
Signal-processing Transformation from Smartwatch to

Arm Movement Gestures

Franca Rupprecht1, Bo Heck1, Bernd Hamann2 and Achim Ebert1

1 Technische Universität Kaiserslautern, Computer Graphics and HCI,

67663 Kaiserslautern, Germany

{rupprecht, ebert}@cs.uni-kl.de

bheck@rhrk.uni-kl.de

2University of California, Department of Computer Science,

Davis, CA 95616, USA

hamann@cs.ucdavis.edu

Abstract. This paper concerns virtual reality (VR) environments and innovative,

natural interaction techniques for them. The presented research was driven by the

goal to enable users to invoke actions with their body physically, causing the

correct action of the VR environment. The paper introduces a system that tracks

a user's movements that are recognized as specific gestures. Smartwatches are

promising new devices enabling new modes of interaction. They can support

natural, hands-free interaction. The presented effort is concerned with the

replacement of common touch input gestures with body movement gestures.

Missing or insufficiently precise sensor data are a challenge, e.g., gyroscope and

magnetometer data. This data is needed, together with acceleration data, to

compute orientation and motion of the device. A transformation of recorded

smartwatch data to arm movement gestures is introduced, involving data

smoothing and gesture state machines.

Keywords: Intuitive and natural interaction · Low budget interaction devices ·

Mobile devices · Virtual Reality · Body movement gestures · Gesture recognition

1 Introduction

Mobile devices are almost ambiguous today and feature a wide range of input and

output capabilities like touch screens, cameras, accelerometer, microphones, speakers,

near-field communication, Wi-Fi, etc. The usage of smart-devices is easy and intuitive,

and they offer a wide range of interaction metaphors, which can lead to a more natural

and intuitive interaction as well as a broad array of control elements [1]. Especially the

smartwatch as latest technology in that field gives new possibilities of interaction

techniques. As the watch is fix on the wrist, the hands are free what leads to a more

natural interaction in the meaning of body gestures, also other technology like finger

tracking can be combined and new interaction techniques will be enabled. Next to the

common touch gestures which are performed very frequently on the smart device's

display we developed additional movement gestures which enriches the input

capabilities of the smartwatch significant. Virtual Reality (VR) visual interaction

environments make possible the sensation of being physically present in a non-physical

world [2]. The value of this experience is a better perception and comprehension of

complex data based on simulation and visualization from a near-real-world perspective

[3]. A user's sense of immersion, the perception of being physically present in a non-

physical world, increases when the used devices are efficient, intuitive, and as ”natural”

as possible. The most natural and intuitive way to interact with data in a VR

environment is to perform the actual real-world interaction [4]. For example, gamers

are typically clicking the same mouse button to swing a sword in different directions.

However, the natural interaction to swing a sword in a VR application is to actually

swing the arm in the physically correct direction as the sword is an extension of the

user's arm. Therefore, intuitive and natural interaction techniques for VR applications

can be achieved by using the human body itself as an input device [5]. VR devices are

usually specialized to support one interaction modality used only in VR environments.

Substantial research has been done in this field, yet VR input devices still lack highly

desirable intuitive, natural, and multi-modal interaction capabilities, offered at

reasonable, low cost. In a preliminary study [6] we figured out that our low budget setup

and the implemented in air gestures are comparable to common VR input technology,

specifically body tracking enabled by a 3D camera. Thereby, we could state that a

combination of smartphone and smartwatch capabilities, outperforming a comparable

common VR input device. We have demonstrated the effective use for a simple

application. The main advantages of our framework for highly effective and intuitive

gesture-based interaction are:

• Location independence

• Simplicity-of-Use

• Intuitive usability

• Eyes-free interaction capability

• Support for several different inputs

• High degree of flexibility

• Potential to reduce motion sickness

• Elegant combination with existing input

technology

In this paper, we present the improvements of our gesture recognition algorithms and

the adaption of enhanced gestures accordingly. For the investigation, the Apple Watch

