes it possible to study the development of gene expressic
gene expression data [4], [5]. patterns over time, as well as to use an mRNA expression patte

Sections Il and Il present essential biological background negs an approximate substitute for a later protein expression pattel
essary for understanding this work. After describing our integrat@ghen suitable protein data is not yet available [7].
system in detail in Section 1V, and evaluating the question of Figure 1 (middle image) shows a 3D representation of a Virtua
how to choose the number of clustérin Section V, we discuss, Embryo with an average expression pattern using the BDTNP
using a few example cases, how our integrated data clusterifigualization tool PCX. To provide an overview of all cells while
and visualization tool can be used in practice to address thig@serving the relative spatial expression patterns, PCX offers
relevant questions: (i) How can we usefully divide cells intgecond physical view in which a cylindrical projection maps all
distinct components of a gene’s expression pattern? (Section \glls onto a rectangular plane (see Figure 1, right). For simplicity
(i) What is the temporal variation of a gene expression patterhgre we use thi#/nrolled View as our standard physical embryo
(Section VII); and (iii) What components of a gene’s expressioflew. A 3D view can equally be used to view embryos and
pattern are related to the expression patterns of the regulatggvelopmental stages with more complex morphologies than |
factors that control it? (Section VIII). In Section IX we presenthe earlyDrosophila embryo.
our conclusions and describe future plans.

Il1. RELATED WORK

Data classification is the systematic grouping of data into
All cells of living organisms containDNA, which encodes categories according to some criteriata clustering is a class of
the genetic information of the organismienes are functional techniques for unsupervised classification of data samples (he
subsequences of the DNA. Most genes code for the amioells) into groups (clusters) of similar behavior. Data clustering
acid sequences of proteins and additiotiglregulatory elements provides means for the automatic discovery of data subclasses [
that help to determine in which cells the gene’s product will In some experimental contexts, such as expression microarray
be expressed. An important class of protein coding genes @ene expression data is often represented as a data matrix, wh
developmental regulatoryranscription factors that function by each gene corresponds to a row and each data sample (c
binding tocis-regulatory sequences in many genes and direct theirmicroarray, experiment, or condition) to a column. Each matrix
patterns of gene expression. Compfexetic regulatory networks — entry describes the expression level of a gene in a specif
are built up where cascades of differently expressed transcriptiexperiment. In these applications, data clustering has proven ve
factors ultimately regulate all genes’ expression. These networkseful to classify expression data matrices and thereby identi

guide the development of all living organisms. The characteristbaracteristic sub-structures of each matrix.
spatial and temporal patterns of regulatory transcription factorsGene expression data clustering can roughly be subdivided in
define the body plan of the developing animal (see Figure 1).three applications: (i) clustering of genes to identify genes o
To provide a quantitative description of these patterns efmilar function [9]; (ii) clustering of data samples to identify,
gene expression in the ear®rosophila embryo, the BDTNP for example, different tumor cell types [10]; and (iii) biclustering,
has developed a data processing pipeline for extracting predige, clustering of genes and data samples at the same time
measurements of spatial gene expression patterns in 3D spéioe. subgroups of genes and data samples where highly simil;
Drosophila embryos are first fluorescently stained and imageattivities are seen for the genes in the subset of data samples [1

Il. BACKGROUND
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Clustering results are most commonly visualized using scatter-
plots, plots of statistics, and color table views with columns
and/or rows sorted with respect to the clustering. The broad v ¥
applicability of clustering to gene expression has led to the Visualization Data Clustering

development of several commercial and publicly available tools
for clustering and visualization of gene expression data [12],
Data Clustering |IV-D

[13], [14], [15], [16], [17]. However, these tools are limited to
Clusters

\4

what essentially are one-dimensional analyses of gene expression
in homogenized populations of cells. They do not take account
of spatial position nor the complex relationship of expression
across neighboring cells, and are consequently not suitable for
interactive visualization and exploration of 3D gene expression |C'"mf""s"f’wcessi"g
data produced by the BDTNP.
Validation of clustering results and evaluation of an “optimalFig. 2. The data clustering and visualization pipeline. Each box represen
number of clusterk is an important problem in clustering of2 stage of the pipeline, and contains the section number where we descri
. . - ,..that part of the pipeline in this paper.
gene expression data. A survey of computational cluster validation

techniques for gene expression data analysis is provided by Hand|

et al. [18]. Cluster evaluation functions are commonly subdividéﬂﬂ‘;’;"t'Oma(lj fLwd dlyn?mlcsé (zata sbetst; a_dv?k:]ced quf”?ts clantrl
in external and internal measure@xternal evaluation measures oo/ Med Dy Selecling data Subsets n these portraits. in

compare the result of a single clustering with a known set XYEAVE system, a combination of Physical Views and Infor-

class labels (the “gold standard” or “ground truth”). For our O|a%ation Visualization Views (or abstract views as we refer tc

a “gold standard” is not known, and consequently, we cann edm in this pape;)ollstusezcéfogerplorr?tlotn (I)f cza;rd]iac S'T“'Zt'%r
consider external cluster evaluation functiofgernal evaluation oo Measuremen ata [26]. Doleisch et al. [27] formalized th

measures do not rely on a “gold standard” but evaluate th&oncept of using abstract views to define data queries.

clustering based on clustering results and the classified dataset.It Is often useful to |.nteract|vely sglect data samples from &
. . \ﬂsual data representation, an operation generally referred to .
The most common cluster evaluation measures consider E)e

compactness, connectedness, and/or separation of a cluster ﬁusmng A brush is an object that defines one specific selectior
P ! ’ P U Yata samples. In PCX, brushing is used in a variety of view:
Such general measures, however, do not employ any spe

ific . . »
L . . ; Cto select groups of cells with respect to associated quantities. T
characteristic of gene expression data. TRgure Of Merit group P q

(FOM) is an internal measure for gene clustering proposed Bnake this concept more intuitive to the biologist users, brushes a
9 9 prop referred to in PCX asell selectors and the operation of brushing

Yeung et al. [19] and extended by Datta and Datta [20] th%SCCH selection. Furthermore, cell selectors defined in one view

_employs epr|C|tI_y the redundancies gnd_ correlations often pres%?% also highlighted in all other views, greatly aiding identification
in gene expression data. In our application, the level of redund

. N .0f further data properties. This process is terntiaéing.
mforn_watlon is generally low. As a result, FQM and analysis PCX was also inspired by the work of Kosara et al. [28]
techniques such as the overabundancg analysis proposgd b.y lé’?rri]ﬁger et al. [29], and Fua et al. [30], who described sev:
Dor et al. [2.1] are .often not appropriate for our application ral important extensions to standard scatter-plots and paralle
but may be interesting when the cells of the embryo are to

i . . ordinates which are incorporated as abstract views in PCX ar
classified based on the information of a very large number
- so used here [4], [5].
genes. To the best of our knowledge, none of these existing cluster

_quahty measures dlre_ctly employ the fact that genes are expressedlv_ DATA CLUSTERING AND VISUALIZATION PIPELINE
in characteristic spatial patterns.

