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Abstract

The analysis of time-dependent data is often guided
by the question of how dominant structures de-
velop over time. It is important to understand how
patterns or structures identified for one time step
evolve over time, by changing or moving in the do-
main. To gain insight into such evolving structural
change it is crucial to effectively compare different
time steps.
This paper proposes a comparison method for two-
dimensional flow fields. The method is based on a
feature description using invariant moments. The
specific strength of these moments is their invari-
ance under scaling and rotation, thus facilitating an
identification of features even if they occur at other
positions, with changed orientation, and variation
in size. In addition the moments themselves can be
used to define a similarity measure.
To evaluate the significance of this concept it has
been applied to wind speed data from meteorologi-
cal simulations.

1 Introduction

The comparison of data is important in various
contexts. Examples are the evaluation of numerical
methods used for simulations where results from
simulations are compared to experimental mea-
surements. Visualization methods can be evaluated
by a comparison of different visualization methods
using the same data set. A comparison of different
time steps of an experiment or a simulation is valu-
able for understanding the temporal development
of structures. Common comparative visualization
methods can basically be divided in three different
classes [12]: image level, data level and feature
level comparison. Image level methods first

generate images from the relevant data sets inde-
pendently. These images are compared either by a
human observer or by image analysis methods. A
simple way is to use difference images that compare
the images pixel by pixel. This method is limited to
image data sets where an approximate one-to-one
correspondence between pixels exists and similar
view parameters for the image generation are
used. Data level methods perform the comparison
on the basis of the data and finally visualize the
result. The main challenge is to find an appropri-
ate dissimilarity measure for data comparison [7, 8].

Comparisons with feature level methods are
not directly based on the data but on extracted
features. This approach is much more flexible than
image or data level methods. For flow analysis
there are many interesting feature definitions
ranging from topology to vortex core lines, see [9]
for an overview, from which the user can choose
features of interest. The main challenge is to
find an appropriate feature description to be used
as a similarity measure. Methods building on
the comparison of streamlines were proposed
in [6, 12]. Originally these methods have been
developed to compare simulation, visualization or
feature extraction methods in terms of uncertainty.
The comparison of streamlines is restricted to a
few carefully chosen sets of streamline pairs. The
method is too rigid to consider more general flow
structures as complex flow patterns. In [11, 1] sys-
tems have been presented that support appropriate
views for comparative visualization. Recently, a
method for the comparison of nasal airflows has
been described [4]; this method uses a combination
of data comparison with a certain metric applied to
special flow probes in a virtual environment.

For all these methods first a correspondence
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Figure 1: Invariant moment values for prototypical linear flow features. Second-order moments (Ψ2,3,4,5)
are zero due to linearity. For other, general non-linear features second-order moments are non-zero.

from one image to another or from one data set to
another or one feature to another has to be defined
before being able to apply the distance metrics.
Especially for time varying data sets this can be
a challenging task. Features might have moved,
are scaled or rotated yielding different feature
descriptors. Applying statistical analyses might
result in some valuable similarity information, but
without providing the necessary spatial context.
Thus, one should expect certain characteristics
of a practically useable comparative visualization
tool for time-dependent data: support of an easy
interactive feature definition; provision of feature
descriptors being invariant to translation, scaling
and rotation; provision of feature descriptors that
can immediately be used as a similarity measure;
fast response to new feature queries making an
interactive exploration possible.

Recently flow moment invariantshave been
introduced in [10] following the idea of invari-
ant moments as used for shape recognition.
These moments represent characteristics of a
two-dimensional (2D) flow field independent of
orientation and scale. Flow features correspond to a
specific set of invariant moments, which can be de-
fined interactively by brushing regions of interest in
one time-step. Thus, invariant moments for scalar
and flow fields meet all the desired characteristics
of a comparative visualization tool as mentioned
above, and serve as a good basis for feature-based
data comparison. This paper proposes two different
approaches to use invariant moments to reach this
goal, applying different similarity metrics.

The paper is structured as follows: first, we
provide an overview of flow moment invariants,
explaining the definitions and the generation of

a moment pyramid. Second, we show how these
methods can be utilized in the context of compara-
tive visualization. The two methods of interactive
pattern comparison and the comparison of moment
pyramids are explained. While the first method
is suitable for the comparison of all kinds of 2D
flow fields, the latter method turns out to be useful
especially for the comparison of different time
steps in time-varying data.

