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Abstract This chapter introduces a novel method for vortex detection in flow fields

based on the corotation of line segments and glyph rendering. The corotation mea-

sure is defined as a point-symmetric scalar function on a sphere, suitable for direct

representation in the form of a three-dimensional glyph. Appropriate placement of

these glyphs in the domain of a flow field makes it possible to depict vortical fea-

tures present in the flow. We demonstrate how topological analysis of this novel

glyph-based representation of vortex features can reveal vortex characteristics that

lie beyond the capabilities of visualization techniques that consider vortex direction

and magnitude information only.

1 Introduction

The extraction and visualization of vortical features, such as vortex cores, has a

long and successful history in fields such as aerodynamics. As new vortex defini-

tions emerge, their visualizations are able to convey more characteristics associated

with vortices. While the visualization of individual vortex cores by means of core

line or hull extraction is successful in illustrating vortex direction and extent, it is

limited in its capability to visualize more complex interactions between vortical

features. We take advantage of a relatively new vortex descriptor, based on the con-

cept of local corotation [1], to create a glyph-based visualization. This shape-based

representation is an encoding of a spherical function that denotes strength of local

corotation for arbitrary directions in space, and allows for the examination of vor-

tices by means of a topological analysis. Automatic extraction and visual analysis
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of maxima and corresponding topological regions in this representation provides

insight into possible splitting or merging behavior.

This chapter is structured as follows. We first provide a summary of related work

(Section 2) and analyze residual vorticity as a measure of local corotation (Section

3). Topological analysis of the created glyphs is presented in Section 4. We conclude

by visualizing and analyzing two data sets.

2 Related Work

The work presented in this chapter spans the areas of glyph rendering and vortex

visualization with a focus on analysis of topology. In the following we give a brief

summary of related literature in these fields.

Vortex Extraction

Volumetric vortex features in flow fields may be extracted by a number of different

vortex classifiers, such as the Q-criterion [2], the ∆ -criterion [3, 4, 5] or the λ2-

criterion [6]. Kolář [7] introduced a residual vorticity method that not only removes

the effects of shear by using the triple decomposition of the velocity-gradient tensor,

but is also applicable to compressible flow fields. A similar paper by Kolář et al. [1]

derived a simplification of this method using the corotation of line segments, which

is the method that we discuss in this chapter. Since region-based methods do not

readily create global vortical features, many have developed line-based techniques

as an alternative. Examples are based on the parallel vectors operator [8], eigenvec-

tor analysis [9, 10], pressure-based predictor corrector schemes [11, 12, 13], ridge

extraction [14, 15], or variations thereof [16, 17, 18, 19]. Note that isosurface and

medial-axis based representations allow for the visualization of complex vortex be-

haviors such as splitting. For a summary of various vortex detection methods, we

refer to Post et al. [20] and Jiang et al. [21].

Vortex Visualization

The visualization of vortical features is mainly based on isosurfaces, line-like fea-

tures from predictor-corrector, and skeleton or ridge extraction techniques [12].

Others [22, 23] use (flow) surface or voxel visualization techniques to verify and

illustrate vortex cores. Topological analysis and visualization of vortex structures in

combination with volume rendering was performed by Tricoche et al [24].
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Glyph Visualization

Glyphs, such as superquadrics [25], are frequently used to encode relevant quantities

in vector [26, 27] and tensor fields [28]. Especially in medical visualization, topo-

logical properties of tensor glyphs are helpful to identify salient features in the data,

such as fiber crossings in DW-MRI data [29, 30]. These glyphs can be rendered

as discrete meshes or, using modern graphics hardware, be ray-traced [31, 32]. A

survey of gylph-based visualization techniques is discussed by Borgo et al. [33].

Our work introduces spherical glyphs as a novel approach to corotation-based vor-

tex visualization. Topological features of these glyphs are evaluated and classified

automatically to provide the means for a robust analysis of rotational properties and

topological characteristics in vortical features. While previous vortex extraction ap-

proaches indicate the strength and directional components of vortices, they do not

indicate all possible vortex directions that may exist at a point in a data set. Our

glyphs provide a visual representation of vortex axes besides the dominant one that

exists at a vortex, as that may indicate branching or merging behavior.

3 Corotation on a Sphere

The extraction of vortex cores relies on the availability of robust mathematical mea-

sures of flow rotation. In this work we investigate topological features of glyphs

that are derived from a novel rotation measure known as local corotation or residual

vorticity, as described in the following sections.