Internal cluster quality measures have been used to estimatg_he PCX processmg plpgllng consists of two mal_n |nter_con-
the number of clusters in a dataset. Estimation of an “optimal” nected components: visualization and data clustering. Visua

k is usually done by computing a series of clustering resuligation provides the ability to explore the data, to determine
for an increasing number of clusteksIf a clustering algorithm

appropriate parameters for the clustering, to validate and analy:
and internal evaluation measure are adequate for the data to-}$tering results, and to modify clustering results using sever:
classified, an “optimal” value ok can often be identified as a

dedicated cluster post-processing techniques (see Figure 2). Clt

“knee” (or elbow) of the resulting performance curve. Tibshirarff"ing pr_ov_ides ways for automatic identification of data f_ea_tur_e:
et al. [22] introduced theap statistic, a statistical procedure thatPY ¢lassifying cells into groups (the clusters) based on similarit
formalizes this heuristic. Milligan and Cooper performed a Montl their gene expression profiles. By highlighting clusters in the
Carlo evaluation of 30 procedures for determining the number Ygualization, analysis and comparison of specific data feature
clusters in a data set [23]. Existing cluster evaluation measures 3f¢0mes possible, leading to a much more focused analysis of t
designed to find “one perfeck. As we show later in Section IV- data. Figure 2's flowchart shows the basic structure of the dat

D and V, when clustering cells in a 3D gene expression data Sgﬂstering_ and yisualization pipelin(_a as well as Fhe cgnnecti_oq
we typically find a series of valid values fdg rather than the between {ts main components, which are described in detail i
one “perfect’k. the following subsections.

To enable visualization of high-dimensional 3D gene expres- . )
sion data, PCX uses the established conceplimfed multiple A Visualizing 3D Gene Expression Data
views [24]. Henze [25] proposed a system based on multiple As described above, PCX is a visualization tool specifically
views (termed portraits) for exploration of time-varying comédeveloped for the analysis of 3D gene expression data [4

Cluster Statistics

IV-E |
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[5]. Physical and abstract views are integrated into a common E)
framework using the established concept of brushing and linking.
In physical views, color and height are used for visualizing
spatial gene expression patterns (see Section Il). In abstract views
physical cell positions are ignored and expression levels for
multiple genes are plotted with respect to each other using scatter
plots or parallel coordinates.
Selecting cells of interest can be executed in any view in PCX.
Depending on the view, different data properties are employed
to select cells. User-defined cell selections are then stored and
managed in a central cell selector management system. Since alhm:o_s
views have access to the same set of cell selectors, features o = 1 | | 1 E
interest can be defined in any one view and then further analyzed F=— ! %:v: |
in any other view (as will be shown later, in Figures 6, 13 and 14). == —
The most common way to visualize cell selectors in PCX is to Paes
use a consistent color mapping. Depending on the current view, fizes
additional functions for highlighting cell selectors are available,

such as cell selector-bands in 2D parallel coordinates (see, e'.:lé_ﬂ-,3- An analysis of characteristics of thant (gt) expression pattern using
Figure 6 and 14) cluster statistics. a) An unrolled view showing the spatial structure define

by five clusters. The red and orange cluster define the centers of the tw
expression regions oft, and the other clusters define the boundaries. b) A
i curve plot showing the average expression profiles of the gbn&s, gt, and

B. Cluster Statistics hb in each of the five clusters{axis). They-axis represents expression level.

Analysis of statistical properties of clusters is essential for bohA BOX'tP|0t Comp?finlg th? §§erssii0r/‘tbﬁ’ in the fivehc_llistefs- The-axis .
f : f . resents expression level. color/transparency nistogram comparing
the validation and analysis of clustering results. Cluster propertfgg)ression oD, Kr, gt, andhb for cluster p2 (green). Thecaxies indicates

provided by PCX include the percentage of cells selected Byne expression level. We use a “heat map” coloring scheme to indicate tl
a cluster, as well as the minimum, maximum, average, andmber of cells in the cluster having a given expression level: red indicate
standard deviation values for gene expression levels in a clusf&ny cells, while blue indicates few cells.
To compare these statistical properties for one gene in multiple
ooty o ot ASCellsof et can b defined i PCX by using an cel
togram plots, we use both color a}?]d trar?ls arer?c topvisuélize %elector or by using the results of a previous data clustering
9 plots, -y P y Sfining cells of interest focuses the analysis on a specific pa
number of cells within a cluster that express the gene over a range

. . : the data and also reduces the impact of surrounding nois
of expression levels. Average curve plots (with optional error ba{).?1 the analysis. By explicitly allowing data selection based or

showmg standard d_ewanop values) aid n simultaneous analygg" location, PCX overcomes one of the limitations of clustering
of multiple clusters in multiple genes. A simple example showp

in Fioure 3 illustrates the use of cluster statistics methods designed for expression microarray data. By using ¢
9 ' earlier clustering to define cell subsets of interest, one can first u:

PCX to group cells into a smaller number of clusters representin
C. Data Selection the predominant data features and then refine these cluste

While it is possible to execute the clustering algorithms on g#gain using additional rounds of data clustering. In PCX, dat
entire dataset, a more typical use pattern is to focus C|ustermgstering, as well as validation of clustering results, can in thi
on a data subset relevant to a specific line of scientific inquiNyay be performed in a step-by-step iterative process.

