
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

The Topological Effects of Smoothing
Sohail Shafii, Scott E. Dillard, Mario Hlawitschka, and Bernd Hamann

Abstract—Scientific data sets generated by numerical simulations or experimental measurements often contain a substantial amount
of noise. Smoothing the data removes noise but can have potentially drastic effects on the qualitative nature of the data, thereby
influencing its characterization and visualization via topological analysis, for example. We propose a method to track topological
changes throughout the smoothing process. As a pre-processing step, we over-smooth the data and collect a list of topological events,
specifically the creation and destruction of extremal points. During rendering, it is possible to select the number of topological events
by interactively manipulating a merging parameter. The result that a specific amount of smoothing has on the topology of the data is
illustrated using a topology-derived transfer function that relates region connectivity of the smoothed data to the original regions of the
unsmoothed data. This approach enables visual as well as quantitative analysis of the topological effects of smoothing.

Index Terms—Volume visualization, visualization techniques and methodologies, smoothing.

!

1 INTRODUCTION

TOPOLOGICAL analysis is an increasingly important ap-
proach for visualization and analysis of scientific data in

many fields, with relevance for data sets originating in a broad
spectrum of applications, ranging from materials science to
medicine. Transfer function design for volume rendering can
be viewed as an application of topological characterization,
where certain regions of data sets corresponding to ranges of
function values are assigned optical properties such as color
and opacity. These regions allow a user to easily identify and
delineate significant structures in a data set. Transfer function
methods based on simple thresholding remain attractive due to
their simplicity, reproducibility, and minimal user involvement,
but they cannot be used when significant noise is present in
the data. In addition, noise generally leads to isosurfaces that
contain many spurious surface components, which complicates
queries involving the number, size, and distribution of different
regions. When having to process and visualize noisy data,
smoothing is always an alluring option, leading to isosurfaces
with fewer components and smoother boundaries. However,
smoothing has the potential to drastically alter the data to the
point where one draws invalid conclusions.

We present a two-stage method to track and visualize the
topological changes that occur when smoothing a scalar-valued
data set defined over a volumetric, three-dimensional (3D)
domain. During the tracking stage, we apply smoothing up
to a point where a meaningful interpretation of the data is
no longer possible. We track the topological changes that
occur, specifically the creation and destruction of extremal
points that merge with other topological features that persist.
In the visualization stage that follows, the user can select the
topological events that affect the original noisy data set by

• Scott E. Dillard (Scott.Dillard@pnl.gov) is with the Pacific Northwest
National Laboratory, Richland, WA.

• Sohail Shafii (ssshafii@ucdavis.edu), Mario Hlawitschka (hlaw-
itschka@ucdavis.edu), and Bernd Hamann (hamann@cs.ucdavis.edu)
are with the Institute for Data Analysis and Visualization (IDAV),
Department of Computer Science, University of California, Davis, CA.

applying labels (or colors) to different portions of the data. To
summarize, we have developed a general topological analysis
method that requires little input from the user.

We first provide an introduction to Morse theory and contour
trees in Section 2. We describe the methods used in Section 3
and discuss the results obtained with our methods in Section 4.
Future research possibilities are covered in Section 5.

2 BACKGROUND

This research builds upon methods developed in the last
decade that apply Morse theory to computer graphics and
visualization. Morse theory [1] studies the topology of man-
ifolds by way of level sets of scalar functions defined over
those manifolds. A level set of a scalar function f : X → R
is the inverse image of a value y, f−1(y), which is the set of
points x ∈ X such that f (x) = y. A contour of a level set is
one connected component of that set. As y is varied, contours
merge and split at critical points, which are those points x ∈ X
where ∇ f (x) = 0. Additionally, contours can change their
surface topology by adding or removing handles. For instance,
in the three-dimensional domain of a scalar-valued trivariate
function, a spherical contour can change into a torus. Critical
points can be divided into two types: extrema, which are points
where f attains a local maximum or minimum, and saddles,
which are points where the topology of the level set changes
by either the number of connected components within a level
set or the topology of a single connected component of that
level set.

In our approach, we employ the contour tree, an accepted
means for describing the level set topology of scalar functions.
A special case of the contour tree is known as the Reeb
graph [2], which is obtained from a function by collapsing
each contour of each level set to a point while maintaining
the connectivity of contours between level sets. Formally, it is
the quotient space of X/∼ where the equivalence relation ∼
is defined such that a ∼ b when a and b are both contained
in the same contour of the same level set. If X is simply
connected (i.e., having no handles) the Reeb graph contains

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

Fig. 1. A topographic map of two mountains on the left
and the corresponding contour tree on the right, where
each contour line is collapsed to a point on the tree’s
arcs. The red points are maxima (+ symbol), the orange
point is the saddle (the oval between the mountains), and
the blue point is the minimum (− symbol). For simplicity,
extrema on the boundaries are ignored. As one moves up
from the bottom of the contour tree towards increasing
isovalue or height, he/she can imagine moving from a
single component, the minimum, up to the saddle. At the
saddle, the component splits into two mountains, which
end at two separate maxima.

no cycles and becomes a contour tree [3]. See Figure 1 for
an example. This distinction between a contour tree and Reeb
graph is important because there are algorithms with efficient
worst-case running time for computing contour trees [4], [5],
[6] that take advantage of this acyclic property, and simply
connected domains are common in imaging applications.

Some early work in the application of Morse theory to
computer graphics and visualization was performed by Shi-
nagawa et al. [8] who did some early work on reconstructing
3-D surfaces, van Kreveld et al. [9] who recognized that the
Reeb graph can be used to accelerate isosurface extraction
by identifying “seed cells” from which to begin surface
construction, and Bajaj et al. [10] who proposed the contour
spectrum to plot geometric as well as topological properties
of isosurfaces against their isovalues. Later, Carr et al. [11]
developed the idea of the contour tree as a metaphor for direct
manipulation of isosurfaces for interactive exploration, used in
their implementation via an interface supporting flexible iso-
surface extraction. Takahashi et al. [12] used the contour tree
for automatic transfer function design, and Weber et al. [13]
extended the flexible isosurface idea for volume rendering. In
parallel, research has been carried out exploring the application
of the Morse-Smale complex, a topological structure that is
similar to the Reeb graph but contains more information, to
problems in computer graphics and visualization. For more
detail, we refer to the papers by Bremer et al. [14], Gyulas-
say et al. [15], [16], and Laney et al. [17].

There is an independent line of research in the computer
vision community which combines Morse theory with scale-
space analysis. Scale-space methods seek to characterize the
structure of an image by observing its evolution under re-
peated convolution with a Gaussian filter kernel. The scale-
space image is the (n + 1)-dimensional image formed by
stacking together each n-dimensional image that is the re-
sult of Gaussian smoothing with the previous image in the

!"# !"$!"%

Fig. 2. A visual representation of the scale space as a
pyramid that indicates the loss of information when the
image is smoothed. The variable “t” indicates time or, in
our case, the number of times an image is smoothed.
As one moves forward in time, one can can observe the
movement of extrema by stacking the images produced
by repeated smoothing on top of each other. In this
particular example, the colored nodes represent extrema
and the dashed lines indicate paths. From time step 0
to 2, the initial four extrema in the image merge into two
extrema after the other extrema were smoothed out.

stack. A visual illustration is shown in Figure 2. Lifshitz and
Pizer [18] proposed to track the extrema in each image in
this stack as they trace out paths through the additional scale
dimension. Kuijper and Florack [19], [20] explored this idea
further and defined a segmentation by level sets that contain
scale-space saddles, which are the saddles of the (n + 1)-
dimensional function. These points correspond to the birth1 or
death of extrema during the smoothing process. Gingold and
Zorin [21] proposed and analyzed an algorithm that controls
the topological events while an image is being modified by
Laplacian, sharpening, and anisotropic diffusion filters.

