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Abstract. The visualization of vector fields has attracted much at-
tention over the last decade due to the vast variety of applications in
science and engineering. Topological methods have been used in-
tensively for global structure extraction and analysis. Recently, there
has been a growing interest in local structure analysis due to its
connection to automatic feature extraction and speed. We present
an algorithm that extracts local topological structure of arbitrary re-
gions in a two-dimensional vector field. It is based on a mathemati-
cal analysis of the topological vector field structure in these regions.
The algorithm deals with piecewise linear vector fields and arbitrary
polygonal regions. We have tested the algorithm for well known ana-
Iytic vector fields and data sets resulting from computational fluid
dynamics. © 2000 SPIE and IS&T. [S1017-9909(00)01104-1]

1 Introduction

Fluid mechanics is a major application for vector field vi-
sualization. A velocity field contains the answers to many
of the important questions of phycisists and engineers and,
due to rotation, the velocity can usually not be described by
a gradient field, so an analysis of a single scalar field does
not capture the whole structure. Since fluid mechanics is an
essential part of the aerospace and automotive industries,
there is a strong need for better analysis and visualization
methods. Topology has been used in fluid mechanics for
several years to interpret experiments and deduct theoreti-
cal results.' These ideas provided the foundation for the
use of vector field topology for the analysis and visualiza-
tion by Helman and Hesselink* as well as Globus ef al.®
Mathematically, vector fields are geometric representa-
tions of differential equations, and the number of experi-
mental and numerical data sets defined by the discretized
vector field is growing rapidly. The analysis and visualiza-

* Author to whom correspondence should be addressed.

Paper VDA-06 received Nov. 25, 1999; revised manuscript received Apr. 26, 2000;
accepted for publication Apr. 26, 2000.
1017-9909/2000/815.00 © 2000 SPIE and IS&T.

356 / Journal of Electronic imaging / October 2000 / Vol. 9(4)

tion of the resulting data sets still pose challenges to the
visualization community. One standard method is based on
topological analysis of vector field data.*"¢ These methods
require an analysis of the whole vector field to provide
answers on the structure, and certain methods may also
miss certain features.’” For this reason, several local analy-
sis algorithms have been developed that are based on topol-
ogy or related concepts like derivative and eigenvector
analysis.”

In this paper, we localize the concept of topology analy-
sis by concentrating on an arbitrary region inside a two-
dimensional (2D) vector field that we analyze without using
information outside the region. It turns out that a substantial
extension of the standard algorithm for topology analysis is
necessary to accomplish correct local analysis. Besides the
critical points, one has to analyze the boundary of a local
region based on inflow or outflow conditions. This analysis
allows us to determine additional separatrices that make, in
a topological sense, a separation of the local region into
areas of topologically uniform flow possible.

The mathematical background is developed in Secs. 2
and 3. Some special cases concerning piecewise linear vec-
tor fields are discussed in Sec. 4. In Sec. 5, we prove the
correctness of the algorithm for several analytical ex-
amples. We especially highlight the effect of including the
boundary of a polygonal region into the analysis of a field.
Section 6 shows results for two computational fluid dynam-
ics data sets. In Sec. 7, we provide conclusions and allude
to further research.

2 Vector Field Topology

The study of topology of vector fields is based on several
basic theorems from the theory of ordinary differential
equations.m_15 We survey the important terms and results
for planar, steady vector fields.

Definition 2.1: A planar vector field is a map

v:R?—R?,
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x—v(x). (1

Usually, one is not so much interested in the vector field
per se but in its integral curves.

Definition 2.2: An integral curve through a point x
e R? of a vector field v:R*—R? is a map

a,:RDI-R?, 2
where
a,(0)=x,, 3)

a,(t)=v(a(t)), VYtel 4)

Concerning the theorem on existence and uniqueness of
integral curves, the Lipschitz condition has to be satisfied:

Definition 2.3: Let UCR? be an open subset. A conti-
nous vector field v:R*>— R? satisfies a Lipschitz condition
on U provided there exists a real number K>0 such that

IDv(x) = Do (y)|<Klx~y| ()

holds for all x,y € U and all teJ, where Dv denotes the
differential of the vector field v. The constant K is called
the Lipschitz constant. One can now formulate the exis-
tence and uniqueness theorem.

Theorem 2.4: (Existence and uniqueness of integral
curves). Let v:R?—R? be a vector field satisfying the Lip-
schitz condition on any open neighborhood around point
xeR2. Then there exists one and only one integral curve
through any xye€ R%.

Proof: See Ref. 13 pp. 66—68.

If a vector field satisfies the Lipschitz condition for an
open neighborhood of every point, then the integral curves
are defined over the whole time line.

Lemma 2.5: If v:R*—R? is Lipschitz-continuous around
each point a € R?, then every integral curve is defined over
the whole time line R.