The researcher, therefore, needs to define which parts of the datBefining which cell attributes are of interest is mandatory
are relevant to address the current problem. In this section, peor to clustering in PCX since these attributes define the actu:
describe the different steps involved in the data selection procdsiglogical context of the cells. To account for the complexities
as well as the effects of data selection on the cluster analysi§,3D expression data, a variety of unique cell attribute dat:
and describe how spatial information can be incorporated in thelection strategies is supported within PCX. First, genes c
data analysis process. In the following two subsections, we wiiliterest are generally identified based on visualization of th
then describe clustering of 3D gene expression data and p@&D gene expression data as well as based on input from oth
processing of clustering results. biological experiments, such a& vivo protein-DNA binding
3D gene expression data can be described as a matrix whaffnity data. Second, to account for spatial location in the
each row represents one cell and each column one cell attributleistering analysis, it is possible to directly use cell coordinate
i.e., the expression of a gene at a specific time point orxthe as input to the PCX clustering process. Adding this data enforce
y, z position of the cells in physical space. In order to definereation of spatially separated clusters along the RPaqd/or
which parts of the expression data matrix are relevant, one neéus DV (y and 2) body axes. Individual weights can be defined
to define: i) which rows (cells), and ii) which columns (gene+timéor x, y, andz These weights are then considered in the distanc
point, X, y, 2) are of interest. Note that this form of data is quitenetric (see Section IV-D). However, in most cases the preferre
different from that of gene expression microarray matrices, whergy to incorporate spatial information in the analysis proces
each row represents a gene and each column represents expressidny splitting the newly computed clusters into their main
under a different experimental condition, and spatial relationshipglependent spatial components. The main advantage of suct
are meaningless. cluster post-processing technique over including cell coordinate
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Fig. 4. a)giant (gt) expression pattern classified using k-means clustering
with Euclidean distances and= 3. b) Same, using =7 and includingx cell
positions weighted with @4 (after normalization). c) A box-plot showing
the statistics ingt expression xX-axis) for the two main clusters of the result
shown in a) (first two entries on the axis) and for the four main clusters
of the clustering shown in b). Including spatial information in the clusteringig. 5. An example clustering gfiant(gt) and Kiippel (Kr) using k-means
resulted in spatially separated clusters for the main regiong, afs well as clustering and Euclidean distances wktk: 8. In the scatter-plot, the structure
in different threshold levels depending on the physical cluster locations. of the clusters is shown in expression space, while the unrolled view revea
spatial structures formed by the different clusters.
in the clustering process is that cells with similar expression
behavior in different parts of the embryo can be identified, and gene expression space: Euclidean distance, city-block-distanc
possible clustering artifacts due to the mixing of expression aa@d several derivatives of the Pearson correlation [31].
spatial information can be preven_ted. _ ~ Some clustering algorithms require additional parameters, suc
We observed an improved quality of analysis results by adding the number of clustels to be specified by the user. In the
spatial information to the clustering process when classifying tigntext of 3D gene expression data there exists in general n
static pattern of a single gene that has a wide spatial distributignsingle “perfect” value foik, but we rather find a number of
In the example shown in Figure 4, we classified the pattern 4jid values, each representing a different level of detail. Thi
the genegiant (gr) using k-means clustering with and withouthehavior is due to the fact that quantitatively different expressio
usingx (AP) cell positions in the clustering process. In the firgevels of a gene may lead to multiple different outputs of the
case, three clusters were created, each selecting cells expresgifferlying genetic regulatory network. It is therefore valid to
gt at different levels, i.e., low, medium, and high expressiogybdivide elongated structures formed in gene expression spa
(Figure 4a). By considering cell positions, we create separatgnto several sub-clusters.
clusters_ for the different major spatial components of fie  For example, consider early-stagint (gt) and Kriippel (Kr),
expression pattern (see Figure 4b). In _t_h's case, ea_ch clustiich are expressed in spatially non-overlapping patterns, leadir
includes only cells that expregs at specific levels, while the to formation of an L-shaped scatter plot (see Figure 5). Evel
minimum and maximum expression level selected by each clusfgugh one could interpret this structure as one cluster — possib
also depends on its physical location. In this case, higher threshp|dicating aNOT relationship betweergt and Kr — it is also
levels were created in the anterior, and lower thresholds in tglid to subdivide this structure into, e.g., eight clusters, resultin
posterior region of the embryo (see Figure 4c). Creation of regiof- one cluster representing background expression, a three-ley
dependent threshold levels is often desirable when analyzing fi&cription of the pattern okr, and a four-level description of
static pattern of a single gene since each domain of a pattern Mgy o1 pattern.
be regulate_d differently and, ther'efore, qliffere_nt thre_sholds MayThe choice ofk depends on the level of detail required by the
be appropriate. For gap genes with spatially distant, independgggr, Therefore, PCX uses an interactive process to defiased
expression domains, such gs this simple strategy works well, op, yisualization. The spatial structure formed by the cells selecte
whereas for patterns with shorter interdomain distances, SUChb?sclusters, cluster statistics, and standard data visualizatio

eve, this strategy fails. provides a way to decide if the number of clusters should b
. . increased or reduced. Depending on the characteristic spati
D. Clustering 3D Gene Expression Patterns patterns of genes, the cells included in a cluster often defin

To implement clustering operations in PCX, we we use portios®me coherent spatial pattern. Thus, the presence of cluste
of the open source clustering library “Cluster 3.0” [31]. Wehat show high spatial scattering may be an indication that th
have integrated data clustering directly into PCX and createdclosenk was too large. To assist in this evaluation process, wi
dedicated GUI that provides access to data clustering and alldwae developed a dedicated cluster quality measure indicating tl
management of clustering results. Clustering algorithms currengiftysical scattering of clustering results along with a function fol
available in PCX include the most commonly used methods ferggesting a good initidd. These measures will be described in
microarray gene expression data analysis, such as k-meansinkye detail in Section V. In Section VI, an example is provided
median, and k-medoid clustering, as well as several hierarchigdiere the pattern ofve is classified using different values kf
clustering algorithms, and self-organizing maps (SOMs) [31], [9], Like a manually created cell selector, an automatically create
[10], [32]. All these clustering algorithms require an appropriateluster defines a subset of cells in the embryo and can, therefor
distance function in order to define similarity between cells. Ibe stored and visualized in the same way as cell selectors. Tht
PCX we included the most common metrics for defining distancekistering can be used for highlighting data features in physice



SUBMITTED TO IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 6

other hand, provides means to derive finer representation froi
clusters based on spatial information. A cluster often consist
of several spatially independent components (for example Fig
ure 12), which may need to be treated differently in subsequer
analysis. In general, however, one major component of a clust
may be defined by a number of small spatially independent cor
ponents. PCX uses a modified single linkage clustering approac
to split up such a cluster into a selected (often smaller) numbe
of components.