(watchOS2) is used to develop different arm movement gestures to enable new natural

interaction mechanisms. Unfortunately, the only sensor data which can be proceed from

the Apple Watch are the acceleration data as gyroscope and magnetometer was not

accessible to the time of our approach. Those three sensors are used to calculate the

orientation and motion dynamics of the device. The challenge is described by missing

sensor data, precisely gyroscope and magnetometer data, which need to be compensated

in order to calculate orientation and motion dynamics of the device. The aim of this

paper is to create a system that is able to recognize arm gestures only using the

accelerometer data of the device. This system has to allow a person, skilled in

programming, to define their own gestures. Based on six key values and a statement

sequence we are able to define precise arm movement gestures, exemplary

demonstrated on seven different gestures. More gestures are conceivable and easily

adoptable with our approach. Subsequent, we are able to transform the giving signal-

processing from the smartwatch into arm movement gestures with the use of smoothing

algorithms and gesture state machines which lead to the actual gesture recognition.

After giving a short description of the signal-processing model, and the associated

existing shortfalls, we will demonstrate the resulting adaption of gestures in detail.

Furthermore, an evaluation of the gesture recognizer is conducted and the results are

presented.

2 Related Work

Current research covers many aspects of interaction in VRs, being of great interest

to our work. Bergé et al. [7] stated that mid-air hand and mid-air phone gestures perform

better than touchscreen input implying that users were able to per- form the tasks

without training. Tregillus et al. [8] affirmed that walking-in-place as a natural and

immersive way to navigate in VR potentially reduce VRISE (Virtual reality induced

symptoms and effects [9]) but they also address difficulties that come along with the

implementation of this interaction technique. Freeman et al. [10] addressed the issue

of missing awareness of the physical space when performing in-air gestures with a

multi-modal feedback system. In order to overcome the lack of current display touch

sensors to equip a user with further input manipulators, Wilkinson et al. utilized wrist-

worn motion sensors as additional input devices [11]. Driven by the limited input space

of common smart watches, the de- sign of non-touchscreen gestures are examined [12].

Houben et al. prototyped cross-device applications with a focus on smartwatches. In

their work, they provided a toolkit to accelerate application development process by

using hardware emulations and a UI framework [13]. Similar to this work, several

investigations concerning interaction techniques with wrist-worn devices such as

smartwatches and fitness trackers have been made. In general, two types of recognizing

techniques can be differentiated: 1) machine learning techniques base on a (high)

number of training samples from which features are extracted and gestures with the use

of probability classifiers identified and 2) simple pattern recognition with predefined

features. Mace et al. [14] compared naive Bayesian classification with feature

separability weighting against dynamic time warping. The extremely differing gesture

types (circle, figure eight, square, and star) could be recognized with an average

accuracy of 97% for the feature separability weighted Bayesian Classifier, and 95% for

the dynamic time warping with only five gesture samples. Mänyjärvi et al. [15]

presented a hidden markov model in order to define continuous gesture recognition

based on user defined gestures for primitive gestures used to remotely control a DVD

player. Their model could reach an accuracy value of 90% to 95%. The investigation

performed in [16] employs a hidden markov model for user dependent gesture

recognition. The models are used for training and recognition of user-chosen gestures

performed with a Wii remote controller. Only few gestures are tested, which differ

extremely. Shortcomings of high computational power are mentioned. Compared to the

Wii remote controller, the smartwatch data does not show comparable high peaks. Thus,

the model is not suitable for the underlying kind of data. Methods from machine

learning have a high flexibility and find application especially at end user side, where

user do not know the data nor are able to identify features. Those techniques can lead

to excellent accuracy rates with an exceeding number of training samples. However,

classifying the training data and identifying the correct gesture with machine learning

techniques are resource-intensive. Considering, the less computation power of a

smartwatch and that the end user is not the point of interest in this work, machine

learning techniques are not applicable. Work done in [19] presents a frame-based

feature extraction stage to accelerometer-based gesture recognition performed with the

Wii remote controller. A gesture descriptor combining spectral features and temporal

features is presented. However, the recognition starting point is activated with a mouse

click and not only due to the recognition. Chu et al. [17] used a fuzzy control technique

to classify different gestures based on acceleration data from smartphones. The gestures

defined in the study are totally different, it would be interesting if there is still a

precision rate of 91% with gestures more similar to each other.

