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Abstract

In many applications one is concerned with the approximation of
functions from a finite set of scattered data sites with associated
function values. We describe a scheme for constructing a hierar-
chy of triangulations that approximates a given data set at varying
levels of resolution. Intermediate triangulations can be associated
with a particular level of a hierarchy by considering their approx-
imation errors. We present a data-dependent triangulation scheme
using a Sobolev norm to measure error instead of the more com-
monly used root-mean-square (RMS) error. Triangles are split by
selecting points in a triangle, or its neighbors, that are in areas of
potential discontinuites or areas of hight gradients. We call such
points “significant points.”

1 Introduction

We describe a method to create piecewise linear approximations for
scattered bivariate data of the form{(xi, yi, fi) | i = 1, . . . , N}.
Our algorithm creates an initial triangulation of the region defined
by the boundary polygon of the convex hull of the given data. Us-
ing this triangulation, a refinement process produces a sequence of
piecewise linear functions that improve the approximation of the
given scattered data at each step. The method can be applied to
general multi-valued scattered data, defined as a set

{(xi, yi, fi,1, fi,2, . . . , fi,k) | i = 1, . . . , N}, (1)

where multiple function valuesfi,j are associated with each site.
The input to our method is a set of error tolerances, denoted as

ε1, ε2, ..., εn, each of which specifies the allowable error per trian-
gulation level. We iteratively refine intermediate triangulations by
triangle subdivision until the next error tolerance is met. Each trian-
gulation implies a piecewise linear approximation of the given scat-
tered data. Refinement is performed until we haven triangulations
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that meet then prescribed error tolerances. Thesen triangluation
levels define a “hierarchy,” which is illustrated in Figure 1.

Our method does not require connectivity information for the
given sites. First, we create a coarse triangulation. This is done by
calculating the boundary polygon of the convex hull of the set of all
given sites in the plane and triangulating the region defined by the
point subset defining the boundary polygon.

captionHierarchy of triangulations (left: flat-shaded triangulated
surface, right: triangulation).

We perform triangle subdivision to improve an intermediate lin-
ear spline approximation. The triangle with the greatest local error
is split into at least two and at most four subtriangles by using at
most one split point per edge. This process is then repeated itera-
tively.

We have used different types of error metrics to determine esti-
mates of the local error of a triangulation. The Sobolev norm, which
also considers the gradient of the original data, leads to very good
results. By considering the gradients, triangles containing “signif-
icant” data sites, like discontinuities or high-gradient data, have
larger associated errors than triangles in relatively low-gradient ar-
eas. We do not need the gradient to be part of the given data set, as
it can be approximated in a preprocessing step.

To get an approximation of the gradient, we compute the surface
at each original data site, which is computed using the original data
site and its ten closest neighbors in a discrete Gaussian least-square
fit.



When we perform triangle subdivision to improve an approxima-
tion, we consider two different refinement schemes, which we refer
to as “Type-A” and “Type-B” refinement. Type-A refinement splits
triangles by generating split points along one or all three edges of a
triangle. An example of this technique is shown in Figure 1(a) for
three points on the edges of a triangle. When a triangle is split, so-
called “implied splits” must be performed in neighboring triangles
(“edge neighbors”).

(a) Type-A refinement: The origi-
nal black triangle is subdivided into
four subtriangles.

(b) Type-B refinement: The original triangle is
subdivided into four triangles using existing data
sites.

Figure 1: Two types of triangle subdivision.

There are some problems with Type-A refinement. These are
due to the fact that Type-A refinement introduces split points ly-
ing exactly on triangle edges. As a result of this restriction, long
edges in a coarse initial triangulation remain visible in all subse-
quent higher-resolution triangulation levels, leading to artifacts in
renderings.

We address this problem by extending the Type-A refinement
scheme to choose split points that arenot necessarily located on
the edges of a triangle being refined. We are identifying significant
data sites lying inside the triangle or inside one of its neighbors. It
is preferable to use original data sites whenever possible. We call
this method Type-B refinement. An example of this technique is
illustrated in Figure 1(b). Our overall refinement algorithm operates
as follows:

• INPUT:N scattered bivariate data points;n error tolerances

• OUTPUT:n triangulations

• ALGORITHM:

– Compute minimal point set defining the boundary polygon of the con-
vex hull.

– Compute initial data-dependent triangulation for the region defined by
this point set.

– Refinement.Computen triangulations by performing the following
steps:

∗ While error is greater than the current toleranceε do

· Refine the triangle with the greatest error.

· Perform all possible refinements and determine how they
impact the error.

· Choose a refinement that maximally decreases the error.

· Re-calculate vertex values for those vertices affected by
the re-triangulation step.