The splitting algorithm works as follows. A cluster is first
split into all its spatially independent components. The smalles
components are subsequently merged with the spatially close
component. This approach is computationally more efficient an
less sensitive to outliers than a classical single linkage clusterir
Fig. 6. Filtering applied to an example cluster. The cluster is split into i@Nd also guarantees that the independent spatial components ¢
e oo ot e o pons Sirecse s v hown'n ST are preserved whle small scattered componerts can
coororljinates. Here, the gene@l, gb, Kr, gﬁ, kni, andptll, which were use% al%W to de_fme major _CIUSter cor_nponer_lts. An example for cluste
to obtain this clustering result, are each represented by one axis, and $Rditting will be described later in Section VI.
percentage of expression is shown in ordinate directjesix(s). One can see
that the blue cells are spatially more distant to the ma_in component of the V. IDENTIFYING GOOD VALUES FORK, THE NUMBER OF
cluster (red) than the green cells, and that they show a higher divergence from
the main spatial component of the cluster in gene expression space. CLUSTERS

Many clustering algorithms, such as k-means, require the us
or abstract views, enabling a much more focused analysis. In thespecify as an input parameter the target number of cluster
visualization, PCX allows colors to be assigned to clusters either The quality of clustering results often depends on a prope
randomly, manually, or according to the average or ranked averadi@ice ofk. Unless users have priori knowledge concerning
expression of a selected gene in each cluster. Using physidd® number of clusters present in the data, it is helpful for
views, the spatial pattern defined by a cluster can be analyzed, &l user that the software offers a reasonable, initial value fc
abstract views allow for identification of cluster characteristics ik Different approaches for finding an “optimak have been
gene expression space. proposed. Among them, those based on internal cluster measu
appear to be more appropriate for our application [18], [23].
Our objective here, as described below, is to provide the use
assistance in interactively searching for a gdods opposed to

Cluster post-processing is essential to allow users to madying to automatically compute the optimal value lof
ify clustering results with respect to validation results or prior Even though internal cluster quality measures (see Section I
knowledge. There are four ways to post-process clusters in PGXay be useful here, we are not aware of any such measu
Manual correction and cluster filtering are two ways to corretihat takes the specific characteristics of 3D gene expression de
small groups of misclassified cells. Cluster merging and splittingto account. Since genes are often expressed in compact spa
provide means to derive coarser or finer representations basegatierns, we expect the derived clusters to be spatially compa
spatial information from the initial clustering. The presence of computed clusters with high spatial scatterir

Manual correction of clustering results can be performed igpically suggest that the value & was too large. Because
any physical view. By drawing on the embryo surface, one care do not use information about physical cell position in the
interactively add and erase cells from the selection defined bylastering process, spatial compactness is a criterion available
cluster. In contrast, filtering provides an automatic way to correat independent measure for clustering quality. As we will discus
misclassified cells. Because genes are expressed in cohebefbw, spatial cluster scattering can also serve as a measure
spatial patterns, outliers in physical space tend to be also outligrdicate a series of adequate value&.dfombining spatial cluster
in gene expression space. Therefore, we have developed a clustattering and the clustering error in expression space yields
filtering method that identifies and reassigns misclassified ceffgethod to identify a good initial value férthat accurately reflects
to the spatially neighboring cluster that is closest in expressitime structures present in the data, but with relatively low spatic
space. First, all spatially independent components of a clussmattering.
that consist of less thall cells are identified. To rule out false We propose to use

E. Cluster Post-processing

filtering, a minimum distance in physical space as well as a K .

: - : : _ SKaRi()
maximum error in expression space can be defined. In the example EscattefK) = S - 1)
shown in Figure 6, it would be possible to exclude the cells Yie1 Reoi)

shown in green from the filtering process either by increasing thas an objective measure for the relative spatial scattering of
minimum spatial distance or by reducing the maximum alloweslustering result.Rs(i) (with s> 0) is the number of spatially
error in expression space. independent components of clusteronsisting of at moss cells.
Merging clusters allows coarser representations to be creafdi) thus defines all single cell regions in clusterR.(i) is
from an initial finer clustering. Such coarser descriptions oftehe total number of spatially independent regions in cluster
provide a clearer visualization that focuses on the main questianarerc [0, 1] is independent of the clustering algorithm, usually
being addressed (see, e.g., Section VI). Splitting clusters, on ties discontinuities, and shows a larger variation for smaller value
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(2D =00335115] gexp(1), starting atk =1 would result in a suggested value for
0.8 Il ' ' ' that is too small.
06 To identify a valuew for k for which the error in expression
\ ~+—+  Space is sufficiently low to well characterize the data, we identify
! A the first k for which the decrease imex is lower than the
N r\ N average decreadg = Eexpl2)—explm) Alternativelyw could also
02 N exp m-2 '
g E..,(36) =0.000250356] be defined as thé that corresponds to the point of thgyp
2 4 6 5 10 12 14 16 18 2o 22 24 2e 25 a0 s2 4 se €valuation curve that is furthest from the line definedegyy(2)
I Number of Clusters (k) and eexp(m) [33]. While the first approach tries to find the
for which the expression error has sufficiently decreased, th
Fig. 7. Cluster evaluation function&xp (red) andescater (blue) for the  second approach tries to identify the so-called “knee” ofghg
C'r‘]JSte”.”gFo.fgt a”éj Kr, with w=5 andm=36. The suggesteklis eight as o\ ;51yation curve. Both methods dependnarbut this dependency
shown In Figure 5. is well behaved, i.e., with increasing the suggestew changes
slowly and continuously. During the research and development «
this work, both methods seem to work equally well.
We use the following algorithm to identify a good initial> w
that also results in a relatively low physical scattering:

0,4

0,0

—-—£

k=w+1
| =k
for i —1tom
if (€scattef) < Escattefl) +1)
k=i
do . .
then <{ if (Escattel(l) < Sscattel(l))
then | =i

Fig. 8. The patterns oft and Kr are classified using k-means clustering, as . . . .
in Figure 5, but with ak =5 and b)k = 19. One can see that the suggested 'Nitially, k is set tow+1, which is the lowest value that

k = 8 provides a compromise between a high level description as shownresults in a sufficiently low expression error. Then, the algorithn
a) and a detailed description as shown in b). tries to optimize the expression error as well as the physice
scattering by searching forka> w that also results in a relatively

of k than for large values ok. Local minima oféscatterindicate |ow physical scattering. Here we use a thresholdt ef 4% —
values ofk for which clusters are relatively compact, and thugetermined through emperical testing — to restrict the maxime
indicate a series of appropriate valueslofin the context of allowed increase irescater With respect tol, i.e., the k with