There also exist methods that analyze time-varying contours
or Morse functions. Szymczak [22] introduced a method to
describe the cumulative changes of contours in time-varying
data sets. Edelsbrunner et al. [23] developed an algorithm that
constructs a time-varying Reeb graph by tracking the motion
of critical points along so-called Jacobi curves [24]. The
birth and death of critical points in time occur at degenerate
critical points along these curve-like sets. If time is viewed as
the additional scale-space dimension, then these degenerate
critical points are also the scale-space saddles. Sohn and
Bajaj [25] also proposed a method to track topology by
computing correspondence information between contour trees
from one time step to the next and applied their method
to visualization. An area of correspondence is caused by
overlapping regions related to contours between a contour
tree in time step t and another contour tree from time step
t+1. Silver and Wang [26] introduced an algorithm that tracks
volume features in unstructured data sets by detecting features

1. It is counter-intuitive that blurring based on a Gaussian operator creates
new extrema, but this indeed can happen as Lifshitz and Pizer [18] pointed
out.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

that overlap each other in time-varying data sets. In a similar
paper, Chen et al [27] discuss a feature extraction and tracking
algorithm that works with time-varying data sets while dealing
with multiple resolutions and processors. Fujishiro et al. [28]
introduced an interface which visualized the changes in topol-
ogy (over time) through a pixel map called index space.
Keller and Bertram [29] created a tool that visualized surfaces
defined by time-varying Reeb Graphs which are modified
by operations on nodes and edges. Takahasi et al. [30] and
Nieda et al. [31] explored controlling topological transitions
in the context of shape morphing.

Unlike previous time-varying methods based on Morse
theory, we do not explicitly track and store a topological
data structure. We also do not compute areas of overlap
as discussed in [26]. Instead, we track the appearance, dis-
appearance, and movement of extrema in an image under
the influence of continuous smoothing and use the tracking
information to label the contour tree of the original (un-
smoothed) image. Thus, the benefit of our method is due to
the fact that each tracking stage from time step to time step
is simple to implement, since we are not explicitly computing
correspondence information between contour trees as shown
in [25].

Tracking extrema discretely over time is similar to tracking
the evolution of blobs in scale-space theory, which relate to
features in an image and cover an area larger than individual
extrema, as discussed by Lindeberg [32]. Unlike tracking and
linking blobs from one time step to the next, extrema tracking
is more difficult because extrema move faster than large
features. Nevertheless, both methods allow one to simplify
an image and label its essential structure separate from noisy
elements.

The labeling procedure we employ effectively simplifies
a noisy contour tree, which is similar to other topological
simplification methods. Carr et al. [33] illustrate how one
can simplify a contour tree by “reducing” vertices without
changing the essential structure of the tree. Takahasi et al. [34],
[35] remove candidate links from the contour tree that consist
of nodes that are most likely related to noise. Weber et al. [13]
modify the scalar field in real-time using graphics hardware
to correspond to a simplified contour tree. Unlike our method,
existing simplification techniques influence the structure of the
contour tree. Our contour tree’s structure remains untouched
while the labels of the nodes are modified in an effort to create
less noisy regions.

When seeking to implement a topological method robustly,
one must carefully consider how the concepts of Morse theory,
which considers smooth functions, are used in an actual
implementation that can only represent discrete values. The
most common representation of a function is a set of discrete
sample points which are extended to the rest of the domain by
interpolation. The interpolation method depends on the appli-
cation, but two very common methods are linear interpolation
for triangulated domains and trilinear interpolation for meshes
consisting of rectilinear cuboids as mesh building blocks.
When possible, another option is to decompose a given three-
dimensional grid of samples into tetrahedra, which makes
many algorithms simpler but has been shown to introduce

artifacts [36].
We have based our work on the piecewise-trilinear inter-

polant for three-dimensional images. The same interpolant
can be applied to both isosurfacing and volume rendering.
Linear interpolation over tetrahedral elements can be used for
volume rendering of rectilinear grid data but has significant
speed and artifact-related drawbacks. Topologies defined by
modified marching cubes use case tables, or other so-called
“digital” topologies, and cannot be applied to any form of
volume rendering. Nielson [37] has described the topology of
the trillinear interpolant to make robust algorithms possible.
Notably, critical points of the piecewise-trilinear function can
occur at sample points, a single saddle may occur within a
face shared by cubic cells, and a pair of saddles may occur
in the interior of a cubic cell. Nielson [37] described the
analytical conditions for these points to occur, while Pascucci
and Cole-McLaughlin [6] characterized face and cell saddles
combinatorially by the gradient direction along edges between
sample points. This combinatorial characterization is important
for robust algorithms which are free from degenerate saddles
and we make use of it.

While a precise combinatorial description has been given
for the topological changes that occur within a time-varying
linearly-interpolated function defined over tetrahedra [38], the
same result for time-varying trilinear interpolation is still an
open problem, although results in that direction have recently
been given by Carr and Max [39]. We do not address the
general-case problem of describing the evolution of trilinear
critical points through time, rather we restrict our attention to
the more tractable problem of tracking only extrema of the
trilinear function.

3 METHODS

Our visualization pipeline is divided into two parts: tracking
and rendering. In the tracking stage, we track extrema in a
data set while applying a smoothing operator. In the rendering
stage, the tracking results are used to simplify the contour
tree. The data we consider are scalar values associated with
the vertices of a hexahedral mesh, with trilinear interpolation
used to extend these values into the faces and cells of this
mesh. The application of Morse theory to discrete functions
requires us to use a technique known as symbolic perturbation.
Symbolic perturbation ensures that critical points are isolated:
the piecewise-defined function attains a maximum or minimum
only at vertices of the hexahedral mesh. To achieve this goal,
every edge between two vertices sharing the same value is
“tilted” so that one vertex’ value is greater than the other. In
practice, the position of a vertex in the image is used as a
tie-breaker when comparing vertices with equal value.

The partial ordering of adjacent vertices can be represented
by a directed edge based on the gradient, oriented to point
toward the vertex with greater value. Maxima and minima can
be recognized as those vertices that are sources or sinks in this
discrete vector field, respectively. As noted by Pascucci and
Cole-McLaughlin [6], the existence of saddle points is also
determined by the configuration of these “gradient arrows”
around a face or a cell, although their exact position and value

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

Fig. 3. Each data element in the grid (indicated by circles)
has a scalar value. In addition, we store the discrete
gradient vector field, i.e., an oriented graph using the
edges of the grid. Maxima are red circles with a plus
symbol; minima are blue symbols with a minus symbol.

must be computed numerically [37]. Figure 3 illustrates this
discrete gradient field.

3.1 Smoothing and Tracking Extrema
The tracker analyzes each data element to observe movement
of extrema. During tracking, we apply a Gaussian smoothing
filter [40] to an image multiple times while following the
movement of extrema for each data element independently.