2 Flow Moment Invariants

2.1 Definitions

Moment invariants have originally been defined
for image data.Momentsare a statistical measure
often applied to images to analyze their geometric
features. This is commonly an early part of
the classification process. Originally,moment
invariants were developed by Hu [5] in the early
1960s. His version was proven to be redundant and
incomplete by Flusser [3]. Based upon Flusser’s
independent and complete set ofmoment invariants
flow moment invariants were defined in [10].

Moment invariants represent characteristic values
of a geometric structure being invariant to its
position, scale, and orientation. In terms of image
data, they are often used for text recognition. The
idea of flow moment invariants is to store this
characteristic information for flow patterns. This is
neither possible using the common scalar moment
invariants, nor using its component-wise extension
to higher dimensions (i.e., moment invariants for
color images). This is due to the fact that flow
data is correlated to the given domain while image
data is not. Details and further explanations can be
found in [10]. In this context normalized complex



moments for flows have been defined as follows:

Definition 1 Let a flow vector patternf : R
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(for domain scale invariance).

With these normalized complex moments for flows,
flow moment invariants can be constructed. A basis
for flow moment invariants of order 1 and 2 has also
been presented in [10]:

Ψ1 = c01,
Ψ2 = c00c02,
Ψ3 = c11c02,
Ψ4 = c10c

2
02,

Ψ5 = c20c
3
02.

(2)

Each complex value represents an independent
characteristic of the analyzed pattern. The values
of theΨs for any given pattern equal the values for
any rotated or scaled version of this pattern. This
enables a recognition of flow patterns regardless of
orientation and scale.

2.2 Moment Pyramid

The presented moment values can be computed
for any possible pattern in the data set. Since the
moments are defined similarly to the convolution
operator, all complex momentscij can be computed
by the application of the well-known convolution
operator with the corresponding moment basis
functions and a subsequent normalization (see
[10]). The convolution is computed for all discrete
radii resulting in amoment pyramid. Since the
convolution operation increases continuity by one
degree, small perturbations in the radii between
these discrete positions tend to have only limited
effects. Similarly to [10] we decided to homoge-
nize the vector magnitudes of the field and store
the magnitude information separately as a scalar
field to be able to find patterns that are similar in
direction. A further exclusion of the patterns with
different vector magnitudes can easily be attached

using the previously removed scalar information.

For each scale of the filter masks correlations
are performed, each resulting in a field on a
two-dimensional domain containing the invariant
momentsΨ1...5. These fields become smaller
for increasing scale of the filter masks, since
we decided to omit the border region in our
implementation. Thus, the resulting collection
of moment fields is called moment pyramid. A
moment pyramid provides a discretized description
of all vector patterns of an underlying field at each
position. The scale of the pattern corresponds to
its (height) level in the pyramid. The position of a
pattern (center) in the original data is equivalent to
its planar coordinates at each specific scale level of
the pyramid, see Figure 2. Thus, each data element
of the pyramid represents a special feature space
vector (Ψ1,...,5) describing the underlying patterns
of the flow vector field.
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Figure 2: Illustration of a moment pyramid. Mo-
ments are computed for varying pattern sizes. Start-
ing with a minimum pattern size of5 × 5 the mo-
ments are computed for the maximum possible pat-
tern size (limited by the size of the flow field). Stor-
ing the moment values for each scale and position
results in a pyramid structure.

2.3 Implementation

The computation of the moment invariants is done
in a preprocessing step. Convolutions of the flow
vector field with the moment invariant basis func-
tions are performed. Regarding accuracy, there are
only small discretization errors resulting from the
fact that moment invariants are assumed to be on



a circular domain. However, a completely circular
domain can never be achieved for discrete data de-
fined on a mesh. Nevertheless, the degree of conti-
nuity of the field is increased by the application of a
convolution operation. The complete computation
effort for this preprocessing is generally on the or-
der of a few minutes. This is about the same effort
as for a proper recognition of only one single (gen-
eral) pattern with the related method of Ebling and
Scheuermann [2]. The moment pyramid is further
indexed so that patterns can be recognized in an ef-
ficient manner. The actual pattern recognitions are
finally performed by a simple look-up operation of
the moment values in the pyramid (generally requir-
ing a few milliseconds), see [10] for more details.