3 Setup

Our approach uses common technologies, at relatively low cost, supporting intuitive,

basic interaction techniques already known. A smartphone fixed in an HD viewer serves

as fully operational HMD and allows one to experience a virtual environment in 3D

space. The smartphone holds the VR application and communicates directly with a

smartwatch. Wearing a smartwatch with in-built sensors “moves” the user into the

interaction device and leads to a more natural interaction experience. In order to support

control capabilities to a great extent, we consider all input capabilities supported by the

smartphone and the smartwatch. In addition to touch display and crown, we considered

accelerometer, gyroscope and magnetometer, as they are built-in sensors. Our watch

setup consists of two components: (1) A smart- watch, the Apple Watch Sport 38mm

Generation 1 and (2) an HMD. The watch’s dimensions are 38.6mm x 33.3mm x

10.5mm. Neither watch nor HMD are tethered, and there is no technical limitation to

the tracking area. Also, the battery is no limiting factor in our investigation. A user’s

range of movement is defined by the actual physical space. One considerable limitation

is the fact that body movement gestures are limited to one arm. This limitation implies

that all other body parts cannot be utilized for gesturing. Body movements and gestures

involving more body parts, like legs, both arms, or torso, would enable a more natural

user interface experience. Smart watch and smartphone are connected in our framework

via Bluetooth, making possible a continuous communication. Accelerometer data

collected by the watch are communicated to the phone that computes and detects

defined gestures, making use of the smartphone’s computation power. It is challenging

to devise an algorithm to transform the raw stream of accelerometer data into explicit

gestures. Gestures should not interfere with each other, and the system must compute

and detect gestures in real time. The resulting data stream to be transmitted and the

resulting computation time required for data processing can lead to potential

bottlenecks. In previous work, we designed seven distinct gestures dedicated to VR

modes of orientation, navigation, and manipulation. evaluated them comparatively to

common VR input technology, specifically body tracking enabled by a 3D camera.

During the experiment the user was located in a VE constituting a factory building.

Latter is an accurate 3D model of a machine hall existing in real world. Orientation is

implemented through head-tracking. A user can look around and orientate oneself. The

smartphone uses built-in sensors, like accelerometer and gyroscope, to deter- mine

orientation and motion (of the devices), permitting translation, done by the game

engine, into the user’s viewpoint in a virtual scene. Navigation is implemented by two

interaction techniques: (1) In the watch setup, a user looks in walking direction, and

single-touch taps the watch to indicate begin or end of movement. (2) In the 3D Camera

setup, a user “walks on the spot". Manipulation refers to the interaction with objects

in a scene.

4 System Model

In order to describe the model, we define a gesture as following: A gesture is a

pattern of wrist movements. Patterns of interest are characterized as intentionally

performed, easily memorable, and easily performed by a wide range of users.

Furthermore, a gesture pattern is a sequence of states based on key information of the

sensor data. Our approach based on one central class GestureRecognizer, that collects,

refines and translates the sensor data. Every gesture is an object of the type Gesture,

that implements a state machine (SM), that takes the refined sensor data and per- forms

state changes accordingly. To enable the recognition of a specific gesture, the

corresponding class gets registered in the GestureRecognizer, so that its update

gets called periodically. The recognized gesture is send to the UnityEngine, where

corresponding functionality is executed. In terms of computation time and performance,

it is recommended to register only the gestures that should be performed and as long as

needed. Afterwards they should be released again.

State Machine. A state machine (SM) is a model that describes the output of a

control system based on the incoming stimuli from the past. States represent all possible

situations in which the state machine may ever be. The incoming inputs and the

sequence of inputs in the past determine the state in the system and lead to the

corresponding output of reaching that state [18]. If the number of distinguishable

situations for a given state machine is finite, the number of states is finite and the model

is called a finite state machine.