3D gene expression data, clustering errors introduced by singi@ lowest relative physical scattering visited so far. Siagg
cells isolated in physical space are quite common and our choig&reases with increasing valuekpthe error in expression space
for escatter performs well. An alternative approach might workior the suggested is guaranteed to be smaller thagp(w).

better when these cluster outliers consist of small groups of cells alternatively, one can also view the problem of finding a
One approach might be a less sensitive weighted cascade meaggig initial k as an optimization problem by looking for the
that also accounts for larger regions as potential scatter, suchkagat minimizesepa(k) =| Eexp(K) — L Escattefk) |, Where both
esc(k) = ZealgFmaRl) iy p > 0 being much smaller than gexp and scatter are normalized. Conceptually, the first approach

(343 Re(i))” ) " . R .
the num%fgrl(osf*%'é S. W is more intuitive, does not require normalization of the evaluatior

To evaluate the clustering error in expression space wedise functions, and W"! glways S}JQQEST' a minimum lféicatter if an
the average distance, in expression space, of a cell to the ceAggduate local minimum exist. Usingua for finding a good

of the cluster it belongs to, initial k has the advantage that it does not rely on a threshold
10 Furthermore, it may result in a more reliable suggestion in case
€exp(K) = *ZdiSt(Ceme'(CiLCi), (2) where ggcateris degenerate sincgot does not directly rely on
= the notion that the physical scattering increases with increasir

where n is the number of clustered cells; is the ith cell, Values ofk. In practice both approaches have shown to be usefu

centexc;) is the center of the cluster to whiah belongs, and  Beginning with an initial, suggested value kf the user can
dist(-,-) is the distance operator used in the clustering procesghen determine the “bestk based on the information from
We computescatter and gexp for 2 < k < m, with m being the the cluster evaluation and previews of the different evaluate
first value whereescarer> 50%. If the pattern of only one geneclustering results using an Unrolled View. Even though the initial,
is used in the clustering, we USBcarer> 60% as termination suggested value d¢ may not always be optimal, our testing has
criterion instead because variations in background expressigyealed there is value in providing a “reasonable” value or rang
have a stronger impact on the cluster analysis, and because nfdrealues fork.
complex structures are possible when multiple genes with spafigure 7 shows the cluster evaluation functions for the clus
tially overlapping patterns are clustered. By using these threshol@gng of gt and Kr. To provide an overview of both functions
for escattes WE ensure that we iterate over all potentially usefuh one plot, we showescarer along with &eyp(k) = ﬁ::—g((g The
clusterings and do not terminate prematurely. We kise2 as suggested is eight, which is also a strong local minimum of
starting point because it represents the first potentially usefdlaier The corresponding clustering result foe 8 is shown in
clustering. Furthermore, considering the relatively large value Bfgure 5. Figure 8 shows two additional example classification
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Fig. 9. a) The expression pattern fe at stage 5:9-25%; Classification efe with b) k= 2; c) k= 3; and d)k = 6. While thek = 2 clustering produced

a threshold that was too high, erasing too many cells from the patterk,=tti clustering was better able to identify the seven stripes ottheexpression
pattern. Thek = 6 clustering identified additional characteristic variations within the stripes along the DV-axis as well as an additional cluster that s
some inter-stripe cells showing some higher expressiosvaf

different threshold levels to be selected for different component
of a gene pattern. Alternatively, as described in Section V-
C, for genes with clearly distinct spatial expression domains
cell positions may be used in the initial clustering to enforce
creation of separate clusters for spatially distant components of
pattern. Rather than choosing some arbitrary thresholds, clusteril
automatically suggests thresholds based on the histogram
the data. The k-means clustering algorithm seeks to minimiz
Fig. 10.  Cluster evaluation function&yp (red) and escater (blue) for the mean squared dlstance.from gach data point (cell) to_ )
the clustering of thesve expression pattern (left), witv— 4 andm— 9. nearest cluster center. To achieve this goal, the k-means algoritt
The suggested is five, which is the largesk for which only one cluster Will createk cluster centers positioned according to the densit)
representing low backgrounsie expression is created (right). distribution of the expression values of the selected gene.
Figure 9 shows three example classifications ofetteeexpres-
of gt and Kr usingk =5 andk =19. k=5 is the highest level sjon pattern using different numbers of clust&rswhile k = 2
for which &scaer= 0 andk =19 is a local minimum Ofescater  produces a threshold that is too high and does not capture
(escattef 19) ~ 35.29%) close to the middle of the range. Here, Wparts of each stripe, a clustering wikh= 3 correctly identifies
see that the suggested levello 8 provides a good compromisethe seven stripes of theve expression pattern. By increasing
between high-level and low-level descriptions of the patterns. Thg number of clusters, additional details within the stripes alon
value ofk that is best suited to investigate a bi0|0gica| questiqlhe dorsal-ventral axis can be seen, as well as an addition
depends to a large degree on user requirements. Further exargRlster selecting cells in the inter-stripe regions. This comple:
usages OEscatrerand €exp are provided in Sections VI and VII.  description illustrates that thinking of a gene as being either on ¢
€exp and éscatter are global cluster quality measurement funcoff is usually too simplistic. The fact that clustering automatically
tions in the sense that the clustering quality is evaluated basgdeals differences along the dorsal-ventral axis demonstrates t
upon the entire dataset (ln this case, all classified Ce”S). GIOQ@efu"‘]ess of such ana|yses_ The pair-ru|e genes, Sueha’aare
error measures might not be appropriate if the user performs@ typically thought of as dorsal-ventral regulators, but consister
clustering of a larger number of cells but is interested only in\gith the clustering results, careful quantitation of the levels of
small subset of clusters deﬁning some local feature of intel’esteve and similar gene’s expression has shown they indeed sho
up to two-fold changes in expression along the dorsal-ventral ax
VI. SINGLE PATTERN ANALYSIS suggesting a dorsal-ventral component in pair-rule regulation [3
Genes are frequently expressed in complex patterns that sH@jv Analyzing the actual meaning of these moderate change
a wide range of guantitative changes in expression across tbquires computational tools, such as cluster analysis, to provic
cells of an embryo. Although for some analyses, the data dbjective measures of their significance.
best left unclassified in this form —simply using the expression Figure 10 (left) shows the curves of the cluster evaluatior
values in all cells— it can also be revealing to divide a singfeInctions €scatter aNd Eexp. IN this case,escarer is rather smooth
pattern into one or more distinct regions. For example, on/aihd monotonically increasing indicating that lalvith escater> 0
descriptions of expression have been useful in logical modelsmfy result in valid clusterings of theve pattern. This behavior
gene networks [34], [35]. can be explained by the very high signal-to-noise ratio ofetfze
However, discretizing a gene pattern via manual thresholdiegpression data, which was averaged from dozens of embryc
can be problematic — it may be very time-consuming, and tfge suggestel is five, which is the largest for which only one
choice of thresholds is arbitrary and not fully data-dependemiuster representing lowve expression is created (see Figure 10,
To address this challenge, one can use, for example, k-meaght). A clustering withk =5 provides a compromise between a
clustering and Euclidean distances to compute a number of datah-level and low-level description of thee expression pattern.
dependent thresholds. Each of tkeclusters then represents a Binarized versions of theve pattern (i.e., on/off descriptions)
specific threshold range that can be interpreted as a differean be created by merging the different clusters, allowing on
confidence level. Different components of a pattern may he easily compare the different classifications by defining thei
regulated by different genes, so different thresholds may beerlay (see Figure 11). Whilk= 3 andk = 6 result in similar
appropriate for different regions. Cluster post-processing, suclassifications of the seven stripes, the clustering Wit2 misses
as splitting clusters into their main spatial components, allowsany cells of the pattern. Thus, first generating multiple cluster