3 Comparative Visualization of Time-
varying Data

We propose two methods for the analysis of
time-varying flow data. The comparison is based
on features, especially on spatial flow structures.
However, there is no focus on special structures
(like sources, sinks saddles, etc.) but on the
observed general flow behavior. Information
regarding the flow structure in differently sized
circular areas is stored in a feature vector: the
flow moment invariants (see section 2.1). To cover
the whole field the feature vectors are stored in a
so-called moment pyramid (as explained in section
2.2).

The definition of a suitable metric for the
comparison of moment invariants is a key element.

3.1 Difference Metrics

For all subsequent definitions let the flow moment
invariant for a pattern P be given byΨP

1,...,5 and for
a second pattern Q byΨQ

1,...,5. P and Q shall be
compared.

Definition 2 The first order absolute distanced1
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The absolute distances are defined according to the
common distance metric of complex numbers. For
the second order moment invariants we compute the
sum of all second order distances. The complete
absolute distance is a combination of the first and
second order. The terms might also be normalized,
but there is no need to normalize. In the following,
a definition for a relative deviation is given.

Definition 3 Thecomplete relative deviationδ of
the two patterns is defined as

δ = max

({

i ∈ {1, ..., 5}
∣

∣

∣

∣

∣

2|ΨQ
i − ΨP

i |
|ΨP

i | + |ΨQ
i |

})

.

Using this metric, changes in pattern structure can
be observed relatively. This formula unfortunately
becomes singular when comparing two completely
homogeneous structures or perfect saddles, yield-
ing zero in the denominator.

Both metrics indicate the similarity of the un-
derlying structures. The lower the distance
(deviation) is, the higher is the similarity of the two
compared patterns. The highest degree of simi-
larity is obtained for patterns with equal moment
invariants having zero distance (and deviation).

3.2 Interactive Pattern Comparison

In this section an approach for afeature-based data
comparisonis presented. The idea is to generate vi-
sualizations of multiple data sets next to each other
and use the pattern recognition to highlight simi-
lar features. This can be especially useful for the
comparative visualization of neighboring time steps
from time-dependent flow data. A pattern of inter-
est is chosen by the user by selecting an arbitrary
circular region in the spatial domain of a specific
time step. The moment pyramid is addressed us-
ing the mentioned index. For the comparison of the
query pattern moment invariants with the elements
in the pyramid, the complete relative deviation met-
ric is used. The desired maximum deviation is cho-
sen by the user, for exampleδ = 3%. This means
that positions in the moment pyramid where all mo-
ment value componentsΨ1,...,5 vary up to 3% from



the moment components of the pattern of interest
are marked. The position in the moment pyramid
directly maps to the position and scale in the origi-
nal field, meaning the pattern recognition returns all
positions and corresponding scales of similar flow
structures of any time step of the time-varying data.
Another important point to mention is that the mo-
ment field is a discrete representation of an at least
C

1-continuous field. This is due to the fact that it
has been obtained by the convolution operator. It is
natural to find many similar values in a specific re-
gion. However, visualizing all results yields clutter,
as there are certain areas where values are similar in
the direct neighborhood. Thus, when results are in
the immediate spatial neighborhood of each other,
only the most similar result are visualized. This in-
creases the clarity of the visualization.

3.3 Moment Pyramid Comparison

The idea of theflow moment comparisonis similar
to the pyramid comparisonfor image data. The
moment pyramidspans a scale space, similar to
the Gauss pyramidknown from image processing.
Subtracting a second pyramid element-wise from
the original one yields adifference pyramid. For
the comparison the metrics defined above are used:
the first order, the second order, and the complete
absolute distance as well as the complete relative
distance.

The distancesd1, d2, and dc are calculated
for each element of two given moment pyramids.
One obtains a scalar-valued difference pyramid
for each applied metric. The visualization of the
values of a certain pyramid level indicates the
similarity of two flow vector fields with respect
to structures of a certain size. This means a
low pyramid level indicates changes of small
structures (high-frequency changes), while a higher
pyramid level indicates changes in large structures
(low-frequency changes).

4 Results

To illustrate how the presented methods work in
practice, the flow data set from Hurricane Isabel,
generated in 2003, has been chosen. The pat-
tern comparison was performed for a 2D layer at a
height of 3150m, for the first five hours of the data

set, before the hurricane hits the continent.