3.1.1 Gaussian smoothing:
In two dimensions, the filter weights are computed using the
two-dimensional Gaussian

G(x,y,σ) =
1

2πσ2 e−
x2+y2

2σ2 , (1)

where σ is the standard deviation and σ2 the variance. The
fraction is a constant for a given variance and acts as a
normalization factor. As smoothing with a Gaussian filter can
be seen an analytical solution to a diffusion equation, σ2 can
be seen as the variance E[(ξ − µ)2], where ξ ∼ N(µ,σ) is
a random variable with normal distribution (aka. Gaussian
distribution). The effect of applying the filter multiple times
to obtain discrete time steps is an iterative approach to solve
this diffusion equation, which can be written analytically as a
combined filter, Gn at time step n > 0 and can be computed
by multiple convolutions of the Gaussian G(·, ·,σ), where

Gn(x,y,σ) =
1

2πnσ2 e−
x2+y2

2nσ2 = G(x,y,σn) (2)

with σn = nσ . Although an analytical solution would be
possible, we need all discrete time steps to perform the
tracking. Therefore, doing multiple convolutions with a small
filter is more efficient than increasing the filter size to compute
the image for time step n analytically.

Lifshitz and Pizer [18] provided a detailed analysis of the
Guassian filter and we refer the reader to that work for details
regarding this elementary image processing operator.
Boundary conditions: As the filter is defined as a convolution
of the image with the filter kernel, a proper definition of
boundary conditions is important. Several standard methods

(a) Gray-scale rendering of
original function values.

(b) The effect of applying a 7×
7 discrete Gaussian smoothing
filter to gray-scale image.

Fig. 4. An example of a gray-scale image that is
smoothed by a discrete 7 x 7 discrete Gaussian smooth-
ing filter. Black pixels represent minimal function value
and white pixels represent maximal function value, with
varying grey tones indicating in-between values. During
smoothing, each data element is assigned a value that is
the weighted average of all points in the kernel centered
at that data element.

used in image processing, namely zero boundary condition,
periodic boundary condition, cyclic boundary condition, and
closest point boundary condition, which can be implemented
by extending the data set (padding) by at most half of the
filter size at all boundaries. Another way of handling the
boundary is to modify the filter at the boundary. Whereas
some of the above approaches can be seen as a modified
filter, it is possible to use the Gaussian weights inside the
data set, but normalizing the data points at the end that the
picture’s “energy” is maintained, i.e., the integral over the
filter inside the data domain remains one (or in terms of
the diffusion operator, no particle/energy leaves the domain).
For our tests, we chose the closest point condition, i.e., we
implicitly pad the data set by copying the boundary values to
the additional layers, because this approach seems to have the
smallest influence on the boundary topology. This is especially
important for the small test cases shown in this paper but does
not necessarily influence the larger data sets shown in the
Results section. In the larger data sets shown in this paper,
the data domain is usually larger than the actual data and the
boundary artifacts have a negligible influence on the important
data. A detailed study of those artifacts is not part of this paper.

Discretization: We use a discrete version of this general
Gaussian filter that uses only the function values in a finite
voxel neighborhood around a voxel [i, j,k] whose value we
replace by a weighted combination of all the values in the
chosen neighborhood. In our case, we use a three-dimensional
discrete Gaussian filter that determines a weighted average of
7×7×7 values replacing the values at the center voxel. The
specific weights used for the voxels in this neighborhood are
calculated using Equation 1; however, we exclude the constant
and normalize by dividing each weight by the sum of all the
weights, which is required to maintain the total “energy” of
the data. Figure 4 illustrates a two-dimensional finite voxel
neighborhood that is smoothed by a discrete Gaussian filter.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

3.1.2 Fundamentals of Tracking:
Before tracking, we record the initial positions of the extrema
in the original data set and label them. The smoothing filter
is applied to produce a new image. As the new image values
are copied back to the old image one value at a time from
the first vertex to the last vertex, we track the behavior of
each extremum. This smoothing and tracking process can be
repeated to a specified number of iterations or time steps.

Because we modify only a single value at a time, determin-
ing the creation, destruction and movement of extrema is done
for each vertex. We model the change in a vertex’ value as
a continuous motion. Since the existence of critical points is
determined by the orientation of the discrete gradient arrows
incident on that vertex, we only need to consider what happens
as the orientation of these arrows changes. We decompose
the movement of the vertex value into even smaller steps so
that we flip exactly one gradient arrow at a time. Whenever
a gradient arrow flips, we track the topological changes that
occur.

These topological changes include cases when an extremum
is created, when it is destroyed, and when it moves to an
adjacent vertex. Any extremum that is created is “spurious”
in the sense that it is an artifact of smoothing. To relate a
new extremum to the rest of the critical points, we search
in the vicinity of the location of its creation for another
pre-existing extremum of the same type after the gradient
arrow flipping occurred. For example, after a new maximum
is created we walk along edges of the hexahedral mesh
with gradient arrows that point “uphill” (in the direction of
maximal gradient) until we reach another maximum. The
newly created maximum is assigned a label that corresponds
to this neighboring maximum. New minima are paired with an
existing minima by walking along the direction opposite to the
maximal gradient. By using this approach, an extremum of the
original unsmoothed image can propagate its label to multiple
extrema. We refer to these occurrences as anti-cancelation
events, which relate to the case where spurious bumps that
appear on the side of the mountain after smoothing would
merge with the neighboring extrema (the mountain). Note that
we relate new extrema with pre-existing extrema since we
must use our tracking results to modify our static contour tree
during rendering, which is based on the unsmoothed data set.

Extrema that disappear can also merge with labels of pre-
existing extrema. For instance, when a gradient arrow flips an
extremum might disappear without moving to a neighboring
vertex. In this case we perform a similar search, walking
uphill in the case of a maximum or downhill in the case
of a minimum, until a neighboring extremum is found. One
intuitive example that relates to disappearing extrema is the
case of a small bump on the side of a mountain. As the entire
mountain is smoothed, the small bump would disappear and
one would walk uphill to merge with the entire mountain since
that is the only surviving feature. Cancelation events such as
this are recorded by noting the label of the extremum that was
lost and that of the neighboring extremum.

In the cancelation and anti-cancelation cases, the neigh-
boring extremum is known as the parent. Anti-cancelations
duplicate the labels of one extrema while a cancelation occurs

after all such labels have been removed due to smoothing.
Since information from cancelation events enables us to find
out how noisy features merge with other features, we use these
events to influence the rendering stage.

We do not explicitly maintain the contour tree of the varying
data set during the smoothing process, as we do not have a
precise characterization of the behavior of saddles of a trilinear
function under motion of the vertices. We work around this
limitation by propagating identifiers to saddles in the rendering
stage.

3.1.3 Tracking Algorithm:
We now present the various steps of our algorithm in more de-
tail. The tracking driver controls the overall tracking behavior
and it repeats the smoothing-tracking process to a time step
specified by the user. A user typically would want to specify
a time step large enough so that most of the noisy parts of the
image have merged with dominant features. Here, Image1 is
the current state of the image and Image2 is the image after
smoothing.

1) As one assigns Image2’s (smoothed image) values to
Image1 data element by data element:

a) Get neighbors of current data element.
b) Update current element’s value in Image1 to value

in Image2.
c) For each updated element, update all gradient ar-

rows such that they point from the smaller to the
larger neighbor.

The above steps ensure that at every point in the process the
discrete vector field is a valid gradient field. Updating gradient
arrows is done in the following manner:

1) We have two data elements: a and b and a gets updated.
Flip the gradient arrow between them so that the gradient
arrow points from b to a. We always do flips from the
perspective of the element that used to be on the tail
side of the arrow (a).