Key values. Every time a state machine gets updated, the following key values are

used to determine the state and corresponding transition:

• Direction of Acceleration 

• Direction of Velocity 
• Direction of Gravity

• Value of Acceleration

• Value of Velocity 
• Time

In each frame the extracted sensor data are sent to all state machines (SMs) as new

incoming inputs. In general, an update of the SMs occurs every time new input arrives;

some SMs only get updated if a key value changes. An update of the SM does not imply

a state change. Two different types of SMs are used in the system model. The first type

of SM defines states based on segment positions. The second type of SM defines states

based on the number of reached segments. For the purpose of the definition, they are

both true SMs, but we can use a lot less states this way, as some gestures do not need

an exact position but a specific number of direction changes. If one gesture is

recognized, all SMs get reset and a message is sent to execute the desired interaction in

the VR environment. As condition of our approach, we merely use the patterns

generated by a single axis accelerometer and try to extract the information needed to

define gestures. The key values are calculated based on the following sensor data: (1)

gravitation, (2) acceleration, and (3) velocity. The gravitation value is extracted in order

to be used as reference of the watch’s posture with which we can align the sensor data

and ultimately because the gravitation is polluting the sensor-data. Acceleration data is

used to compute the path of the wrist in 3D space monitored over time. The velocity is

derived from the acceleration data and used to define additional state transition

conditions. An overview of all forces and their dependencies are depicted in Fig. 1.

𝑆 = 𝑅𝑎𝑤 𝑠𝑒𝑛𝑠𝑜𝑟 𝑑𝑎𝑡𝑎

�⃗� = 𝐺𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛

𝐴 = 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛

�⃗⃗� = 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦

We know:

 𝑆 = �⃗� + 𝐴

‖𝐺‖ = 1

Fig. 1. Key values of gesture recognizer. Different �⃗� and 𝐴 can add up to 𝑆.

If we measure 𝑆 then we know that �⃗� also points in the same direction, meaning

�⃗� =
𝑆

‖𝑆‖
. However, adopting the direction of �⃗� from 𝑆 is only correct if the watch

stands still. Therefore, it is challenging to find the right moment to calculate the

direction. Our approach is to implement an adoption-rate describing the degree of how

much we trust in
𝑆

‖𝑆‖
 to be the same as the actual/real gravitation force with the

following steps:

�⃗�𝑛𝑒𝑤 = �⃗�𝑜𝑙𝑑 (1 − 𝑤𝑒𝑖𝑔ℎ𝑡) + 𝑤𝑒𝑖𝑔ℎ𝑡
𝑆

‖𝑆‖
 (1)

𝑤𝑒𝑖𝑔ℎ𝑡 = 0.3 ⋅ exp(− ‖𝑆‖ − 1)
2

⋅ 14) (2)

The weight distribution corresponds to a Gaussian bell curve, which has its peak in

‖𝑆‖ = 1. This function guarantees that �⃗� is rapidly corrected once the user stays still

and that the changing rate from �⃗� is lowered while gestures are performed.

Computations according to Equation 1 are performed every frame with a rate of frames

per second; after merely frames Gold is only covered by (1- 0.3)
8 = 5,7% if ‖𝑆‖ is close

to 1. After computing �⃗� we know:

𝐴 = 𝑆 − �⃗�𝑛𝑒𝑤 (3)

This approximation still does not consider the position of the smartwatch on the wrist

and therefore �⃗�𝑛𝑒𝑤 could be pointing anywhere. Taking this into account, we apply a

rotation R to 𝐴 with the property (0, 0, -1) =
�⃗�𝑛𝑒𝑤

‖�⃗�𝑛𝑒𝑤‖
 ⋅ 𝑅. Thus, the robustness of the

gesture recognition is enhanced.

States. In order to define states for the state machine in an easy computable form,

areas on a sphere are defined into sectors. Every vector is transformed into an identifier

representing if this vector lies in that sector. In total, we defined 28 sectors: 5 sectors in

longitude axis, whereby the 3 middle slices are divided into 8 sectors in latitude axis.