2 Related work

A data-dependent triangulation scheme adaptively generates a tri-
angulation by considering approximation error. The techniques de-
scribed in [13], [14], and [15] deal with the problem of decimat-
ing triangular surface meshes and adaptive refinement of tetrahe-
dral volume meshes. These approaches are aimed at concentrating
points in regions of high curvatures or high second derivatives. This
paradigm can be used to either eliminate points in nearly linearly
varying regions (decimation) or to insert points in highly curved
regions (refinement). The data-dependent triangulation scheme we
describe in this paper is based on the principle of refinement. Our
algorithm refines a triangulation by either using existing data sites
or inserting new points.

In principle, our technique is related to the idea of constructig
a multiresolution pyramid, i.e., a data hierarchy of triangulations
with increasing precision, see [10]. Figure 1 shows a multireso-
lution hierarchy of triangles, where the top level is a coarse tri-
angulation, and, as wedescendthe hierarchy, finer triangulations
become visible. The pyramid concept has also been extended to
the adaptive construction of tetrahedral meshes for scattered scalar-
valued data, see [3] and [6].Multiresolution methodshave been
applied to polygonal (triangular) approximations of surfaces. Such
approaches are described in [7], [8], and [18]. Our data-dependent
technique can be viewed as a hierarchical method for representing
scattered data by multiple levels of triangulations, but our approach
is not based on the construction and application of orthogonal basis
systems, such aswaveletbases.

Scarlatos and Pavlidis discuss a scheme [22] that recognizes the
linear “coherence” of discontinuties. In their refinement scheme,
one attempts to place a triangle edge along discontinuities in a data
set. A primary difference between their work and our scheme is that
we allow knots (= mesh vertices) that do not necessarily coincide
with the original data sites to be introduced when there is no other
option.

An alternative to constructing a triangulation hierarchy is to start
with a fine mesh and decimate vertices, edges, or faces. Hoppe [16]
discusses a technique for collapsing edges. In [26], an alternative
scheme for collapsing faces is discussed.

Survey papers of scattered data approximation for bivariate and
trivariate data are [19], [2] and [11]. In [20], various scattered
data interpolation techniques (scalar-valued, trivariate case) are dis-
cussed and compared. Our scheme relies on concepts fromgeo-
metric modelingandcomputational geometry. These are discussed
in [9] and [21].

3 Adaptive triangle refinement

The input to our refinement scheme is a set of planar points with
height values. The data sites do not have to lie on a regular grid
though our examples all have this property.
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S =

∫
||L(x, y)− f(x, y))|| dx dy + c
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∂
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)2

+

(
∂
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L(xi, yi)− fyi

)2
)

(3)

We start the adaptive refinement process by creating an initial
coarse triangulation. We iteratively refine intermediate triangula-
tions until a triangulation is obtained whose associated global ap-
proximation error is smaller than a prescribed tolerance. We use a
Sobolev norm to measure the error for our approximations.

We apply triangle refinement to improve a piecewise linear ap-
proximation. In each refinement step, we identify the triangle that
deviates the most from the given data and subdivide it. Refining a
single triangle consists of these basic steps:

1. Identify appropriate points within the triangle and its edge
neighbors. If such points exist, then use them in the refine-
ment step.

2. If no appropriate points are found, then generate new vertices
along the edges of the triangle to be split.

3. Approximate the function values for a new vertex and certain
existing vertices in the neighborhood where refinement is per-
formed.

4. Construct a new triangulation of the set of original and newly
inserted vertices.

5. Compute an error estimate for the new triangulation.

These steps are iterated until a certain error tolerance is met. Our
scheme is adaptive in two ways: (i) An intermediate triangulation
is refined locally in regions with large errors, and (ii) the locations
of vertices are chosen in order to minimize the error. We analyze
all possible refinements of a triangle and compare them to deter-
mine which one leads to the best fit, i.e., leading to maximal error
decrease, of the underlying data. We apply tests to guarantee that
the location of vertices does not lead to overlapping triangles after
subdivision.

3.1 Initial triangulation

The initial triangulation of a given scattered data set defines the
domain over which the algorithm is executed. It should consist only
of existing data sites of the data set. There are different possibilities
to generate valid inital triangulations. We consider the boundary
polygon of the convex hull of the set of given data sites asnatural
boundary of a data set. We use theGraham’s scanalgorithm [12]
to compute the points defining this boundary polygon. This results
in a set of points which, when triangulated, define the domain for
our linear spline hierarchy.