2) Test for the following conditions (not mutually exclu-
sive):

a) Data element a was a minimum before flipping
gradient arrows but not one after flipping gradient
arrows. Either it moved to b or canceled. Oth-
erwise, determine whether a new minimum was
created at b (anti-cancelation event).

b) Data element a was not a maximum before flipping
gradient arrows but is one after flipping gradient ar-
rows. Determine if the maximum was previously at
b and moved to a or was created (anti-cancelation
event). Otherwise, determine if b was a maximum
but was canceled.

3) Update the extremum status of a and b. They could have
become regular points (i.e., non-extrema).

A visual depiction of the gradient arrow flipping process can
be seen in Figure 5.

As mentioned previously, cancelation and anti-cancelation
events require the walking uphill and downhill routines to
pair with an extremum that already exists. We do this to
merge points with the initial set of extrema that existed before

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

!"#

(a) Before flipping gradient arrow.

!"#

(b) After flipping gradient arrow.

!" #

(c) Label a moves to the correct vertex.

Fig. 5. When changing the value of point a, we have to recalculate the discrete gradient vectors. In this case, a is no
longer a minimum as the gradient vector originally pointing from a to b flips. Since b is the location of a new minimum,
the minimum has moved from point a to point b.

!"#$"

%&'&()

(a) Uphill walk example.

!"#$"

%&'&()

(b) Downhill walk example.

Fig. 6. Visual depiction of the walking uphill and downhill
routines. In Figure 6(a), a maximum that was canceled
at vertex “Start” has to pair with a parent maximum by
walking in the direction of increasing values. As such,
it walks in the direction of the gradient arrows to vertex
“Finish.” In Figure6(b), a minimum that was canceled at
vertex “Start” needs to pair with a parent minimum so
it walks against the direction of the gradient arrows to
vertex “Finish.” Pairing is done during the creation (anti-
cancelation) and cancelation of extrema. Curved lines are
provided to indicate the direction of walking.

smoothing began. An example of this process is illustrated in
Figure 6. If we interpret smoothing as an additional temporal
dimension, we will be able to follow the extrema that exist
in the original data set over time, and we will be able to see
them merge.

This method of tracking the movement of extrema requires
us to modify the gradient arrows independently of each other.
This is not possible when these arrows are defined implicitly
by symbolic perturbation: changing the value of a voxel
(which is necessarily discrete even when using floating-point
representation) may flip multiple adjacent gradient arrows. In
the scenario where an extremum moves to a neighbor, it would

(a) Before smoothing. (b) After smoothing.

Fig. 7. An image that is smoothed by the filter 1
4 [121]

(border values are duplicated for the filter). In Figure 7(a),
we have two maxima on the border with one maximum
in the center. The central maximum is smoothed out as
shown in Figure 7(b). If one were to track the movement
of extremum from the left to the right of the image while
assigning the smoothed image’s values to the original
unsmoothed image, the smoothed maximum would follow
the direction of the maximal gradient to pair with the
leftmost maximum. This follows because when we reach
the center, the values to the left are updated first and
are steeper than the values to the right of the center. If
one were to track from the right to the left, the smoothed
maximum would pair with the rightmost maximum instead
since the steeper values to the right of the center are
updated before the values to the left. This artifact is due to
the fact that one could arbitrarily pair the central maximum
with either maximum that exist in the peripheries of the
image. This problem is minor since it affects only one
vertex.

be difficult to track its movement when multiple (implicit)
gradient arrows are flipped at the same time. Thus, we instead
store the orientation of these arrows explicitly, which requires
us to store at most three bits per vertex: one for the edge to
the right, one for the edge behind, and one for the edge above
a vertex. The bit indicates if the gradient arrow is orientated
away from or toward that vertex.

We replace image values from the first to last pixel. In the
ideal case one would not expect the order of image value
replacement to affect tracking. Nevertheless, ambiguous cases
can exist, as shown in Figure 7.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

!"!
"!"

#

$%&'()%*+
*,
%+(&'.%+/"
.(0&"
102'

$%&'()%*+"
*,"
3&*3/)%*+

4 5 4
6

4 6

6

Fig. 8. An example of how we propagate labels from
minima (which are marked with a minus symbol) to the
saddles (not marked with a symbol) above them using
the auxiliary join tree. Labels are indicated by colors and
letters and these labels represent the features that exist
at the current time step. The isovalue increases according
to the arrow in the figure. As we move from the left side,
the cyan label (A) is assigned to the first saddle because
that label belongs to a “deeper minimum.” From the right
side, the red minimum (C) is propagated to the bottom-
right saddle. The last saddle chooses the red label (C).
Note that we propagate labels from the bottom up: the
neighbors connected to a saddle must be labeled before
it can be labeled.

3.2 Rendering

After the tracking stage, we analyze our list of cancelation
events in order to label portions of the unsmoothed data set’s
contour tree. Cancelations are useful to visualize how the
regions implied by the topology of a data set merge after all
the copies of a single label disappear. Thus, assuming that
time again describes the number of smoothing and tracking
steps, we can observe the changes in topology by using the
cancelation events without destroying the data.

The volume renderer that we have developed has a time
feature that merges components as implied by the topology.
First, we assign a label to the original extrema of the con-
tour tree, the topological data structure that is used by the
volume renderer to define the transfer function. Each label
corresponds to a hue, saturation, lightness (HLS) color, where
the hue intensity is randomly picked, the saturation is full
intensity and lightness is half intensity. This ensures that most
(opaque) colors are fairly random, bright, and not washed-out.
Afterwards, we use the cancelation events, up to a time step
specified by the user, to merge extrema so that extrema that
were smoothed out during the pre-processing stage share the
same label as other extrema. Finally, we propagate the reduced
number of labels that exist at this time step to the saddles of the
contour tree, which may exist between extrema. To perform
this step, we refer to the auxiliary join and split tree data
structures which contain nodes that were used to construct the
contour tree.

Since the saddles are not tracked during the tracking stage,
we assign labels to them in a manner that reflects the principles

!"!"!"

#
##

$%&'()%*+
*,
%+(&'-.%+/"
.(-0-&"
1-02'

$%&'()%*+
*,
3&*3-/-)%*+

4
5

6 $

4
$

$

Fig. 9. An illustration showing how we propagate labels
from maxima (which are marked with a plus symbol) to
the saddles (not marked with a symbol) below them using
the auxiliary split tree. This illustration is the same as the
join tree version (Figure 8). However, it has an opposite
orientation vertically and the labels are chosen based on
higher maxima (which are more dominant). In this case,
the maximum that originally has the orange label (D)
influences more saddles than other maxima.

underlying tracking. In other words, we merge relatively
weaker features with stronger minima or maxima. The join
tree, according to a definition similar to the one found in
Carr et al. [4], represents the merging of components from the
minima up to saddles. During the rendering stage this auxiliary
tree has a limited number of labels (due to the extrema-
merging process), and we propagate the labels of dominant,
or “deeper,” minima to saddles. An example of this process is
shown for the join tree in Figure 8.

The split tree, on the other hand, represents the splitting
of components from saddles to the maxima. In this case we
give preference to larger maxima when propagating labels to
the saddles below them. In other words, preference is given to
maxima that belong to higher “peaks” because they are more
resistant to smoothing than noisy maxima. The example for
this process on a split tree is shown in Figure 9.

After this labeling operation, we assign color values to
voxels based on where a voxel exists in an arc of a contour
tree. If it exists in an arc with a single label, it will receive
that label’s color. If it exists inside an arc with two labels, it
will receive an interpolated color that is derived from those
two labels’ colors.