02 | ! [e..,(9)=0.000671418]

5 6 7 8 9
Number of Clusters (k)
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Fig. 11.  Comparison of the clustering results shown in Figure 9. a)
Comparison ofk = 2 (red) andk = 3 (blue) classification ofeve; b)
Comparison ofk = 3 (red) andk = 6 (blue) classification ofeve. In b),

the additional inter-stripe cluster found in the= 6 clustering is shown

in dark green. The percentage of cells of the whole embryo selected by
the different components ar&2 = 31.31%; k3 = 42.596%; k6 = 42.892%;

k3 — k2 =11.287%; k6 — k3 = 0.296%; k6_interstripecluster= 21.06%.

Fig. 13. An unrolled view showing seven clusters, each selecting one stripe ¢
the eve expression pattern (bottom left). The same clusters shown in a scatte
plot of early-stageKr (red), gt (green), andib (blue). Color indicates to which

cluster a cell belongs, while cells not selected by any cluster are colore

] . . . ray. The stripes form characteristic clusters in expression space indicatin
Fig. 12. a) A cluster consisting of 296 spatially independent componen%; 4 p P P 9

b) The same cluster split into its seven main spatial components. Splitting
of clusters is essential, e.g., to allow comparison of different main spatial
components of a cluster.

tential relationship betweetve and the displayed genes.

and then merging them can provide a more accurate binarization
of an expression pattern than an initiak 2.

Cluster merging and splitting can also be useful for comparing
different gene patterns or for comparing different components of
a single gene’s pattern. In Figure 13, for example, the individual
clusters shown in Figure 9d have been merged and then split
to obtain one cluster representing each stripe. Figure 12 shows
an example where the cluster that defined the boundary of TIHS 14. The same clusters as in Figure 13 are shown in a 2D paralle
stripes, consisting of 296 spatially independent components,ci®rdinate view of early stageb, gt, kni, Kr, til. The average expression of
split into its seven main components using the modified sing‘hﬁ seven clusters in the different genes are shown via additional, thicker line
inkage method described in Secton IV-E. e o e o a1 o i b0

Once derived, we use these individual stripe clusters to hight-the plot are used to further highlight the different clusters.
light the severeve stripes via color in different abstract views. For
example, the expression behaviorgf hb, and Kr —three known
transcriptional regulators oéve— can be revealingly analyzeda 2D parallel coordinate view of early stag®, gt, kni, Kr,
within each of theeve stripes using a 3D scatter-plot (Figure 13)and tl indicating additional expression differences between the
Here, large differences between stripes are visible, the sewdtial clusters. Because numerical PointCloud datasets are r
stripes form very distinct point clusters within the scatter-plogasily comprehensible, the clustering and cluster manipulatio
This behavior is consistent with current models suggesting that #apabilities in PCX provide a reasonably objective method fo
eve expression pattern does not simply consist of seven identi€h¥iding quantitative spatial expression data into computationall;
stripes, but that many stripes are regulated independently. Taialyzable units.
available data suggests that hb, and Kr control some stripes,
but the scatter-plot suggests that these factors have the potential VII. TEMPORAL VARIATION ANALYSIS
to regulate all stripes by their unique combinations of expressionGene expression patterns are not static but highly dynami
levels. Such plots can be very useful in identifying potential novelnderstanding the temporal profile of a gene expression patte
regulatory relationships between transcription factors and th&ressential if we are to understand complex relationships betwe
targets. genes. Even though visual inspection of an expression patte

Generally, scatter-plots have proven to be a very intuitive ard different time steps provides an impression of the gener:
informative gene expression space visualization, but are limitegmporal behavior of a gene, many important features, such
due to the fact that only three gene dimensions can be visualizgdups of cells with a similar temporal expression profile, are no
at once. PCX also provides 2D and 3D parallel coordinatessily detected and visual quantification of temporal change is n
to support simultaneous visualization of many more genes [4lccurate. For example, the patterngédnt (gt) expression can be
In Figure 14, the same clusters as in Figure 13 are shownseen to change between six time cohorts within one hour, but
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Fig. 15. The expression pattern gfant (gt) shown at six different time cohorts of stage 5 of embryo development.
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Fig. 16. Based on the patterns gaf shown in Figure 15, cells were classified into seventeen clusters as suggestgghband gexp. Two clusters selected
cells showing only background expression gfat all time steps and are therefore not shown here. Clusters 1, 8, and 16 were each split into their
main spatial components. The remaining clusters were not split, since no significant divergence in the temporal expression profile between their mai
components could be identified. a) An unrolled view showing all eighteen clusters of interest. b-h) The user grouped the eighteen temporal clusters in
main groups based on their average temporal expression profilgs Tine six time steps are shown on thaxis and the expression level on thxaxis of
each plot. The spatial patterns defined by the different clusters are displayed in the accompanying unrolled view plots.