Using the boundary polygon of the convex hull, we compute a
data-dependent triangulation of the minimal point set defining the
polygon. In general, one has to consider all possible triangula-
tions of this point set and select the one that minimizes a chosen
error measure. Computing all possible inital triangulations can-
not be done efficiently when the boundary polygon is defined by
a relatively large number of points. Therefore, we propose to con-
struct any triangulation of the boundary points and then applysim-
ulated annealingin order to obtain a better, possibly optimal, data-
dependent initial triangulation, see, e.g., [17] and [23]. This is also
preferable in the case of non-convex data.

Another approach proved to produce good results in certain situ-
ations: Often, it is possible to obtain a general idea of how the data
set behaves in the interior of the domain by analyzing the behavior
on the boundary. Following this idea, we computeall the points
that lie on the boundary and identify the significant points of the
boundary polygon. We then use the significant points of the bound-
ary polygon to construct the initial triangulation using the Delaunay
triangulation. (Thus, we apply a data-dependent point selection step
on the boundary.)

Remark: For many practical applications, it might be sufficient
to simply use the four vertices defining the corners of the bounding
box containing all original sites. Several real-world data sets are
defined on a uniform, rectilinear grid whose convex hull coincides
with its bounding box.

Another practical solution is to define the start triangulation man-
ually. This opens the possibility to concentrate on special areas of
interest in a given data set.

3.2 Approximation error estimates

In this section, we describe the approximation error estimate that we
use in our refinement scheme. We assume that the given scattered
data in the plane and the vertices of all intermediate triangulation
levels have the same convex hulls.

It is the objective of data-dependent triangulation to refine a tri-
angulation in “high-detail” areas of a data set by using more and,
if necessary, skinnier triangles than in “low-detail” areas. In most
data sets, the significant points are points close to discontinuities or
points in high-gradient regions. Thus, the error norm should assign
more weight to points in those regions.

The error normS we use is derived from the Sobolev norm
[1, 25]. It is defined by Equation 2, wheref denotes the original
function to be approximated,L is a linear spline approximation,
andc > 0 is a constant. The constantc can be chosen arbitrarily.
After some experiments, we decided to use the area of the triangle
as value forc. By considering not only the difference in function
value but also in gradient value, significant areas are more readily
identified and captured in the triangulations.

We compute alocal error for each triangle and aglobal error
for each triangulation. If there arem original data sites lying inside
the triangleτ (including its boundary), we define the local Sobolev
errorELSOB as in Equation 3, wherefi is the value at a given site
(xi, yi), fxi andfyi are the two components of the gradient at site
(xi, yi), L(xi, yi) is the value of the linear polynomial over the tri-
angle containing(xi, yi), andτA is the area of the triangle contain-
ing (xi, yi). The global error associated with an entire triangulation
is defined as the maximum of allELSOB values.

3.3 Refining a triangle

When refining a triangle, we are searching for one or three points in
the triangle or in its edge neighbors being close to the edges of the
triangle to be split. This leads to two different split types, shown
in Figure 2. To demonstrate the basic idea we choose split points
exactly on the edges. In each case, we determine a new split point
within the part of the original data set that lies inside the triangles.
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(a) Choosing one split
point.

(b) Choosing three split points.

Figure 2: The two different split types.

If we do not find any appropriate data site, then we take the mid-
point of an edge and approximate a function value for this point as
described in section 3.4.

In the first case, see Figure 2(a), we are searching among the
existing data sites in triangleA and its edge neighborB for an
appropriate split point. The chosen data site has do be within a
certain convex region bounded by the areas of the two triangles.
We have to consider the situations shown in Figure 3: Here, original
data sites within the shaded regions cannot be used. The data sites
have to lie in a region, that is calculated in the following way:

1. Calculate the intersection of the two lines passing throughγ
andδ and throughα andβ → S1 = intersection point.

2. Calculate the intersection pointS2 in the same way.

3. If S1 is betweenα andβ, then use the triangleδ, S1, β; oth-
erwise, use the triangleα, β, δ.

4. If S2 is betweenβ andγ, then use the triangleβ, S2, δ; oth-
erwise, use the triangleβ, γ, δ.

5. Similar calculations have to be done to obtain the pointsS3

andS4 in the symmetrical case, shown in Figure 3, on the
right-hand side.

Figure 3: Generating a convex region.

Remark: To avoid very skinny triangles the distance between a
chosen data site and the common edge of the two triangles has to be

Figure 4: Construction of a tile for mesh vertexv.

shorter than the distance (perpendicular) to any of the other edges
of the triangles.