Proof: See Ref. 13 p. 90. This leads to an analysis of the
asymptotic behavior of integral curves. The following
terms are used to study asymptotic behavior:

Definition 2.6: Let v:R*—R? be a Lipschitz-continuous
vector field and a:R—R? an integral curve. The set

{aeR?|3(t,)i-oCR,t,—, lima(t,)—a} (6)

n—oo
is called the w-limit set of a. The set

{aeR?|3(t,);-oCR,t,— —, lima(t,)—a} (7

n—o

is called the a-limit set of «. Standard algorithms limit
topological analysis to @- and e-limit sets consisting of
critical points.

Definition 2.7: A eritical point of v:R*—R? is a point
peR? with v(p)=0. Two cases are of interest: (1) sinks
and (2) sources.

Definition 2.8: Let v:R*—R? be a Lipschitz-continuous
vector field and z € R? a critical point. If there is a neigh-

Fig. 1 Around a source, every integral curve starts at the source,
around a sink, every integral curve ends at the sink.

borhood UCR? of z such that all integral curves in U have
an a-limit set consisting only of z, then z is called a
source. If there is a neighborhood U € R* of z such that all
integral curves in U have an w-limit set consisting only of
z, then z is called a sink.

Figure 1 shows a source in the upper part. All integral
curves around the critical point start at this critical point. In
the lower part, a sink is shown. Every integral curve in the
neighborhood ends at the sink. We restrict our consider-
ation further to simple critical points. For the analysis of a
vector field, one has to determine the asymptotic behavior
of all its integral curves. This is done by analyzing the
union of all integral curves starting or ending at the same
critical point, called the basin.

Definition 2.9: Let v:R*— R? be a Lipschitz-continuous
vector field and a € R* a critical point. The union of all
integral curves of v that converge to a for t— — is called
the a-basin of a, denoted by B (a). The union of all inte-
gral curves of v that converge to a for t— is called the
w-basin of a, denoted by B ,(a). For sinks and sources,
one can prove the following lemma:

Lemma 2.10: Let v and a be as defined in Definition 2.9.
If a is a source then B ,(a) is an open subset of R2. Ifais
a sink then B (a) is an open subset of R%.

Proof: See Ref. 12 pp. 181-182.

Figure 2 shows a typical a-basin of a source.

Definition 2.11: If a subset SCR? allows a description
as a pure n-dimensional manifold, we define the dimension
of Sas n.

Remark 2.12: We need the term dimension only for ba-
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Fig. 2 A typical a-basin of a source. The light gray basin consists of
all integral curves starting at the source.

sins. The previous definition means that an open basin in
R2 is a 2-manifold, a basin consisting of a finite number of
stream lines is a I-manifold, and a basin consisting of a
finite number of points is a 0-manifold.

If all limit sets are critical points and one regards infinity
as an additional critical point, then the whole plane is sepa-
rated into basins of sources, sinks and infinity. The bound-
aries of open basins cannot belong to the basins themselves.
Since there are no other possibilities, the boundaries start at
the remaining critical points or at infinity. With the assump-
tion that all critical points are simple, these remaining criti-
cal points are saddle points.

Theorem 2.13: Let v:R*—R? be a Lipschitz-continuous
vector field. Let all a- and w-limit sets be simple critical
points and ». Let a,...,a; be the sources, s|,...,S; be the
saddles, and z,, . .. ,z,, be the sinks. Then R? can be di-
vided into disjoint a-basins

j k 1
R'= '~JJ Ba(a)U U By(s)U U {z;}UB (). ®)

i=1 i=1 i=1
It can also be divided into disjoint w basins

] k 1
R?= U By(z;)U U Bu(s;)U U {a}UB.(). ©)

i=] i=1 i=1

Proof: Every point belongs to exactly one stream line.
By this assumption, the stream line has to start at one of the
critical points or at the boundary, so it is in one of the
basins. This gives the first partition. The second partition is
given by a look at the end of a stream line. O

The topological structure is given by all intersections
between a- and w-basins. The description of these intersec-
tions uses the dimension of the different basins. The
a-basins of the sources and the w-basins of the sinks alone
can contain open subsets besides the basins of infinity. It
follows from Lemma 2.10 that their intersections form 2D
(open) ‘‘faces’ of the structure. The boundaries do not
belong to these basins and consist of curves and points. A
curve can only be part of a basin of a saddle. The method
by Helman and Hesselink® uses this fact to determine the
structure by finding all critical points and then drawing all
basins of the saddles. Apart from the critical points, the
resulting plane consists of faces of the resulting graph,
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sometimes called ‘‘topological skeleton.”” These faces are
the intersections between the a-basins of the sources and
the w-basins of the sinks. It can be shown that they can be
deformed into a topologically uniform flow. This provides
the mathematical explanation for the description of the
whole process as separating the vector field into domains of
topologically uniform flow.