3.3 2D Examples
Before discussing our results, we illustrate how our tracking
and rendering procedures can be used to affect two examples:
two two-dimensional height maps represented as gray-scale
images. Thus, the brighter a pixel is, the higher it is in value
and white pixels represent maxima or “peaks.” In the following
“mountain-like” examples, there exist spurious peaks that
make the images noisy. We demonstrate how these “maximal
regions” merge under the influence of a smoothing operator.

To make these illustrations easier to understand, we assigned
a randomly generated color, or label, to each maximum. Re-

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

(a) Normal image (b) Normal image, labeled (c) Time step 1, labeled (d) Time step 2, labeled (e) Time step 5, labeled

Fig. 10. A two-dimensional height map represented as a gray-scale image. Brighter areas indicate higher values. The
data consists of a dominant peak (largest maximum) in the center that is surrounded by six other peaks. All peaks are
highlighted in Figure 10(a) and have a gradient texture. Initially, each peak and the regions around the peaks have a
unique color (i.e., label), whereas valleys are indicated in blue. Pixels between two regions are assigned a color that
is interpolated between those two regions’ colors (with bias toward the “higher” region). As the image is progressively
smoothed and tracked as one moves forward in time, the coloring indicates how different regions merge, as evidenced
by the generation of a single color. This example illustrates how weaker features (highlighted from Figure 10(b) to
Figure 10(e) and identified by a gradient texture) merge with stronger ones.

gions that have merged with a maximum share the maximum’s
color. Since our focus for these 2D examples is to study
features merging in relation to maxima, the “minimal regions”
are assigned a dark blue color which is less distracting than
the regions corresponding to maxima. The time step associated
with these pictures indicates how many times an image was
smoothed before being labeled. If a pixel is between two
extremal regions, we generate a color which is the result of
interpolation of the two extrema’s colors (with bias toward the
“higher” region). See Figures 10 and 11.

The tracking and smoothing procedures are transparent
processes to a user of our program. They produce the colored
results that can be explored and analyzed by the user.

In Figure 10, we show the image of a single maximum
(shown as a central peak) which is surrounded by other
maxima. In Figure 10(b) and Figure 10(a), we have included
pictures of the unsmoothed image with and without labeling,
respectively. Note the number of spurious maxima (highlighted
in red and textured) in the labeled screenshot. In the following
images, however, one can see that due to repeated smoothing,
the number of labeled regions (indicated by color) is being
reduced. Eventually, all maxima merge and share the same
(green) label.

A similar result is obtained for the example shown in
Figure 11. Initially, the two peak maxima are surrounded by
four maxima which cause the labeling to appear to be less
uniform. As one smoothes substantially, the spurious regions
merge around the two peaks. Eventually, the image is over-
labeled as both peaks share the same label. Thus, Figure 11(d)
represents high-quality labeling.

Both of these examples illustrate an important point: our
tracking and rendering algorithms are designed to merge
weaker features with stronger ones by applying a labeling
operation. Once the weaker features are assigned the same
label as their stronger associated parent label, we are able to
label the underlying (unsmoothed, noisy) contour tree’s nodes,
which influences the resulting visualization.

4 RESULTS AND DISCUSSION
We discuss how our tracking and rendering algorithms behave
when applied to 3D, volume data and discuss how it may
apply to transfer function design. We use a tracker and volume
renderer written in C++. The latter application was developed
using the QT and OpenGL libraries. It employs a GPU
ray caster based on the techniques covered in [13]. In the
volume render interface, the user is able to use a spinbox
to modify the merging parameter to label (color) the image
into different regions. Whenever the user selects a merging
level, the application computes and displays regions that exist
up to that merging level. We also allow the user to modify
a global opacity transfer function and render isosurfaces to
provide context for the merging results. The opaque colors
generated are based on the labels produced by our topological
analysis algorithm. An example of the program’s interface is
shown in Figure 12.

The tracker and volume rendering applications were per-
formed on an Intel Core i7 950, with 6 GB of RAM and an
NVIDIA GeForce GTX 260 896MB video card. We applied
our methods to the head MRI CISS 8Bit (256x256x124),
silicium (98x34x34), and the x-ray scan of a human foot
(256x256x256) data sets. The head MRI data set highlights
the cerebro-spinal-fluid cavities of the head. The silicium data
set is the result of a simulation of a silicium grid and was
included to see how our methods label a simulated data set.
The foot data set is a rotational c-arm x-ray scan of a human
foot and contains tissue and bone data. All data sets were
obtained from http://volvis.org.

4.1 Volume Data Examples
We now discuss how our algorithm is able to label interesting
structures in various data sets. We describe when our algorithm
begins to over-label the images.

Foot data set: In the first set of rendering results, we exper-
imented with the foot data set after assigning low opacity to
the skin and tissue portions of the foot by modifying the global
opacity transfer function (see Figure 12). In Figure 13(a),
the bones are not clearly identified and appear to be quite

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

(a) Normal image (b) Normal image, labeled (c) Time step 1, labeled (d) Time step 2, labeled (e) Time step 22, labeled

Fig. 11. A two-dimensional height map represented by gray-scale color. All peaks are highlighted in Figure 11(a) and
are textured. Like the image with one peak in the center, regions around peaks are assigned a color (i.e., label) while
low-value regions are assigned a uniform blue color. Unlike the example shown in Figure 10, the example shown here
contains two dominant peaks. The different extremal regions quickly merge after the program smoothes the image and
tracks the movement of extrema in the background. Noisy regions are highlighted from Figure 11(b) to Figure 11(e)
and have a gradient texture.

!"#$%&'(&)#*+,)(,.*$&%/*

0+/+.),#$(+1%2)

3%4(+&"(+"%*5/6(7,/)(4)8%*89

Fig. 12. Volume renderered head MRI dataset with in-
terface. The spinbox near the top of the window allows
the user to control the level of merging by specifying
the last time step to do merging to. The global opacity
transfer function can be modified by dragging the left
mouse bottom over the graph region, where the x-axis
represents scalar value (from least to most dense) while
the y-axis is intensity (from transparent to opaque). The
(opaque) colors created are based on a transfer func-
tion generated by our topological analysis algorithm. The
isosurface slider, which can be moved across increasing
scalar values, lies at the bottom of the window and can
be used to draw a slightly gray isosurface based on the
isovalue specified.

noisy. Figure 13(b) to Figure 13(d) illustrate the changes in
the regions identified in the bones. In Figure 13(b), one can
see regions split into two portions; one portion belongs to
the volume containing the large, metatarsal bones and the
other portion contains the smaller phalanges. Over time, these
portions merge, as seen in Figure 13(c). In Figure 13(d), the
image starts to become over-labeled as the separate bones of
the foot begin to the share the same color.

In this case, it is difficult to say which time step is
“good.” The user can change the time step and decide which
visualization provides the best representation of the data set.

Head MRI data set: In Figure 14, we include results for the
MRI head data set. Similar to the results for the foot data set,
these screenshots illustrate how smaller regions tend to cluster
around a single label as one moves forward in time. In this
case, we modified the global opacity transfer function to help
illustrate how the cerebral ventricles of the brain are rendered.
In Figure 14(a) and Figure 14(b), the ventricle portion of
the brain appears very noisy. Nevertheless, it becomes more
uniform in color after one increases the time step count to
320, see Figure 14(c). One must be careful not to increase the
time step too much; in Figure 14(d) the time step is increased
to 450, which causes a portion of the nearest eye to share the
same color as nearby regions.