Tested in a preliminary study, we figured out that those sectors are the optimal number

of segmentations, which are comfortable to reach and that provide an adequate number

of possible permutations and therefore gesture states. Based on the defined sectors, the

following refined denotations of the key values are used: 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = Sector to

which 𝐴 points to; 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = Sector to which �⃗⃗� points to; 𝐺𝑟𝑎𝑣𝑖𝑡𝑦 = Sector to

which �⃗� points to; ‖𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛‖ = Value of Acceleration = ‖ 𝐴‖; ‖𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦‖ =

 Value of Velocity = ‖ �⃗⃗�‖. Next, due to the keen accelerometer sensors and repetitive

assimilation of data in- accuracies over time, so-called drift of the computed

acceleration occurs. This well-known problem appears by using sensors without the

ability to re-calibrate. Multiple factors lead to this inaccuracy. The system is often

slightly lagging behind a move- ment and hence computes faulty values. If the hand is

rotated by degree, the sign of the number changes. As the systems sensor is slightly

lagging behind, the sign shift is not recognized for a short time. But we cannot avoid

the sensor lag, as we cannot trust that the direction of �⃗� and the direction of 𝑆 is the

same. As defined, 𝑆 = 𝐴𝑟𝑒𝑎𝑙 + �⃗� and 𝐴𝑝𝑜𝑙𝑙𝑢𝑡𝑒𝑑 = 𝑆 − �⃗�, for that short moment, one

has 𝐴𝑝𝑜𝑙𝑙𝑢𝑡𝑒𝑑 = 𝑆 + �⃗� = 𝐴𝑟𝑒𝑎𝑙 + 2�⃗�, and �⃗�gets adjusted. Furthermore, over time the
∑ 𝐴 ≠ 0, therefore the velocity of the object, also is ‖𝑉𝑒𝑙‖ ≠ 0. In long movements,

the velocity drifts extremely as the sensor cannot be calibrated �⃗� is not adjusted. It

cannot be stressed enough that rotating the wrist causes anomalies due to above

mentioned problem, which implies that 𝐴 and �⃗⃗� cannot be trusted for / of a second after

a full rotation is performed. In order to effect higher accuracy, the following adjustment

to the velocity vector is performed every frame:

�⃗⃗�𝑛𝑒𝑤 = �⃗⃗�𝑜𝑙𝑑 ⋅ 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟1 + 𝐴 ⋅ 𝑡𝑖𝑚𝑒𝐹𝑎𝑐𝑡𝑜𝑟 − 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟2 (4)

5 Gesture Design

We defined seven gestures that cover the full range of possible gestures to evaluate

the gesture recognition algorithm. Hereby, it is implied, that single states are recognized

as well as sequences of states and changes of the key values. These gestures also try to

prove that a series of movements can make up a recognizable pattern. We show this for

a realistic number of steps. The classification of the gestures follows along the attributes

of movement and shape. We differentiate motion between continuous and partitioned

movements. If a gesture is performed without breaks it has a continuous movement

while partitioned gestures are made up of a series of continuous sub-gestures with

sufficient breaks in-between. The second differentiation between gestures is related to

the gesture form. Gestures have either curvy or angular paths describing their shape,

see Fig. 2. Following the classification along the attributes movement and shape, the

seven gestures will be described accordingly.

(a) Continous

movement

(b) Partitioned

movement

(c) Path follows

curved shape

(d) Path follows

angular shape

Fig. 2. Taxonomy of gestures along the attributes movement and shape.

As shown in Table 1, every key value has at least been used twice and in

combinations with other values that made sense for those particular gestures.