3 Local Vector Field Topology

In most practical applications, the domain of a vector field
is finite. It is usually either the union of all the cells of a
finite-element or finite-difference grid or the convex hull of
scattered data points without connectivity. Topologically,
this means that a vector field is defined over a closed and
bounded, i.e., compact, subset of the real plane. The analy-
sis of a vector field should reflect this property. However,
current visualization algorithms used to date do not do this.
The main reason for this is the fact that standard algorithms
operate on the whole domain of a vector field, and the flow
is typically very simple on the boundaries. The boundary is
either a solid boundary, where the flow is set to tangential
flow (often zero), or it is an open boundary, where the flow
has a simple structure. In a wind tunnel experiment, for
example, there is one inflow region and one outflow region.
We, by contrast, want to analyze an arbitrary compact re-
gion inside the domain of a vector field. We will show that
one has to analyze the boundary completely to obtain a
correct analysis. For this purpose, we generalize some of
the terms of the last section. This explains also some pos-
sible structures at infinity, since infinity plays the role of
the boundary.

The first change concerns Lemma 2.5. Since we must
consider a boundary now, an integral curve in a Lipschitz-
continuous, steady vector field might start or end on the
boundary. One might imagine a vector field over the whole
plane with a compact region cut out of it resulting in the
given vector field. The integral curves are also cut; they
still can be continued inside the local region, but they may
end or start on the boundary.

Lemma 3.1. Let DCR? be a compact subset and v:D
—R? be a Lipschitz-continuous vector field. Then, for an
arbitrary integral curve a:(a,b)— D of maximal length, a
will be finite only if a(a)edD, where dD denotes the
boundary of D. Analogously, b will be finite only if a(b)
e dD.

Since we want to establish a theorem similar to Theorem
2.13, we distinguish three subsets of the boundary with
respect to the vector field. These three subsets are the sets
of inflow, outflow, and boundary flow points. The con-
nected components of the inflow and outflow regions play
the role of additional sources and sinks in the topological
analysis. The end points lead to the additional separatrices
that would be missed when using the standard approach.

Definition 3.2: Let DCR? be a compact domain of a
Lipschitz-continuous vector field v:D—R?% Let de dD be
a point on the boundary. We define the following three
entities:

1. Point d is called an outflow point if every integral
curve through d ends at d and there exists an inte-
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gral curve through d that does not contain another
point of dD. The set of all outflow points is called the
outflow set.

2. Point d is called an inflow point if every integral
curve through d starts at d and there exists an inte-
gral curve through d that does not contain another
point of dD. The set of all inflow points is called the
inflow set.

3. Point d is called a boundary flow point if there
exists an integral curve ay:(—€,€)—D, €>0,
through d lying completely inside dD. The set of all
boundary flow points is called the boundary flow
set.

The topological situations around an outflow point, an in-
flow point and a boundary flow point are sketched in Fig. 3.
In most practical applications, the vector field has a piece-
wise linear boundary. This case will be handled explicitly
in Sec. 4. The inflow and outflow regions play the role of
sinks and sources.

Lemma 3.3: Let I; be a connected component of the
inflow set I. The a-basin B ,(I}) is the union of all integral
curves starting inside I;. This basin is open. Let O; be a
connected component of the inflow set OCdD. The
w-basin B (0;) is the union of all integral curves ending
inside O;. This basin is also open.

Proof: The sets are open due to the continuity of the
solution of the initial value problem with respect to param-
eters like the starting point. If a point is in a small neigh-
borhood of a curve in the basin, then its corresponding
integral curve is close to this curve at another point. Since
our basins are created by open subsets of the boundary,
they are themselves open in D. ¢

A boundary of an open basin cannot belong to the basin;
thus, it must start at the boundary points between the inflow
and outflow sets. We call these starting points boundary
saddles to reflect the similarity to the saddle points inside
the domain.

Definition 3.4: Let DCR? be a compact subset with a
smooth boundary. Let v:D—R? be a Lipschitz-continuous
vector field. A point d € D that is no inflow, outflow, or
boundary flow point is called the boundary saddle.

It is now possible to describe D as a union of disjoint
topologically uniform flow regions:

Theorem 3.5: Let DCR? be a compact subset with a
smooth boundary. Let v:D—R? be a Lipschitz-continuous
vector field. Let a,...,a; be the sources, si,...,s be the
saddles, by,...,b, be the boundary saddles, and z,,...,z,
be the sinks. Furthermore, let I,,...,1,, be the inflow com-
ponents, and O,,...,0, be the outflow components. If we
assume that there are no other a- and w-limit sets, then D
can be divided into a-basins

J m /
D=1 Ba(ai)U U Ba(li)u U Ba(si)

i=1 i=1 i=1

p n k
U U B,(b)U U O;U U {z;}. (10)

i=1 i=1 i=1

Fig. 3 Around an outflow point (dark gray), every integral curve
enters the boundary from the inside of the domain. Around an inflow
point (light gray), every integral curve enters the inside of the do-
main from the boundary. At a boundary flow point (medium gray),
there exists an integral curve that stays on the boundary.