Silicium data set: Even though this data set does not
contain a significant amount of noise, it is worth study-
ing because quantization noise and the discretization create
spurious topological features that influence standard contour-
tree-based approaches. We examine it to demonstrate how
our method merges topological features that are clearly and
obviously separate before smoothing. In the set of pictures
illustrating simulated electron density in a silicium grid, shown
in Figure 15, one can see the behavior of electron bonds in
relation to an increasing time step. As the time step increases,
bonds which lie close to each other quickly merge and share
the same label. In Figure 15(d), merging is continued to the
point where it becomes less informative. By allowing the user
to label the data set beyond the point of the labeling being
reasonable we make it possible to pick an appropriate degree
of merging in an interactive, exploratory process.

4.2 Tracking Statistics
In Table 1, we provide times required by the tracker to process
each data set after an indicated number of time steps. While
some of the times in this table are fairly large, especially for
the foot and head data sets, one must keep in mind that the
tracking process needs to be done once before the tracking
results are used for rendering. In the rendering stage, the user
can observe the visual changes of merging from one time step
to the next.

In Table 2, we provide the number of labels (of extrema)
once the tracker has iterated for a certain number of time steps.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

(a) Foot labeling after 0 time steps. (b) Foot labeling after 128 time
steps.

(c) Foot labeling after 380 time
steps.

(d) Foot labeling after 400 time
steps.

Fig. 13. Labeling of different regions of a computer tomography scan of a foot. The global opacity transfer function has
been chosen to reveal the bones (see Figure 12). While the original image (13(a)) is labeled into noisy clusters, with
continuous merging the bone structures are found leading to identification of individual bones around time step 128.
When we continue merging, neighboring bones are merged leading to the point where individual toes are grouped
around time step 380. At time step 400, the merging process starts grouping toes into single clusters.

(a) Head labeling after 0 time steps. (b) Head labeling after 64 time steps. (c) Head labeling after 320 time steps.

(d) Head labeling after 450 time steps.

Fig. 14. Head MRI data set. The global opacity transfer function has been modified to highlight the changes in the
cerebral ventricles as one moves forward in time. It can be seen that our algorithm removes most of the initial noise
leading to a labeling of the eyes, the ventricle, and the brain stem in time step 320. After this iteration, the eyes begin
to merge with nearby regions leading to over-labeling.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

(a) Silicium labeling after 0 time steps. (b) Silicium labeling after 16 time
steps.

(c) Silicium labeling after 32 time
steps.

(d) Silicium labeling after 256 time
steps.

Fig. 15. Simulated electron density in a silicium grid. The global opacity transfer function is chosen to highlight the grid
structure, especially the electron bonds. Our approach initially assigns a different label to each electron bond in the
data set, but with increased levels of merging, some bonds are grouped because they lie closer together than other
bonds which shows minor irregularities in the grid. At time step 256, most of the dataset shares the same label and
no more merging is possible.

TABLE 1
Timing results for smoothing and tracking up to a certain time step, which are both pre-processing steps computed

on the Intel i7 950 processor with a single thread. The first row contains columns indicating the time step up to which
smoothing and tracking was performed. Columns to the right of each data set indicate how long pre-processing took,

which needs to be done only once before analyzing a data set.

Data Set 16 32 64 128 256 512
Foot 1 min, 54 sec 3 min, 16 sec 5 min, 46 sec 10 min, 34 sec 22 min, 41 sec 44 min, 14 sec

Head MRI 46 sec 1 min, 31 sec 2 min, 43 sec 5 min, 1 sec 10 min, 35 sec 20 min, 25 sec
Silicium 0.8 sec 1 sec 3 sec 5 sec 9 sec 18 sec

TABLE 2
Data sets and the number of distinct labels at a given
time step. It can be seen that the numbers of labels

decreases with increased smoothing and most of the
labels already disappear after the first sixteen smoothing

steps. The corresponding visualizations are shown in
Figures 13, 14, and 15.

Time Steps Labels Foot Labels head MRI Labels Silicium
0 606226 1733964 283

16 1803 1492 46
32 600 495 12
64 196 171 3
128 63 56 3
256 25 21 2
512 7 9 2

As expected, the number of labels decreases when the tracker
applies more smoothing and merging steps. One interesting
characteristic about the silicium data set is the fact that the
rate at which the number of labels decreases is relatively
high. Since this data set is fairly simple and contains smaller
structures, this can be explained by the fact that most of the
data becomes “flat” during early stages of smoothing.

In addition to timing and label statistics, we provide the
number of labeled nodes in Table 3. The total number of nodes
in the contour tree for each data set is the sum of the number
of minima, maxima, and saddles. With increased smoothing,
the number of labeled nodes remains the same; however, their
labels become less diverse due to merging.

TABLE 3
Data sets with critical point counts. Our algorithm labeled

the same number of critical points for each time step.
The difference in each time step lies in the number of

labels used.

Data set Minima Maxima Saddles
Foot 279298 326928 606221

Head MRI 891812 842152 1733918
Silicium 143 140 281

4.3 Discussion
As our results illustrate, our algorithm is able to isolate
interesting structures based on topological information in each
data set. The user can guide the labeling by choosing which
level of merging of labels is appropriate. While the results are
not perfect, one must keep in mind that the results illustrated
here require little input from the user and no additional
domain knowledge and can be generated with a robust and
straightforward approach.

The labeling process and transfer function creation process
is fairly responsive for most data sets and takes about one to
two seconds. On some large volumes, such as the foot, the
user must wait about four seconds to see an update from the
transfer function after choosing a time step. For the MRI data
set, this time can increase to up to twelve seconds.

4.4 Transfer Function Design
Since our topological analysis method automatically creates
a transfer function that assigns a color to voxels based on
their locations in the clustered contour tree, we believe that a

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

viable application of our technique is transfer function design.
We have compared our results with those obtained with the
transfer functions described in Weber and Scheuermann [41],
which had originally been developed by Fujishiro et al. [42].

The results of these transfer functions are shown in Fig-
ure 16. Figures 16(a) to 16(c) were generated using a transfer
function that emphasizes topologically equivalent isosurfaces.
Figures 16(d) to 16(f) use a transfer function emphasizing
regions close to critical isovalues. Our results are shown in
in a third row, in Figures 16(g) to 16(i).

The two types of transfer functions, topological equivalence
and proximity to critical isovalues, generate visualizations that
are quite similar. As expected, the latter tends to highlight
voxels that are close to or correspond to critical isovalues.
While our method makes all regions of the data opaque and
requires one to use a global opacity transfer function, these
two transfer functions automatically assign low opacity values
to regions of less relevance. Unlike our approach, however,
these custom transfer functions do not take local features into
account. For instance, our method colors different regions in
the foot based on their proximity to specific bones, as can be
seen in Figure 16(g). In Figure 16(a) and Figure 16(d), all of
the foot’s bones are colored in a similar manner. A similar
statement holds true for the MRI head and silicium data sets
where it is also difficult to isolate regions based on this type
of transfer function.

We believe that our method is useful for more general
transfer function design as it permits the definition of a transfer
function that is not globally defined. Instead, it applies color
values based on voxel location inside a contour tree, which
contains labels defining colors of different nodes. Once nodes
are clustered together and share the same color, the effective
transfer function becomes less noisy.