4.1 Interactive Pattern Comparison

The pattern comparison method can, for example,
be used to track patterns over time. Figure 3 shows
three different patterns being tracked over five time
steps each. The relative deviation was chosen as
δ = 3% for all pattern searches. The first pattern
shown on the left side is a mostly homogenuous
flow diverging at one side. In the first time step, the
pattern appears once between the two circulations
and the saddle point. In time step two, the pattern
changed its position towards the vanishing saddle.
It is still similar enough to be tracked within the
3% similarity tolerance. Time step three shows
the tracked pattern in light-gray, indicating that the
pattern has changed its shape being almost outside
the similarity tolerance. However, a new pattern
of this kind is developing again at a position close
to the position in the first time step. This pattern
remains until time step five (the last analyzed time
step). During the final time step, more patterns of
this kind can be observed in the vicinity of the large
hurricane turbulence.

The second pattern we decided to track over
the same time steps is a saddle (see Figure 3 in the
middle). In this case, no other similar structures
can be observed, as the additional saddle emerging
in time step five is not in the similarity tolerance
(3% relative deviation) of the tracked pattern. It
is interesting to observe that this pattern remains
mainly at the same position close to the coast. It
becomes a somewhat larger in time step two, but
reduces its size again in the following steps.

The third pattern (Figure 3 on the right side)
indicated a perfect example why this method is
more revealing than a pure visualization with
streamlines. The pattern is also quite homoge-
neous, with a divergence on one side (towards the
coast). It is moving somewhat, but is present in the
northern coast region in all five time steps. The
pattern is also detected in time steps four and five.
In time step four, one would not have succeeded in
finding this pattern, as the streamlines do not fully
reveal it due to its reduced size. Again, no other
similar pattern is appearing.
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Figure 3: Interactive pattern recognition for the first five hours of a flow simulation (Hurricane Isabel at
3150 meters height): three patterns are selected from a slice at an early time step. The patterns, which stay
similar, can be tracked over time.



4.2 Moment Pyramid Comparison

In the following the pyramid comparison is shown
for three different metrics: the complete distance,
the first order distance and the second order
distance (see Figure 4.).

d1: d2: dc:

Figure 4: Moment pyramid (level one) comparison
between the first and second time step of the Hurri-
cane Isabel data (3150m height) for three different
distance definitions.

The distance values are visualizing the movement
of topologically and structurally important features.
The movement of the saddle (see Figure 3 on the
left side) can be seen clearly in this visualization,
for first order, second order and combined moment
distances. The movement of the center regions
can also be observed. More examples for this
visualization are presented in Figure 5.

For these visualizations, different pyramid
levels have been analyzed. The total pyramid size
is 120 layers for the presented data. Layer60 is a
medium layer. The moment distance at this level
indicates changes of a medium or low frequency.
The distances at such a level might be of value to
analyze the future development of the storm. For
example, the time step distance3 − 4 shows that
two major regions of activity are about to join. The
resulting increased intensity can be observed along
the coast at time step distance4 − 5.

However, the high-frequency representation
(meaning the visualization of the low pyramid-level
distance) is revealing the movement and develop-
ment of critical point features. Figure 6 shows the
difference between step one and step five, meaning
the changes over five hours. It can be observed that
the small center south of Florida is slowly moving
towards the coast. The large center, previously
south-west of the Bermuda Islands has moved a
little in north-western direction and is located west
of Bermuda after five hours. The movement of the

saddle point also shows an interesting pattern, first
along the coast, then moving west.

5 Conclusions

We have presented two methods for structure-based
comparative visualization of 2D flow fields. Our
first method uses an interactive pattern comparison
based on flow moment invariants to observe the evo-
lution of certain flow patterns over time. We have
demonstrated that this method can be used to track
the flow patterns and observed movement, changes
in size and orientation. The second contribution is
the generation of difference images of the moment
invariant space. This has been done for two levels of
the flow moment pyramid to observe different scale
frequencies. We have presented different metrics to
reduce the multi-dimensional complex-valued data.
We have studied one metric in in detail and have
shown that this representation can be used to track
critical flow behavior over time.

Figure 6: Moment pyramid comparison with dis-
tance between time step one and time step five for
the first pyramid level (left) and the medium pyra-
mid level (right).
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