Region D can also be divided into w-basins

k n l}
D= U Bu(zi)u U Bm(OJ)U U Bw(si)

i=1 i=] i=1

» m J

i=] i=1 i=1

Proof: Every point belongs to exactly one stream line.
This stream line has to start at a critical point, i.e., a source,
sink or saddle, or at the boundary, i.e., an inflow region, an
outflow region or a boundary saddle, since we excluded
other a-limit sets. This shows the first partition. The same
argument for the ending of stream lines shows the second
partition. ¢
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Fig. 4 A simple vector field is first partitioned into a-basins and then
into w-basins. The resulting different intersections of a- and
w-basins are shown in the bottom image. All o-limit sets and
a-basins are colored light gray, all o-limit sets and w-basins are
colored dark gray and the separatrices and saddles are colored me-
dium gray. The intersections are shown in different black patterns.

Both parts of the theorem are illustrated in Fig. 4. In the
upper part, the figure shows a decomposition of a vector
field into a-basins. In the center, it shows the decomposi-
tion of the same vector field into w-basins. We are inter-
ested in the connected components of the intersections be-
tween a- and w-basins. Since these components consist of
integral curves starting at a connected part of the boundary
(or a critical point inside the domain) and ending at a spe-
cific connected part of the boundary (or a critical point
inside the domain), one can transform the whole region into
topologically uniform flow. Thus, one can separate the vec-
tor field into regions of topologically uniform flow. The 2D
intersections are built by intersections of a-basins of
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sources or a-basins of inflow regions with w-basins of
sinks or w-basins of outflow regions. The boundaries of
these regions consist of the critical points, the boundary
saddles, the basins of the saddles, and connected subsets of
boundary flow points. The lower part of Fig. 4 shows the
decomposition into these intersections for the simple vector
field used above. One can describe the topological structure
of the vector field by drawing the critical points, boundary
saddles and the integral curves starting or ending at the
saddles and boundary saddles. In Fig. 4, the information
about the vector field structure can be given by the red, blue
and green elements.

4 Linear Local Vector Field Topology

This section deals with the specific cases to be considered
for a piecewise linear vector field defined over a triangula-
tion in the plane. This case will occur in all the examples
shown in Secs. 5 and 6. The changes and additions to the
previous section deal with the situation on the boundary.
One has to deal with the vertices of a polygon, i.e., the
boundary is not a smooth curve. We use scalar products of
the vector field at certain positions and outward normals of
the boundary edges to analyze the vector field. Together
with the procedure from Ref. 4, one can construct an algo-
rithm extracting the local topology.

We assume that the domain D is triangulated and that
the vector field is defined by piecewise linear interpolation
of vectors at the vertices of the triangulation. The analysis
of the local vector field topology is simplified on the
boundary by performing linear interpolation along the
edges. For interior points of the edges, we use Lemma 4.1.

Lemma 4.1: Let DCR? be a triangulated 2D domain
and 9D be its polygonal boundary consisting of one or
more polygons. Let v:D—R? be a piecewise linear vector
field defined over the triangulation of D. Let d € dD be an
interior point on a boundary edge e and neR? be the
outward normal of the edge. There are four possibilities:

1. if v(d)-n>0 holds, d is an outflow point;

2. ifv(d)-n<O0 holds, d is an inflow point,

3. ifv(d)-n=0 holds and d is the only point for which
this condition holds on the edge, d is a boundary
saddle. (The integral curve through d is a separatrix,
and one has to integrate it in negative and positive
temporal directions.)

4. Ifv(d)-n=0 holds for all points on the edge, then d
is a boundary flow point.

Proof: Let xe D be any point. The above four state-
ments are true because v(x)-n=0 is a linear condition
along the edge, since

v(x)=(1—1t)vyg+tv,, (12)
where
x=(1=t)po+ip,, (13)

where p, and p, denote the end points of the edge and v,
and v, the vector values at these positions. It follows that
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v(x)-n=(1—tvg-n+tv, n, (14)

which is a simple linear equation that can be either zero at
one point or at all points. If v(x)-» is zero at all points,
then the flow stays on the edge, proving possibility 4. If
v(x)-n is zero at only one point, then v(x) - n is positive on
one side and negative on the other side of ¢, which implies
that d is a boundary saddle since the integral curve
“‘touches’’ the edge at that point (or contains just that
point). The first two cases imply that the integral curve
ends or starts at d and, due to continuity, the integral curve
leads into the interior of D or originates from there. <

For the analysis of an endpoint p on a boundary edge,
one has to check the vector field value with the normals m
and n of the two adjacent boundary edges. One has to dis-
tinguish the convex, collinear, and concave cases. The
analysis is always based on the behavior of the vector field
on two consecutive boundary edges. If the vector at the
vertex under consideration is not tangential to one of the
edges, one can determine the type of the vertex by calcu-
lating the scalar products m-v(p) and n-v(p) of the vector
at the vertex with the two outward normals of the edges.
This defines the topological behavior of the vector field in a
neighborhood of the vertex on the boundary. If the field is
tangential to one edge (or both, in the collinear case), one
has to analyze the vector at the other end of the edge(s) to
determine the topological type of the vertex with respect to
the vector field. We formulate three Lemmata to describe
all possible cases and illustrate the situations in Figs. 5-7.
The algorithm uses these properties to find the boundary
saddles and the separatrices starting from there. The first
Lemma deals with the convex case:

Lemma 4.2: Let p be a convex boundary vertex of D,
and let m and n be the normals of the two adjacent bound-
ary edges. Furthermore, let o and q be the endpoints of the
two boundary edges. We distinguish five cases.