Additionally, the “Number of Steps” indicates how many different motions have to be

performed in series for this gesture. We created gestures that have multiple steps, which

demonstrates the capability of the system to create series of motions. In the following,

we give detailed information of each gesture with the aim to transfer the knowledge so

that the reader is able to create own gestures. For better readability, the following

diagrams are simplified into a 2-dimensional abstraction of the real SMs. The Circle

Gesture is defined with continuous movement and a curvy shape, see Fig. 3. This

gesture seems to be intuitive and is supposed to be used when something has to be

rotated. In order to perform this gesture, users have to perform a clockwise circular

motion with their arm. The corresponding SM counts to transitions which is at least half

of a circle. Start point of the circle can be at any point and due to the self-recovering

nature of this particular SM, the recognition works always if the user does not stop

circling. Axis and direction of turn can vary in the definition of the SM. The SM shown

in Fig. 3. is not parametric.

Table 1. Key values and amount of states per gesture.

 Circle Shake Swipe Hammer Z Lever Ladle

Acc
Vel
Grav

||Acc||
||Vel||

Time

#Steps 5 4 2 2 4 3 6

The Shaking Gesture is defined as a continuous movement with an angular shape. This

intuitive gesture is an analogy to shake things. An example would be shaking a dice

cup. In order to perform this gesture, the executed motion is described by an alternating

up and down of the user’s arm. The Shaking Gesture can either be defined in vertical

direction or horizontal direction. The corresponding state machine is depicted in Fig. 4.

and shows the definition of this gesture in vertical direction by counting transitions

between up and down. The state machine is parametrized in a way that each two sectors

on opposite directions can be used. The Swipe Gesture is defined as partitioned gesture

following a curvy path, see Fig. 5. This gesture us in analogy to the swipe touch gesture

on smartphones that could find use in interactions, where something has to be moved

into the direction of the swipe. The gesture can be unintentionally performed in a naturel

interaction; therefore, the definition of the state machine is designed in a quite

restrictive manner with the use of all key values. In order to avoid the performance of

the motion by accident, initially the user has to hold his hand still for around 0,3

seconds, after that he has to move his hand in the wanted direction and hold the speed

for a given number of frames. This gesture also detects false alarms which is caused by

rotating the wrist, that is done by checking Grav = GravatStart.

Fig. 3. Motion and SM of Circle Gesture:

Every arrow that points to state "L" has the

condition Acc = Left.

Fig. 4. Motion and state machine of

shaking gesture; the gray arrow indicates the

direction of the watch.

Fig. 5. Motion and state machine of swipe

gesture uses all defined key values to avoid

unintentionally gesture performance.

Fig. 6. Motion and state machine of

hammer gesture demonstrates the usage of

negative acceleration and velocity.

The Hammer Gesture follow the definition of a curvy and continuous gesture, see Fig.

6. It is performed by knocking the watch wearing hand in a hammer-swing-like motion

onto the other hand. That way the de-acceleration is high enough to make a special

Star tL

U

UL
UR

R

DRDL

D

Acc = UpRigth

Acc = Ri ght

Acc = Up

Acc = Lef t

pattern that we detect. It is supposed to be used for pushing buttons, smashing objects,

or forging. The Lever Gesture was made to evaluate the usefulness of recognizing

gestures just by the alignment of the watch to the gravity, see Fig. 7. No other key

values are used for the gesture recognition. Therefore, we designed a partitioned gesture

following an angular path with two stages in which the watch is rotated in two different

directions using the gravity in those directions. First, the watch is rotated along the

longitudinal axis and in the second state along the lateral axis. The Ladle Gesture is

defined by partitioned movement following a curvy shape, see Fig. 8. The gesture

demonstrates the combination of gravity gesture elements and the key values of velocity

and time. The motion of the gesture is in analogy to scooping fluid and pouring it into

another container. Due to the additional key values, merely rotating the wrist does not

trigger the gesture recognition. The Z Gesture is defined as a continuous movement

along an angular shape and was made to test the limits of the system by combining

arbitrary motions into one recognizable gesture, see Fig. 9.

Fig. 7. Motion and state machine of two staged

lever gesture only uses gravity as key value.

Fig. 8. Motion and state machine of

ladle gesture combines gravity with

velocity and time values.

Fig. 9. Motion and state machine of shaking gesture.