g [Prenz 36.34% andescatef 22) ~ 40.14% — a significantly higher increase

' in relative physical cluster scattering is visible. This behavior car

o8 - 4 . ii+44+t  be interpreted as an indication thiat= 17 may also provide a

04 ] e Pt T good compromise between a high-level and low-level descriptiol

0.2 TS e,0h=000101197)  of the temporal variation of thgt expression pattern. A level of

0,0 s . A k=17 was also confirmed to be appropriate by users of PCX.
2 4 6 8 10 1 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 Figure 16 ShOWS as an example the I’esultgr,)rin Wh|Ch ItS
——Cgcater €y Number of Clusters (k)

expression patterns at six successive time cohorts were classifi
Fig. 17. Cluster evaluation functiorfxp (red) andescater (blue) for the into seventeen clusters using k-means clustering and Euclide
clustering of the six time steps @f with w= 10 andm= 54. The suggested distances. Two of the seventeen clusters selected cells showi
kis seventeensscarer further indicates that seventeen is the highegir the only background expression at all time steps and are not show
particular level of detail with relatively low overall physical cluster scatterlngEaCh of the other fifteen clusters show distinct average expressit
profiles (the differently colored lines plotted in Figure 16), though
is not possible to rigorously describe how (see Figure 15). Edme clusters show profiles that are closely related. In the figur
show how PCX can assist in the analysis of the spatio-tempogaé user has grouped these clusters into seven main sub-grot
expression pattern of genes, we have used clustering to clasgifi§ed on their temporal average expression profiles, shown
cells into groups of similar temporal behavior. panels b-h. In addition, clusters 1, 8 and 16 have each bes
In Figure 17, the curves of the cluster evaluation functiorsplit into two components to separate their anterior and posteric
Escatter aNd Eexp are shown. The suggested number of clustec®omponents.
k is seventeen, which is also a local minimum &gater With Several trends can be readily seen from the different view
Escattef 17) ~ 31.88%. The overall behavior afcaerindicates that of the analysis. The unrolled physical views show that cluster
k =17 is the largesk at the particular level of detail for which with similar average temporal expression profiles frequently, bu
Escatter IS Still relatively low. A comparison okscaief17) to the not always, are adjacent to one another in the embryo. Expressi
next two lower local minima ofscatter— With €scartef12) ~31.21%  within a set of clusters in the very anterior of the embryo increase
and &scattef 10) ~ 29.25% — shows only a moderate increase iparticularly during the later time cohorts (visible, for example,
Escatter When comparingescaief 17) to the escarer values of the in Figure 16b). Expression in the posterior margins of both o
next two larger local minima Ofescater — With &scartef19) ~ the major earlygt stripes drops rapidly over the time series
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Fig. 18. a) The transcription factogs, hb and Kr at stage 5:0-3% are used as input to the clustering; their potential target sripe 2 at stage 5:9-25%
(see Section VI). b) Cells were classified into 22 clusters of which eight are of particular interest. Five clusters actualvenstigle 2 and three define
the inter-stripe region between stripes 1 and 2, and stripes 2 and 3. Cluster filtering was applied to three single cells only. Clusters were split in ¢
separate the stripe-like clusters with similar expression profiles from other spatially distant sub-clusters in the anterior and posterior region of the em
An average curve plot of the five clusters withine stripe 2 showing the characteristic expression profile&ofgt, and hb. d) Average expression curves
for the three inter-stripe clusters. In both average curve pKitsgt, and hb are shown on the-axis and the level of expression along theaxis.

(Figure 16f-h). It is known that the location of the posterigr portion of the stripe, suggesting that these characteristic parts
stripe moves anteriorly during this time series [36], [3], but thstripe 2 may be different (see Figure 18Db).

data show a much more complex pattern of temporal changelo validate the structure formed by the clusters against th
than has been observed previously. These results suggest thafet pattern, cluster colors are mapped onto an expressi
a complex combination of regulatory interactions drives theseirface ofeve, in which height shows the level of expression

patterns. (Figure 19). It can be seen that the five clusters fit closely to th
expression pattern of the target stripe 2.
VIIl. M ULTIPLE PATTERN ANALYSIS Based on the average expression curves, the characteris

To dissect the complex regulatory interactions between genegpression pattern of the potential regulators in the eight cluste
the expression patterns of different transcription factors thitat are within and flanking stripe 2 are easily visible (see
potentially act together as regulators may be used as inputFigure 18c, d). Herehb is expressed at high levels in all clusters
cluster analysis. Cells are classified into clusters that have simigcept those posterior of stripe 2, consistent with its known rol
combinations of expression for the input set of regulators. Eaeal an activator of stripe ZKr is expressed at high levels only
cluster thus describes one potential sub-pattern that a regulatpegterior of stripe 2 angt is expressed at high levels only anterior
network composed of these factors could give rise to. The total stripe 2, consistent with their known roles as repressors ths
number of clusters then gives an approximation of the maxim@éfine the posterior and anterior borders of stripe 2, respectivel
complexity of the output of the network. The results of such a Interestingly, the two clusters that form short ventral patches o
clustering can also be compared to the expression patternsewaf stripe 2 (yellow and blue) show significantly lower expression
suspected target genes to assess possible regulatory relationshfpsb than the two clusters that lie dorsally to them (red anc

To provide an example of such multi-gene clustering, we exargreen) (see Figure 18c, d). This correlates with a lower level o
ined the relationship between the three transcriptional regulatess expression in this ventral margin (Figure 19) and suggest
giant (gt), hunchback (hb), and Kriippel (Kr) and the second that this reduced expression may be the result of lower activatio
stripe of theeve gene. These three factors are well-characterizésy hb. hb is typically thought of as regulating gene expression
regulators of this expression stripgb is an activator andkr only along the anterior/posterior axis of the embryo. The cluste
and gt are repressors [37]. As discussed in Section VI, the sevanalysis suggests that it may also be able to mediate differenti
stripes ofeve form characteristic clusters in gene expression spatranscription along the dorsal-ventral axis. However, if we were
with respect togt, hb, and Kr expression. By using these thredo add a dorsal-ventral gene, such sagil (sna) (see Figure 1)
factors’ expression patterns as input to a clustering analysis, i the analysis, it would be difficult to distinguish if the ventral
can identify the potential expression pattern components that @ap in eve stripe 2 resulted from direct inhibition byna, if
be defined based on these regulators (see Figure 18). We used tmairacted via inhibiting ventralhb expression, or if all three
MRNA expression values from the first temporal cohort (0%-3%xpression patterns are parallel manifestations of dorsal-ventr
invagination) to simulate their protein expression values at tipatterning systems, each acting separately. Thus, cluster analy
third temporal cohort (9%-25% invagination) — the stage of thean be used for identifying interesting correlations that migh
eve comparison target. We have found this lag, on average, to tesult from novel biological interactions or phenomena, but the
optimal for all regulators [7]. In the example, cells are classifieahalyses should be confirmed by experimental data.
into twenty-two clusters that map to locations throughout the This case study illustrates that clustering the expression patter
embryo. Eight of these clusters are of interest to the contrevef of multiple regulators can provide confirmation and additiona
stripe 2, five that lie within the stripe and three in the flankin@sights into known regulatory interactions. It is likely that the
inter-stripe regions. The five clusters within stripe 2 define thextension of this strategy to less well-characterized systems wi
center, the anterior and posterior borders, as well as a vensafigest potential regulatory interactions that can then be test
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Fig. 19. To validate the structure formed by the five clusters against t
target, cluster colors are mapped onto an expression surfaeee ofvhere
surface height shows the level efe expression. The visualization shows
that the clusters and the target stripe fit closely.

by other means.