1. If (v(p)-m)(v(p)-n)<O0 holds, then the integral
curve through p in D contains only p.

2. If (v(p)-m)(v(p)-n)>0 holds, then p is an outflow
or inflow point, depending on the common sign of the
products.

3. If v(p) - m=0 and v(o)-m>0 holds, then p is an
outflow point.

4. If v(p)-m=0 and v(o)-m=0 holds, then p is a
boundary saddle. (The integral curve through p stays
on the first edge and leaves D at p, so one does not
have a separatrix entering the interior of D at p.)

5. If v(p)-m=0 and (v(0)-m)<O0 hold, then p is a
boundary saddle. (The integral curve through p con-
sists only of p, so one has no separatrix entering the
interior of D at p.)

An analysis of the cases with v(p)-n=0 yields the same
results.

Proof: The typical situation (v(p)-m)(v(p)-n)<0 is
shown in the upper-left corner of Fig. 5. The vector and its
inverse lead out of D such that the integral curve consists
only of p. Concerning case A2, the vector field points ei-

©

Fig. 5 Convex vertex. Case A1: inflow and outflow edges; case A2:
outflow on both edges; case A3: flow at vertex being parallel to one
edge—outflow inside both edges; case A4: boundary flow on one
edge—outflow on the other edge; case A5: flow at vertex being
parallel to one edge, inflow inside one edge, and outflow on the
other edge. Inflow edges are marked light gray, outflow edges are
marked dark gray, and boundary flow is marked medium gray.

ther outward at p (and in a neighborhood on both edges) or
inward on a complete boundary neighborhood, as shown in
the upper-right corner of Fig. 5. Then, p is an ordinary
outflow or inflow point. Case A3 is shown in the left-
middle image of Fig. 5. The point p is in the middle of an
outflow region; therefore, it is an outflow point. In case A4,
the integral curve through p stays on the edge from o to p
and leaves D there, as can be seen in the right-middle im-
age of Fig. 5. Finally, case A5 is shown in the lower-left
corner of Fig. 5. All integral curves in a neighborhood of p
enter D on one edge and leave it on the other. Thus, the
integral curve through p consists only of p itself. o

This proves that one does not need to calculate any sepa-
ratrices in this case. The collinear case is treated in the next
lemma.

Lemma 4.3: Let p be a shared boundary vertex of two
collinear edges, and let v(p)+# 0. Furthermore, let n e R?
be the outward normal of both edges and o,q the other two
endpoints of the edges. One can distinguish eight cases.

1. Ifv(p)-n>0 holds, then p is an outflow point.

2. Ifv(p)-n<0 holds, then p is an inflow point.

3. If v(p)-n=0, v(0)-n=0, and v(q)-n<0 holds,
then p is a boundary saddle. (The integral curve
through p is a separatrix, and one needs to calculate
the part entering the interior of D.)

Journal of Electronic Imaging / October 2000/ Vol. 9(4) / 361
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viq)

vig)
viq) q

Fig. 6 Collinear vertex. Case B1: outflow at p; case B2: inflow at p;
case B3: boundary flow on one edge and inflow on the other edge;
case B4: boundary flow on both edges; case B5: boundary flow on
one edge and outflow on the other edge; case B6: flow parallel to
the edges at p and outflow inside both edges; case B7: flow parallel
to the edges at p, inflow in the direction of the vector, and outflow on
the other edge; case B8: flow parallel to the edges at p, outflow in
the direction of the vector, and inflow on the other edge. All inflow
edges are colored light gray, outflow edges are colored dark gray,
and boundary flow and separatrices are colored medium gray.

4. If v(p)-n=0, v(o)-n=0, and v(g) -n=0 holds,
then the integral curve through p stays on the bound-
ary around p.

5. If v(p) -n=0 holds, then v(0)-n=0 and v(q)-n
>0 holds, p is a boundary saddle. (The integral
curve through p stays on one edge and ends at p.
One does not have to calculate a separatrix.)

6. If v(p)-n=0 and ((v(0)-n)(v(g)-n))>0 holds, p
is an outflow or inflow point, depending on the com-
mon sign of the scalar products.