6 Discussion and Conclusion

The gestures we provided through the high flexibility of our system are easy to learn,

effective, and user show a positive attitude towards using the technology. Primitive

gestures as Swipe Left and Swipe Right seem simple, however it is challenging to

design those gestures in a way, that they are easy to learn, easy to recognize, but not

recognized while performing other gestures. More complex gestures, like Lever,

Laddle, or Shaking incorporate less key values and are easier to design. Although, the

circle gesture integrates up to nine potential states, not all of those have to be reached

making the design and recognition of those gestures easier. Some limitations were

discovered that have to be considered while designing gestures. It can be stated that

gestures following continuous movement along angular shapes, like Z Gesture, are hard

to learn and hard to recognize and should not be used. The reason is that a deceleration

of the hand movement is easily recognized as movement into the opposite direction

progressing the state machine into the next state too early. Combining arbitrary motions

into one recognizable gesture is not possible in any case. Especially, for designing

continuous gestures, reversing movements should be avoided. In a user study, we

measured the effectiveness, which was measured as accuracy of the gesture recognizer

describing the proportion of all measures, correctly classified. An average sensitivity

rate of 90.64% for all performed gestures was achieved, with an average specificity rate

of 99.46% and average accuracy rate of 98.36%. The best-performed gesture (shaking)

had an accuracy of 99.52%, while the “weakest” gesture (swipe right) still had an

accuracy of 97.40%. Compared to common technology like other smartwatches or

electromyography armbands, the used device in this investigation uses less expensive

sensors which can easily lead to inaccurate signals and measurements. Nevertheless,

our approach is able to overcome this limitation and it led to satisfying results with low

budget devices. Compared to optical tracking systems like 3D cameras, we could

already prove in previous work [6] that the usage of smartwatches are promising

alternatives to common gesture based interaction technology. Furthermore, our

approach is able to identify more diverse gestures and even small movements like

rotating the wrist, which would not be recognizable with those optical trackers. In this

work, we presented a signal processing approach for enhanced multi-modal interaction

interfaces, designed for smart- watches and smartphones for fully immersive

environments that enhance the efficiency of interaction in virtual worlds in a natural

and intuitive way. This work deals with the replacement of the common touch input

gestures with actual body movement gestures. The challenge is described by missing

sensor data, precisely gyroscope and magnetometer data, which together with

acceleration is used to calculate orientation and motion dynamics of the device. We

present a transformation of the giving signal-processing from the smartwatch into arm

movement gestures with the use of smoothing algorithms and gesture state machines.

Based on six key values and statement sequences we are able to define precise arm

movement gestures, exemplary demonstrated on seven different gestures. More

gestures are conceivable and easily adoptable with our approach. The findings of the

user study prove that the system as described in this work is able to recognize unique,

primitive, and even complex gestures in an easy learnable way, while overcoming the

missing sensor in low budget technology. The approach used performs quantitatively

better results compared to the existing recognizer and allows more divers gestures

incorporating different kind of states and key values. The tested gestures covered all

key values and with this any kind of possible gesture types. The evaluation shows that

complex gestures with many consecutive states are just as well designable as more

primitive ones.

Acknowledgments. This research was funded by the German research foundation

(DFG) within the IRTG 2057 "Physical Modeling for Virtual Manufacturing Systems

and Processes"

References

1. Rupprecht, F., Hamann, B., Weidig, C., Aurich, J. & Ebert, A.: IN2CO - A Visualization

Framework for Intuitive Collaboration. In: EuroVis - Short Papers. ACM (2016)

2. Pausch, R., Proffitt, D., & Williams, G.: Quantifying immersion in virtual reality. In

Proceedings of the 24th annual conference on computer graphics and interactive techniques,

pp. 13–18, ACM (1997)

3. Bryson, S., Feiner, S., Brooks Jr, F., Hubbard, P., Pausch, R. & van Dam, A.: Research

frontiers in virtual reality. In: Proceedings of the 21st annual conference on computer, (1994)