5 CONCLUSIONS AND DIRECTIONS FOR FU-
TURE RESEARCH

We have introduced a topological analysis method that is
designed to handle noise but does not require one to use a time-
varying topological data structure. We track topological events
during a pre-processing stage as an image is convolved with
a smoothing filter multiple times, and we use these events to
label the image’s contour tree. This labeling procedure merges
portions of the data set in an attempt to reduce the effects of
noise in the resulting visualization. Although most steps of
this process are automatic and require a user to specify only
a few parameters, we allow the user to control the level of
labeling by merging features up to a certain time step.

Our approach combines data smoothing, topological data
analysis and characterization, and interactive data exploration.
While topological data analysis is an extremely powerful
approach to understanding qualitative, structural properties
and their relationships, it is in general impossible to devise
a fully automatic method for simplifying the topology of a
given scalar-valued data set to a level of simplicity that is
meaningful and appropriate for a specific application. User
control and involvement in a smoothing-based topological data
simplification is crucial to draw proper scientific conclusions

from a complex scientific data set. We devised our method
having these objectives in mind.

One can consider various directions for improving our
approach. The transfer function generator procedure in the
volume renderer is the current bottleneck and can make the
labeling procedure slow. This function could be optimized
as it is independent from our current merging algorithm.
Additionally, one could consider finding ways to make our
tracking results independent from the order of tracking.

Besides modifying significant portions of the analysis algo-
rithm, one could allow a user to influence the merging process
directly. For instance, our system currently does not allow the
user to identify portions of the data set that are necessary or
noisy (unnecessary) portions. This feature can be implemented
via an interactive contour tree interface. It is desirable to
investigate this approach by trying to find a balance between
a fully automatic and user-controllable algorithm.

Another possibility for future research is the refinement
of our approach for noisy materials science data sets (image
data sets), which would require one to reconstruct nanoporous
metals as shown in [43]. These data sets can exhibit substantial
levels of noise, and we believe that this direction of research
might lead to additional relevant improvements and applica-
tions of our methods.

ACKNOWLEDGEMENTS

This work was supported by the Materials Design Institute,
funded by the UC Davis/Los Alamos National Laboratory
Educational Research Collaboration (LANL Agreement No.
25110-002-06), and the UC Lab Fees Research Program
Contingency Funds. In addition, this effort was supported by
the National Science Foundation through grant CCF-0702817.
We thank our colleagues from the Institute for Data Analysis
and Visualization (IDAV), Department of Computer Science,
UC Davis and Gunther Weber for providing code from his
publication [41].

REFERENCES

[1] J. Milnor, Morse theory. Princeton university press, 1963.
[2] G. Reeb, “Sur les points singuliers d’une forme de pfaff complètement

intégrable ou d’une fonction numérique,” Comptes Rendus de
l’Acadèmie des Sciences de Paris, vol. 222, pp. 847–849, 1946.

[3] R. L. Boyell and H. Ruston, “Hybrid techniques for real-time radar
simulation,” in Proceedings of the 1963 Fall Joint Computer Conference.
IEEE, 1963, pp. 445–458.

[4] H. Carr, J. Snoeyink, and U. Axen, “Computing contour trees in
all dimensions,” Computational Geometry – Theory and Applications,
vol. 24, no. 2, pp. 75–94, Feb. 2003.

[5] Y. Chiang, T. Lenz, X. Lu, and G. Rote, “Simple and optimal output-
sensitive construction of contour trees using monotone paths,” Computa-
tional Geometry: Theory and Applications, vol. 30, no. 2, pp. 165–195,
2005.

[6] V. Pascucci and K. Cole-McLaughlin, “Parallel computation of the
topology of level sets,” Algorithmica, vol. 38, no. 2, pp. 249–268, Oct.
2003.

[7] V. Pascucci, G. Scorzelli, P. Bremer, and A. Mascarenhas, “Robust on-
line computation of Reeb graphs: simplicity and speed,” in SIGGRAPH
International Conference on Computer Graphics and Interactive Tech-
niques. ACM New York, NY, USA, 2007.

[8] Y. Shinagawa, T. L. Kunii, and Y. L. Kergosien, “Surface coding based
on morse theory,” IEEE Comput. Graph. Appl., vol. 11, no. 5, pp. 66–78,
1991.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 13

(a) Emphasizing topo-
logically equivalent re-
gions, foot.

(b) Emphasizing topolog-
ically equivalent regions,
MRI head.

(c) Emphasizing topologically equivalent
regions, silicium.

(d) Emphasizing prox-
imity to critical isoval-
ues, foot.

(e) Emphasizing proximity
to critical isovalues, MRI
head.

(f) Emphasizing proximity to critical isoval-
ues, silicium.

(g) Simplified transfer
function based on clus-
tered contour tree, foot.
Time step 128.

(h) Simplified transfer func-
tion based on clustered con-
tour tree, MRI head. Time
step 320.

(i) Simplified transfer function based on clus-
tered contour tree, silicium. Time step 16.

Fig. 16. Results based on transfer function design techniques described by Weber and Scheuermann [41] and our
method. We applied an additional global opacity transfer function to these methods to match our program’s results.
The transfer functions used in Figures 16(a) through 16(c) emphasize topologically equivalent regions. The transfer
functions used in Figures 16(d) through 16(f) emphasize proximity to critical isovalues. Our method is shown in
Figures 16(g) through 16(i).

[9] M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D. R.
Schikore, “Contour trees and small seed sets for isosurface traversal,”
in Proceedings of the 13th ACM Annual Symposium on Computational
Geometry (SoCG). ACM Press, 1997, pp. 212–220.

[10] C. L. Bajaj, V. Pascucci, and D. R. Schikore, “The contour spectrum,”
in Proc. IEEE Visualization ’97, R. Yagel and H. Hagen, Eds. New
York, New York: ACM Press, Oct. 19–24 1997, pp. 167–173.

[11] H. Carr and J. Snoeyink, “Path seeds and flexible isosurfaces using
topology for exploratory visualization,” in Data Visualization 2003
(Proceedings VisSym 2003). New York, NY: ACM Press, 2003, pp.
49–58.

[12] S. Takahashi, Y. Takeshima, and I. Fujishiro, “Topological volume skele-
tonization and its application to transfer function design,” Graphical
Models, vol. 66, no. 1, pp. 24 – 49, Jan. 2004.

[13] G. H. Weber, S. E. Dillard, H. Carr, V. Pascucci, and B. Hamann,
“Topology-controlled volume rendering,” IEEE Transactions on Visu-
alization and Computer Graphics, vol. 13, no. 2, pp. 330–341, 2007.

[14] P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci, “A topolog-
ical hierarchy for functions on triangulated surfaces,” IEEE Transactions
Visualization and Computer Graphics, vol. 10, no. 4, pp. 385–396, 2004.

[15] A. Gyulassy, V. Natarajan, V. Pascucci, and B. Hamann, “Efficient
computation of morse-smale complexes for three-dimensional scalar
functions,” IEEE Transactions on Visualization and Computer Graphics,

vol. 13, no. 6, pp. 1440–1447, 2007.
[16] A. Gyulassy, M. Duchaineau, V. Natarajan, V. Pascucci, E. Bringa,

A. Higginbotham, and B. Hamann, “Topologically clean distance fields,”
IEEE Transactions on Visualization and Computer Graphics, vol. 13,
no. 6, pp. 1432–1439, 2007.

[17] D. Laney, P. Bremer, A. Macarenhas, P. Miller, and V. Pascucci,
“Understanding the structure of the turbulent mixing layer in hydrody-
namic instabilities,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, p. 1053, 2006.

[18] L. Lifshitz and S. Pizer, “A multiresolution hierarchical approach to
image segmentation based on intensity extrema,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 12, no. 6, pp. 529–540,
1990.