7. If v(p)-n=0 and ((v(o)-n)(v(q)-n))<0 holds
and v(x)-n changes from outflow to inflow in the
direction of the tangential component for points x on
the two edges, p is a boundary saddle. (The integral
curve through p is a separatrix touching the bound-
ary. One has to integrate it backward and forward in
time.)

8. If v(p)'n=0 and ((v(0)-n)(v(q)-n))<0 holds
and v(x)-n changes from inflow to outflow in the

362 / Journal of Electronic Imaging / October 2000/ Vol. 9(4)

Fig. 7 Concave vertex. Case C1: outflow on both edges; case C2:
outflow on one edge and inflow on the other edge; case C3: flow
parallel to one edge at vertex p, outflow inside one edge, and inflow
inside the other edge; case C4: flow parallel to one edge at vertex p
and inflow on both edges; case C5: boundary flow on one edge and
inflow on the other edge. Inflow edges and a-basins are colored light
gray, outflow edges and w-basins are colored dark gray, and sepa-
ratrices and boundary flow are shown in medium gray color.

direction of the tangential component for points x on
the two edges, the integration curve through p con-
sists only of p.

The remaining cases, where v(q)-n=0, are equivalent to
cases B3 and BS.

Proof: We use figures to explain the arguments. The
upper-left corner of Fig. 6 shows the situation in case Bl
and the upper-right corner the situation in case B2. These
cases are equivalent to the standard case inside an edge in
Lemma 4.1. In left of the second row of Fig. 6, it can be
seen that in case B3 the integral curves lead into the inner
part of D at p, whereas the obvious case B4 is on the right
of the second row. Case B5 is shown in the left of the third
row in Fig. 6. The integral curve through p ends at p, since
there is an outflow region inside the second edge. The right
of the third row in Fig. 6 shows the integral curves around
p in case B6 with outflow. One can see that the flow can be
transformed into topologically uniform outflow. Reversing
all vectors yields the inflow case. Case B7 is shown in the
lower-left corner of Fig. 6. One integral curve touches p.
Thus, three different parts of the flow are visible: One part
leaves D, one part enters D, and one part stays inside D.
There are two separatrices starting at p, similar to the stan-
dard case of a boundary saddle lying in the interior of an



Visualizing local vector field topology

edge. Finally, the lower-right corner of Fig. 6 shows case
B8. The flow enters on one side of p and leaves on the
other side. Thus, the integral curve through p consists only
of p, and there is no separatrix to be calculated. ¢

The remaining case deals with a concave vertex. Lemma
4.4 summarizes the possible patterns.

Lemma 4.4: Let p be a concave boundary vertex and let
m and n be the outward normals of the two edges. Further-
more, let o be the second endpoint of the edge with normal
m. There are five cases one can consider.

1. If ((v(p)-m)(v(p)-n))>0 holds, then p is either an
outflow or an inflow point, depending on the common
sign of the products.

2. If ((v(p)-m)(v(p)-n))<O0 holds, then p is a bound-
ary saddle. (The integral curve through p is a sepa-
ratrix that has to be integrated backward and for-
ward in time.)

3. If v(p)-m=0 and v(0)-m>0 holds, then the inte-
gral curve through p is a separatrix that has to be
integrated backward and forward in time.

4. If v(p)-m=0 and v(0)-m<0 holds, then p is an
inflow point.

5. If v(p)-m=0 and v(o)-m=0 holds, then the inte-
gral curve through p stays on one edge and enters
the interior of D at p, so one has to calculate one
part of the curve. (The orientation of the curve is
positive, provided the tangential part of v(p) with
respect to m is directed into the interior of D. Oth-
erwise, one has to integrate backwards in time.)

An analysis of the cases where v(p)-n=0 holds yields the
same results.

Proof: The upper-left corner of Fig. 7 shows a typical
situation for case C1, with outflow around p. By reversing
all vectors and curve orientations, one obtains the inflow
for negative scalar products. Case C2 is described in the
upper-right corner of Fig. 7. One can see the integral curve
touching the boundary at p. This is the situation on the
other side of the boundary of case Al. The flow is sepa-
rated at p into an outflow region along one edge, an inflow
region along the other edge, and a region of flow staying
inside D below the integral curve through p. Case C3 is
shown in the left-middle image of Fig. 7. The topological
situation equals case C2, so one obtains the same result.
Case C4 is shown in the right-middle image of Fig. 7. The
integral curves starting at the boundary around p all enter
the interior of D, so one has an inflow point. Finally, in
case C5, the integral curve through p stays on one edge and
enters the interior of D at p, so one has to calculate the part
of this integral curve inside the interior of D. This is shown
in the lower left corner of Fig. 7. v

These various case distinctions allow us to establish an
algorithm to extract local topology. We determine for all
critical points in the domain and classify them into sources,
sinks, and saddles; then, we analyze all the edges and ver-
tices on all boundaries identifying boundary saddles and
separatrices starting there. Section 5 provides examples.

Fig. 8 Vector field containing two sources and two sinks.