Every data site satisfying the conditions described above is in-
vestigated concerning its “significance.” In our current approach,
we choose the data site that is approximated worst with respect to
the Sobolev norm. If there exist data sites with the same deviation,
we chose the one that is closer to the midpoint of the common edge
of the two triangles being split. Especially in rather linear regions
data sites are chosen which are positioned more in the middle of
the triangles to produce more uniform triangles. On the other hand,
if there is a significant data site within those two triangles, then it
is chosen. In this case, the triangle may become skinnier but more
appropriate in the sense of data-dependent triangulation.

If there exists no data site satisfying these conditions, then we
generate a new data site that is the midpoint of the common edge.
The function value of this new data site is approximated as de-
scribed in section 3.4.

The second type of refinement chooses three points lying inside
the triangle or inside one of its up to three edge neighbors. This is
illustrated in Figure 2(b).

To get a correct triangulation we have to place the new points,
calledna, nb, andnc in Figure 2(b), so that none of the new edges
intersect each other or the boundary polygon of the union of the
triangle to be refined and its edge neighbors.

Currently, we determine a data site for each internal edge that
has the closest perpendicular distance to the midpoint of that edge.
If such a point does not exist or the data site has a smaller distance
to any of the midpoints of the other internal edges, then we insert
the midpoint of the edge as a new vertex.

3.4 Approximating function values

We approximate function values, i.e., the coefficients of our linear
spline approximation, at mesh vertices using a local approximation
scheme. We use a modified, localizedShepard’s method, see [24].
We need to determine a local point set to be considered when cal-
culating the function value at a particular vertex. The original scat-
tered data that we use for this local approximation are the points
lying within the tile around a particular vertex, shown in Figure 4.
The tile of a vertex is constructed by connecting the midpoints of all
edges emanating from the vertex and the centroids of all triangles
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that share the vertex as a common vertex.
We subdivide a tile into triangles and perform an inside/outside

test for this set of triangles to determine the original sites that lie
inside the tile. We consider this subset of data to estimate a function
valuefapp for the central vertexv. The function valuefapp is a
weighted average defined as

fapp =

∑M

i=1
fi/d

2
i∑M

i=1
1/d2

i

. (4)

Here,M is the number of original sites inside the tile,fi is the
function value associated with a given site(xi, yi) inside the tile,
andd2

i is the squared Euclidean distance between the new vertexv
and(xi, yi).

Whenever triangles are refined as a result of inserting additional
vertices, we must estimate new function values for all vertices in
the triangulation whose associated tiles change as a result of the
refinement process. This set of vertices is given by the set of points
becoming end points of new edges in the triangulation.

4 Results

We have applied our method to data sets with and without high-
gradient regions and discontinuities. To demonstrate the usefulness
of the chosen Sobolev norm we have also performed refinement
for the same data sets using the RMS error. We have applied our
method to the following data sets:

• A discrete Mount St. Helens digital-elevation model (DEM)
data set, provided on a uniform rectilinear grid, which is
shown in Figure 7.

• A Lake Marquette DEM, which is shown in Figure 6.

As one can see in both cases, using the RMS error leads to very
skinny triangles even in low-gradient regions. Most of the refine-
ment takes place in isolated regions. On the other hand, using our
Sobolev norm leads to much improved triangulations. Even smaller
features in the data sets are approximated well.

The Mount St. Helens data set demonstrates the usefulness of
our approach for approximating data with narrowcliff regions. In
this image, a drawback of using the Sobolev norm becomes appar-
ent: The Sobolev norm tends to over-smooth the triangulation.

Considering the Lake Marquette data set, one can see how effec-
tively our method handles data sets whith high- and low-gradient
regions. In the foreground of those pictures, the lake is a low-
gradient region, which is approximated by few large triangles. The
fine-structured coastline is approximated by several small triangles.
The higher number of triangles in the flat regions results from the
use of the gradient in the error norm, as one of the edges in the
initial triangulation is right on the border of the coastline.

The computational cost of our algorithm depends on the differ-
ent approaches used. The initial triangulation has a complexity of
O(n logn), the gradient approximation can be done inO(n logn).
The individual refinement step has to check all the original data
points lyning in the involved triangles, so the complexity of each
step isO(n). How often the iteration step is executed depends on
the error value given as input. As a general rule, we can assume that
no more iterations should be done than they are original data sites.
So the overall complexity isO(n2).

The memory consumption is linear to the number of iterations.

5 Conclusions and future work

We have discussed a new technique for the construction of data-
dependent triangulations for bivariate scattered data. Our scheme

preserves high-gradient regions or potential discontinuities that
might exist in a given data set by using the Sobolev norm. We have
tested our method for various examples. We plan on introducing a
quality measure that depends on the relative flatness of the region
to prevent the generation of too many very skinny triangles. We are
currently investigating local re-triangulations (through edge swap-
ping) to eliminate the artifacts that currently result when using the
Sobolev norm.
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