[19] L. Florack and A. Kuijper, “The topological structure of scale-space
images,” Journal of Mathematical Imaging and Vision, vol. 12, no. 1,
pp. 65–79, 2000.

[20] A. Kuijper and L. Florack, “The hierarchical structure of images,” IEEE
Transactions on Image Processing, vol. 12, no. 9, pp. 1067–1079, 2003.

[21] Y. Gingold and D. Zorin, “Controlled-topology filtering,” in Proceedings
of the 2006 ACM symposium on Solid and physical modeling. ACM,
2006, p. 61.

[22] A. Szymczak, “Subdomain aware contour trees and contour evolution
in time-dependent scalar fields,” International Conference on Shape

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 14

Modeling and Applications, pp. 136–144, 2005.
[23] H. Edelsbrunner, J. Harer, A. Mascarenhas, V. Pascucci, and J. Snoeyink,

“Time-varying Reeb graphs for continuous space–time data,” Computa-
tional Geometry: Theory and Applications, vol. 41, no. 3, pp. 149–166,
2008.

[24] H. Edelsbrunner and J. Harer, “Jacobi sets of multiple Morse functions,”
Foundations of Computational Mathematics, Minneapolis 2002, p. 37,
2004.

[25] B. Sohn and C. Bajaj, “Time-varying contour topology,” IEEE Transac-
tions on Visualization and Computer Graphics, vol. 12, no. 1, pp. 14–25,
2006.

[26] D. Silver and X. Wang, “Tracking scalar features in unstructured
datasets,” in VIS ’98: Proceedings of the conference on Visualization
’98. Los Alamitos, CA, USA: IEEE Computer Society Press, 1998,
pp. 79–86.

[27] J. Chen, D. Silver, and L. Jiang, “The feature tree: Visualizing feature
tracking in distributed amr datasets,” in PVG ’03: Proceedings of the
2003 IEEE Symposium on Parallel and Large-Data Visualization and
Graphics. Washington, DC, USA: IEEE Computer Society, 2003, p. 14.

[28] I. Fujishiro, R. Otsuka, S. Takahashi, and Y. Takeshima, “T-map: A
topological approach to visual exploration of time-varying volume data,”
in High-Performance Computing. Springer, 2009, pp. 176–190.

[29] P. Keller and M. Bertram, “Modeling and visualization of time-varying
topology transitions guided by Hyper Reeb Graph structures,” in Pro-
ceedings of the Ninth IASTED International Conference on Computer
Graphics and Imaging. Citeseer, 2007, pp. 15–20.

[30] S. Takahashi, Y. Kokojima, and R. Ohbuchi, “Explicit control of topo-
logical transitions in morphing shapes of 3D meshes,” in Proceedings
of the 9th Pacific Conference on Computer Graphics and Applications.
Citeseer, 2001, pp. 70–79.

[31] T. Nieda, A. Pasko, and T. L. Kunii, “Detection and classification of
topological evolution for linear metamorphosis,” The Visual Computer:
International Journal of Computer Graphics, vol. 22, no. 5, pp. 346–
356, 2006.

[32] T. Lindeberg, Scale-Space Theory in Computer Vision, 1994.
[33] H. Carr, J. Snoeyink, and M. van de Panne, “Simplifying flexible

isosurfaces using local geometric measures,” in VIS ’04: Proceedings
of the conference on Visualization ’04. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 497–504.

[34] S. Takahashi, I. Fujishiro, and Y. Takeshima, “Interval Volume Decom-
poser: A Topological Approach to Volume Traversal,” in Proceedings of
Visualization and Data Analysis 2005, 2005, pp. 103–114.

[35] Takahashi, S. and Nielson, G. M. and Takeshima, Y. and Fujishiro, I.,
“Topological volume skeletonization using adaptive tetrahedralization,”
in GMP ’04: Proceedings of the Geometric Modeling and Processing
2004. Washington, DC, USA: IEEE Computer Society, 2004, p. 227.

[36] H. Carr, T. Möller, and J. Snoeyink, “Simplicial subdivisions and
sampling artifacts,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 2, pp. 231–242, 2006.

[37] G. M. Nielson, “On marching cubes,” IEEE Transactions on Visual-
ization and Computer Graphics, vol. 9, no. 3, pp. 341–351, Jul.–Sep.
2003.

[38] H. Edelsbrunner, J. Harer, A. Mascarenhas, and V. Pascucci, “Time-
varying reeb graphs for continuous space-time data,” in SCG ’04:
Proceedings of the twentieth annual symposium on Computational
geometry. New York, NY, USA: ACM, 2004, pp. 366–372.

[39] H. Carr and N. Max, “Subdivision Analysis of the Trilinear Interpolant,”
IEEE Transactions on Visualization and Computer Graphics, vol. 16, pp.
533–547, 2009.

[40] J. C. Russ, The Image Processing Handbook, Fifth Edition. Boca Raton,
FL, USA: Taylor & Francis Group, LLC, 2007.

[41] G. H. Weber and G. Scheuermann, Automating Transfer Function Design
Based on Topology Analysis, 2004.

[42] I. Fujishiro, Y. Takeshima, T. Azuma, and S. Takahashi, “Volume data
mining using 3D field topology analysis,” IEEE Computer Graphics and
Applications, pp. 46–51, 2000.

[43] H. Rösner, S. Parida, D. Kramer, C. Volkert, and J. Weissmüller,
“Reconstructing a nanoporous metal in three dimensions: An electron
tomography study of dealloyed gold leaf,” Advanced Engineering Ma-
terials, vol. 9, no. 7, pp. 535–541, 2007.

Bernd Hamann studied mathematics and com-
puter science at the Technical University of
Braunschweig, Germany, and Arizona State Uni-
versity. Since 1995 he has been affiliated with
the University of California, Davis, where his
research and teaching efforts have focused on
visualization, geometric modeling and computer
graphics.

Mario Hlawitschka is a postdoctoral researcher
at the Institute for Data Analysis and Visual-
ization and the Department of Biomedical En-
gineering at the University of California, Davis.
He studied Computer Sciences and Electrical
Engineering at the University of Kaiserslautern,
Germany with a focus on signal processing and
visualization of tensor data and received an MSc
in Computer Science in 2004. He received his
PhD in Computer Science from the Universitt
Leipzig, Germany, in 2008 for his work on the

visualization of magnetic resonance tomography data. His current re-
search focuses on coherent structures in tensor fields, hardware-based
acceleration of visualization and simulation algorithms, topological- and
comparative visualization for various applications such as the geo-
sciences, neuroscience and neuro-surgery, and bioengineering.

Scott Dillard received the PhD degree from the
University of California, Davis in 2009. Since
2010 he has been a staff scientist at Pacific
Northwest National Laboratory in the Visual An-
alytics group, and before that he was a computer
science researcher in the Materials Design In-
stitute at Los Alamos National Laboratory work-
ing in collaboration with the Institute for Data
Analysis and Visualization (IDAV) at UC Davis.
His research interests include computer graph-
ics and visualization, computer vision, computa-

tional geometry and topology.

Sohail Shafii received his bachelor’s degree
from University of California, Davis in 2006. He
is currently a Computer Science PhD student at
University of California, Davis, working for the In-
stitute for Data Analysis and Visualization (IDAV)
and Los Alamos National Laboratory (LANL).
His research background consists of visualiza-
tion, computer graphics, point cloud processing,
topology, and feature detection.