5 Examples

The theoretical considerations from the last sections aim at
an analysis of vector field topology including the boundary.
The first examples provided in this section show the effect
of this analysis on the understanding of topological vector
field structure. They are based on the study of vector fields
given by polynomial equations. The construction of these
fields is based on considerations based on Clifford algebra,
see Refs. 16 and 17. We briefly review the main topological
properties discussed in Refs. 16 and 17. Figures 8—13 show
unit vectors to indicate the orientation of separatrices and
integration curves. Critical points are red, green, or blue.
The red color indicates a saddle point; the green color a
source; and the blue color a sink. The separatrices are
drawn in blue; integral curves are violet; and the bound-
aries of regions and domains are white.

Fig. 9 Local topology showing interaction of sources and sinks.
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Fig. 10 Global topology derived by considering entire field.

We start with a vector field containing two sinks and
two sources in a rectangular area. The conventional analy-
sis, based on the separatrices starting at saddle points alone,
will find no separating curves at all, so the user is left with
the question of how the two sources and sinks interact. This
can be seen in Fig. 8. Since there exist integral curves from
one source to both sinks and also to the boundary, not all
integration curves belong to the same open basin. We know
that, as a result of the piecewise linear interpolation and the
analytic structure of the original field, there are no addi-
tional critical points or more complicated structures in-
volved in this example. The solution follows as a result of
Secs. 3 and 4. There are ten boundary saddles where the
flow turns from inflow to outflow. By starting separatrices
at these positions it is possible to determine the structure of
the flow. The result is shown in Fig. 9. The whole rectangle
is now divided into open basins with the same a and w
basin. Every integral curve in one of these basins starts and
ends at the same critical point or connected component of
the boundary. It is now easy to understand the interaction
of the sinks and sources.

As mentioned before, this example was constructed us-
ing an analytic field description. The structure of the entire
field is shown in Fig. 10. The small white box marks the
domain of our example. There are three saddle points

Fig. 11 Analytic vector field with two sources and one saddle.
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Fig. 12 Local topology analysis—a rectangle containing the saddle
was cut out.

where 12 separatrices start. The importance of the saddles
for the standard analysis is seen by comparing the result
inside the rectangle with the result shown in Fig. 8.

Our next example involves two sources and a saddle
point on a plane segment. The simple structure is shown
together with some integral curves in Fig. 11. If one cuts
out a rectangular area containing the saddle point, one will
miss all the separatrices starting at the saddle point. Per-
forming local topology analysis, however, it is possible to
analyze the field correctly, see Fig. 12. There are three
boundary saddles: One is inside an edge, and the other two
are on concave corners, see Sec. 4. These separatrices re-
place the separatrices starting at the saddle point in the
global topology shown in Fig. 11. They assure the separa-
tion of the basins of the two sources and the basins of the
inflow regions on the boundary. There are obvious differ-
ences between the global and local topology. For compari-
son, we show all separatrices and integral curves together
in Fig. 13. It can be seen that the separatrices starting on the
boundary are strongly influenced by the placement of the
boundary but also by the existence of the saddle point in
the overall vector field.

6 Application

We have applied the local topology extraction to a vortex
breakdown simulation. Vortex breakdown is a phenomenon
observed in a variety of flows ranging from tornadoes to
wing tip vortices,'® pipe flows,'*~?* and swirling jets.? The
latter flows are important to combustion applications where

Fig. 13 Comparison of results obtained with local and global topol-
ogy analysis.
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Fig. 14 Turbulent jet data set.

they are able to create recirculation zones with sufficient
residence time for the reactions to approach completion.
The numerical simulation of this type of flow requires an
accurate method for the solution of the initial/boundary
value problem of the Navier—Stokes equations. The incom-
pressible Navier—Stokes equations are set up for this pur-
pose in cylindrical domains, which may be bounded or un-
bounded. Analytic mappings are applied to the radial and
axial directions to map the physical domain onto the unit
cylinder and to control the distribution of grid points. Cy-
lindrical coordinates are well suited for this geometry since
they allow Fourier decomposition with respect to the azi-
muthal direction. However, the metric coefficients produce
singularities at the coordinate axis, which must be carefully
analyzed? to ensure stability and accuracy for the simula-
tion of 3D flows. It can be shown that the azimuthal Fourier
modes of scalar, vector and tensor variables possess well
defined symmetry properties with respect to the radial co-
ordinate and satisfy radial growth laws near the axis de-
pending on the wave number. A hybrid spectral finite-
difference method (Canuto et al?®) based on stream
functions for the azimuthal Fourier modes is used for the
simulations. The solver allows the choice of second to
eighth order for first and second derivatives as explicit cen-
tral difference operators’’ or third to ninth order upwind-
biased differences.”® High order filters are used to provide
the numerical dissipation to stabilize the system if central
difference operators are applied to the convective terms.”’
Runge—Kutta-type time integration methods with minimal
storage requirements,?’?° were implemented and the third
and fourth order version are currently available in the
solver. The Navier—Stokes solver is applied to the vortex
breakdown in incompressible jet flows with supercritical
swirl numbers®* and the results are used for the topological
analysis presented in the previous sections.