IX. CONCLUSIONS

12

directly be added to the cluster analysis. However, this may resu
in clusters defined by a complex mix of spatial and expressio
influences which may not be easy to interpret.

Development of additional analysis technigues that effectivel
integrate spatial and gene expression information is one focus
future work. Adaptation of spatial clustering methods, such a
the dual clustering approach proposed by Cheng-Ru et al. [38
is only one promising approach. Alternatively, one could perforn
clustering based on gene expression information only, then spl
the resulting clusters into spatially distinct sub-clusters, and the
perform a re-clustering based on the centers of the detected st
clusters. In PCX we currently use hierarchical clustering only fol
partitioning of the data. By traversing the data hierarchy create
in a hierarchical clustering, exploration of the data at multiple
levels of detail becomes possible. In addition to clustering of cells
clustering of genes as well as biclustering promises to provid
further insights into the data. In addition, matrix decompositior
techniques, such as principal component analysis (PCA) ar
singular value decomposition (SVD) [39], [40], have successfully

Our overall objective for this work has been to provide imp0tlgeen applied to other types of gene expression data. Integrati

tant new capabilities to accelerate scientific knowledge discovi%';. these §t1nd cithe; analystl_s t?achmquzs_ Into TCX should furth
Our work helps biologists, who aim to discover potentially ne yicrease 1ts value for practical use and impact.
experimentally verifiable biological interactions, by providing the
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. : : National Laboratory (LBNL) Laboratory Directed Research
effectively to explore and analyze 3D spatial expression data. . .

- . . . . evelopment (LDRD) program; and by a large Information

system of linked multiple views is used for data exploration a .
for steering the analysis process, helping bridge spatial patterr?s?hnomgy Research (ITR) grant. Work at LBNL is conductec
of expression with abstract vie\’/vs of quantitative ex ressié}nnder Department of Energy contract DE-AC02-05CH11231.

P q P We thank the members of the Visualization and Compute

information. . . . .. Graphics Research Group at the Institute for Data Analysis an
Data clustering then provides means for automatically definin o . . e .
. . -~ . sualization (IDAV) at the University of California, Davis, the
cell selections, depicting characteristic data features and in this

. . : - . embers of the BDTNP at LBNL and the members of the

way improving the visualization. We have shown how dedicat L
. . . o |3uallzat|on Group at LBNL.

post-processing of clustering results based on visualization an
user knowledge improves the analysis. We have demonstrated
how the combination ofs.aiteras measure to describe the relative
physical scattering of clustering results angp to suggest a 5] ¢ L. Luengo Hendriks, S. V. E. Kanen, C. C. Fowlkes, L. Simirenko,
good initial value fork in combination with visual validation of G. H. Weber, A. H. DePace, C. Henriquez, D. W. Kaszuba, B. Hamann

clustering results can be used to determine appropriate values for M. B. Eisen, J. Malik, D. Sudar, M. D. Biggin, and D. W.
K Knowles, “Three-dimensional morphology and gene expression ir

. . . . . the Drosophila blastoderm at cellular resolution |: Data acquisition
Analysis of 3D spatial gene expression data is a challenging pipeline,” Genome Biologyvol. 7, no. 12, p. R123, 2006. [Online].
task requiring unique strategies not encountered in studies of 1D Available: http://genomebiology.com/2006/7/12/R123
non-spatial data, such as microarray expression data. Using ddt S: V- E. Keanen, C. C. Fowlkes, C. L. Luengo Hendriks, D. Sudar, D. W.
int ted data visualization and clustering approach. we have Knowles, J. Mallk,_anc_i M. D. Blggln,_ Three-dimensional morphology
Integra A g app - and gene expression in the Drosophila blastoderm at cellular resolutio
shown how the pattern of a gene and its temporal variation can be |: bynamics” Genome Biologyvol. 7, no. 12, p. R124, 2006. [Online].
defined and analyzed. We have shown how suspected relationships gva&i)l?: gtt?_i//%ngmesbiOJ/OQIE)/-CPé?m/ZOOS/?élZéRlﬁ(4 cLL

: . el, G. H. Weber, S. V. E. Kénen, C. C. Fowlkes, C. L. Luengo
between genes can be analyzed to add_ress the qu_estlon of how[fHeHendriks’ L Simirenko, N. Y. Shah, M. B. Eisen. M. D. Biggin,
pattern of a gene is created by the action of multiple regulators. y. Hagen, J. D. Sudar, J. Malik, D. W. Knowles, and B. Hamann,

Along with the first release of the BDTNP 3D gene expression  “Pointcloudxplore: Visual analysis of 3d gene expression data using
database, we have also made a version of PCX freely available physical views and parallel coordinates,” ata Visualization 2006
to th blic [11. Data clusteri d 3D llel dinat (Proceedings of EuroVis 2006B. S. Santos, T. Ertl, and K. Joy, Eds.,
0 the pu . ic [ ] ata clustering an paralle CO(?I’ Inates are Aire-la-Ville, Switzerland, 2006, pp. 203-210.
currently in active use by BDTNP members and will soon alsqs] G. H. Weber, O. Rbel, M.-Y. Huang, A. H. DePace, C. C. Fowlkes,
be included in the public version of PCX. S. V. E Ker’a‘men,lc._L. Luengo Hendriks, H Hagen, D. _W. Knowles,
In PCX, spatial information is incorporated in the analysis 9 Malik. M. D. Biggin, and B. Hamann, "Visual exploration of three-
. . . . dimensional gene expression using physical views and linked abstra
process mainly by using cluster post-processing techniques such

> - - views,” Accepted for Publication in IEEE Transactions on Computa-
as splitting of clusters. Alternatively, y, andz cell positions can tional Biology and Bioinformatigs2008.
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