4. König, W. A., Rädle, R., & Reiterer, H.: Squidy: a zoomable design environment for natural

user interfaces. ACM (2009)

5. Ball, R., North, C. & Bowman, D.: Move to improve: promoting physical navigation to

increase user performance with large displays. In: Proceedings of the sigchi conference on

human factors in computing systems, pp. 191–200, ACM (2007)

6. Rupprecht, F., Ebert, A., Schneider, A. & Hamann, B.: Virtual reality meets smartwatch:

Intuitive, natural, and multi-modal interaction. In: Proceedings of the 2017 chi conference

extended abstracts on human factors in computing systems, pp. 2884–2890, ACM (2017)

7. Bergé, L.-P., Serrano, M., Perelman, G., & Dubois, E.: Exploring smartphone-based

interaction with overview+ detail interfaces on 3d public displays. In: Proceedings of the 16th

international conference on human-computer interaction with mobile devices & services, pp.

125– 134, (2014)

8. Tregillus, S., & Folmer, E.: Vr-step: Walking-inplace using inertial sensing for hands free

navigation in mobile vr environments. In: Proceedings of the 2016 chi conference on human

factors in computing systems, pp. 1250–1255, ACM (2016)

9. Sharples, S., Cobb, S., Moody, A., & Wilson, J. R.: Virtual reality induced symptoms and

effects (vrise): Comparison of head mounted display (hmd), desktop and projection display

systems. In: Displays, 29(2), pp. 58–69, (2008)

10. Freeman, E., Brewster, S., & Lantz, V.: Do that, there: An interaction technique for

addressing in-air gesture systems. In: Proceedings of the 34th annual conference on human

factors in computing systems chi’16, ACM (2016)

11. Wilkinson, G., Kharrufa, A., Hook, J., Pursgrove, B., Wood, et al.: Expressy: Using a wrist-

worn inertial measurement unit to add expressiveness to touch-based interactions. In:

Proceedings of the conference on human factors in computing systems, ACM (2016)

12. Arefin Shimon, S. S., Lutton, C., Xu, Z., Morrison-Smith, S., Boucher, C., & Ruiz, J.:

Exploring nontouchscreen gestures for smartwatches. In: Proceedings of the 2016 chi

conference on human factors in computing systems, pp. 3822–3833, ACM (2016),

13. Houben, S., & Marquardt, N.: Watchconnect: A toolkit for prototyping smartwatch-centric

cross-device applications. In: Proceedings of the 33rd annual acm conference on human

factors in computing systems, pp. 1247–1256, ACM (2015)

14. Mace, D., Gao, W., & Coskun, A. K.: Improving accuracy and practicality of accelerometer-

based hand gesture recognition. In: Interacting with Smart Objects, 45, (2013)

15. Mäntyjärvi, J., Kela, J., Korpipää, P., & Kallio, S.: Enabling fast and effortless customisation

in accelerometer based gesture interaction. In: Proceedings of the 3rd international

conference on mobile and ubiquitous multimedia, pp. 25–31, ACM (2004).

16. Schlömer, T., Poppinga, B., Henze, N., Boll, S.: Gesture recognition with a wii controller. In

Proceedings of the 2nd international conference on tangible and embedded interaction, ACM

(2008)

17. Chu, H., Huang, S., & Liaw, J.: An acceleration feature-based gesture recognition system.

In: International conference on systems, man, and cybernetics, pp. 3807–3812, IEEE (2013)

18. Wagner, F., Schmuki, R., Wagner, T., & Wolstenholme, P.: Modeling software with finite

state machines: a practical approach. CRC Press (2006)

19. Wu, J., Pan, G., Zhang, D., Qi, G., Li, S.: Gesture recognition with a 3-d accelerometer. In:

International conference on ubiquitous intelligence and computing, Springer (2009)

20. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D.: User acceptance of information

technology: Toward a unified view. MIS quarterly, pp. 425–478, MIS quarterly (2003)

	1 Introduction
	2 Related Work
	3 Setup
	4 System Model
	5 Gesture Design
	6 Discussion and Conclusion
	References