The boundary conditions at the nozzle entrance section
were determined in accordance with the experiments of Bil-
lant et al.** They measured the axial and azimuthal veloci-
ties at z,/D=0.6 (D=2R), which show a distinct depen-
dence on the swirl number S. The simulations were
performed for various values of the Reynolds and swirl
numbers and the experimental profiles at z/D=0.6 were
used as boundary conditions. The image domain was dis-
cretized with n,Xn,=95X251 grid points, and the third-
order accurate minimal storage Runge—Kutta scheme Eq.
(9) of Williamson® was used for time integration. The
Reynolds number was Re=3000 and the swirl number §
=1.25. The initial conditions were generated by extending
the entrance profiles throughout the flow field. Disturbances
for the axial velocity and azimuthal vorticity of the order of
0.1% were added at the entrance to trigger the Kelvin—

Fig. 15 Rectangular region in jet data set and result of local topol-
ogy analysis.

Helmholtz instability of the shear layer. The results used
for the topological analysis were taken at the dimensionless
time ¢=40.989. The vector field is shown in Fig. 14. There
are 39909 data points and 79 000 triangles in this data set.
The piecewise linear interpolation contains 703 simple
critical points, creating a complex global topology. The jet
enters the domain in the middle of the right boundary.

First, we used a rectangle, shown in Fig. 15. The data in
this rectangle were used to analyze the local topology. We
extract all the critical points and find all the boundary
saddles by analyzing the boundary of the rectangle. This
resulted in the topological structure shown in Fig. 16. One
can see some of the additional separatrices starting at the
boundary saddles. They separate regions of flow staying
inside the boundary from outflow and inflow parts. No
analysis of data outside the rectangle has been used. The
required computing time only depends on the size of the
region and is (nearly) independent of the size of the overall
data set.

It is possible to use multiple regions of interest in the
same data set that can be analyzed independently. One may
also use arbitrary polygons as boundaries. This is demon-
strated in our second analysis of the same jet data set for
which we chose three regions, as shown in Fig. 17. One
region covers a part of the backstream beside the main
inflow jet. The second region shows a part of the rectangle
we used before. Neither of these two regions contains criti-
cal points, which documents the necessity of boundary
analysis. The third region shows the mixing process of the
jet and the fluid downstream. Figure 18 shows the first two
regions in more detail. One can see clearly forward- and

Fig. 16 Magnification of result of local topology analysis shown in
Fig. 15.
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Fig. 17 Three regions in jet data set and respective results of local
topology analysis.

backward-facing flow. Without an analysis of the bound-
ary, one obtains no separatrices due to the lack of critical
points inside the two regions. The third region is shown in
more detail in Fig. 19. Since the analysis is limited to a
rather small area, it can be analyzed quickly. In the figure,
one can spot several separatrices spiraling around critical
points. The critical points inside these areas have Jacobians
with complex conjugate eigenvalues, thus there are spirals,
the real parts of the eigenvalues may have small absolute
values, and a stream line in the neighborhood of the critical
points approaches them very slowly. Closed stream lines
might be present.

7 Conclusions and Future Work

We have presented a method to analyze the local topology
of arbitrary regions in 2D vector fields. Our idea is based
on an extraction of the critical points in the domain and an
examination of the region’s boundary. By determining the
inflow, outflow, and boundary flow segments one can sepa-
rate the domain into regions of topologically uniform flow.
A detailed analysis of the possible cases in a piecewise
linear flow allows local structure extraction for analytical
and gridded data sets. We have outlined the differences to
the global topology algorithm in theory and applications,
demonstrating the relevance of our localized approach
when applied to regions with complicated flow patterns on
the boundary. This case is typical for most interesting re-
gions inside a larger data set. Another important situation
that we studied is the absence of critical points in a region
that provides interesting structure, like backward facing
flow. Our algorithm detects these areas and separates them
from other parts of the flow leading to better visualizations
of local flow structure. Since the local topology analysis

Fig. 18 Local topology analysis inside two regions without critical
point (jet data set).
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Fig. 19 Local topology analysis result of highly complicated region
(jet data set).

does not use any information outside a region of interest, it
is very attractive when analyzing large data sets locally and
thus reducing computing time significantly.

We plan to extend our ideas to vector fields defined over
3D domains. We will also apply our algorithm to other data
sets to gain a deeper understanding of the relation between
local and global topology. Besides 3D domains, an analysis
of time-dependent simulations is one final goal. The analy-
sis in this paper is limited so far to steady flow, since path-
lines will cross each other, especially in a turbulent flow
like our application. New ideas are needed to accomplish
an analysis over time, but we believe that topology pro-
vides a framework to find new ways for analysis and visu-
alization.
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