3.1 Physical Interpretation

Given a point p ∈ R
3, the classic vorticity vector has two main properties. First,

its direction corresponds to the normal of the plane along which two arbitrary line

segments exhibit the maximal average angular velocity in the flow field [7]. Second,

its magnitude represents twice the angular speed of the average rotation of these line

segments. Residual vorticity [1], on the other hand, makes use of a similar physical

interpretation with one significant difference: The residual vorticity vector is normal

to the plane with maximal local corotation of line segments in a plane at p, for all

possible planes at p. Instead of maximizing an average rotation speed, the residual

vorticity technique maximizes a minimal common rotation speed. The difference

of these two concepts is depicted in Figure 1. Note that this alternative notion of

rotation reduces the effect of strain and shear components on the computation of

rotation directions.
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Corotation Contrarotation
p

Max Average

Min(Min)

p

Average

Fig. 1 An illustration of corotation and contrarotation of two line segments at a point p, based on

Figure 1 from Kolář et al. [1]. “Max” is the maximal rotation speed, while “average” and “min” are

average and minimum rotational speeds in the corotation example, respectively. On the left we have

corotation, where residual vorticity is the least absolute value angular velocity of the line segments

shown (min). Average is just ordinary vorticity for both cases. Vorticity is still proportional to the

average of all rotation speeds in the contrarotation example, which does not correspond to physical

rotation in the plane.

3.2 Local Corotation

The fact that residual vorticity is evaluated by maximizing local corotation over

all possible plane orientations in 3D space makes it possible to analyze rotation

in directions that do not correspond to the orientation with the globally maximal

corotation. In the following we establish the mathematical background by describing

how local corotation is defined for arbitrary orientations in 3D space.

Given a position p∈R
3 in a velocity field f :R3 →R

3 with local gradient ∇ f and

an arbitrary orientation v(α,β ) = (cos(α) · sin(β ),sin(α) · sin(β ),cos(β )), quasi-

planar residual vorticity as a measure of local corotation [1] is defined as:

ωres(α,β ) = sign(ω(α,β ))(|ω(α,β )|− |sD(α,β )|), (1)

where ω and SD are the two-dimensional vorticity and deviatoric strain on the plane

with normal v. Additionally, if |ω | ≤ |sD| then ωres = 0. Two-dimensional vorticity

and deviatoric strain are computed as follows.

The quasiplanar effects of the velocity gradient tensor on an arbitrary plane with

normal v is obtained by projecting the three-dimensional velocity gradient tensor

into a two-dimensional coordinate frame orthogonal to v:

∇ f ∗ =





cos(α) · cos(β ) −sin(α)
sin(α) · cos(β ) cos(α)

−sin(β ) 0





T

∇ f





cos(α) · cos(β ) −sin(α)
sin(α) · cos(β ) cos(α)

−sin(β ) 0





. (2)

With this two-dimensional velocity gradient tensor, quasiplanar vorticity and de-

viatoric strain are defined as:

ω =
∇ f ∗21 −∇ f ∗12

2
and SD =

√

(∇ f ∗11 −∇ f ∗22)
2 +(∇ f ∗12 +∇ f ∗21)

2

2
(3)

As a result, local corotation in the form of residual vorticity can be defined for

all positions v on a unit-sphere, with corotation scalar magnitude representing the
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minimal common angular rotation of line elements on a corresponding plane. In the

following we visualize and analyze the spherical function given by ωres.

4 Corotation Visualization and Topological Features

The fact that ωres is capable of not only revealing the direction with maximal rota-

tion, as commonly used for vortex core extraction, but the amount of rotation present

in other directions in space makes it a prime candidate for detailed rotation analysis.

We now discuss how we visualize the corotation function using spherical glyphs,

and explain the various topological properties of these shapes.

4.1 Glyph Creation

Since positions on a unit sphere encode all possible orientations in 3D space, the

complete domain of ωres can be visualized by modifying such a spherical repre-

sentation. Note that the spherical function ωres may in theory be approximated as

a higher-order tensor, allowing the application of existing glyph generation tech-

niques, such as the one specified by Schultz and others [29, 30]. Such an approxi-

mation, however, is outside the scope of this chapter. The spherical meshes used in

this work are created using icosahedron subdivision, as the resulting triangles of this

mesh have equal areas and are suitable for easy level-of-detail control as shown by

Schultz and Kindlmann [34]. Unlike a triangulation based on spherical coordinates,

these triangles do not become distorted around the poles of the sphere.

Fig. 2 Example of a spherical glyph, where its vertices are offset at positions where the corotation

scalar magnitude is larger than zero. The arrows in the figure indicate where these non-zero values

exist, while the base sphere (which corresponds to zero) is drawn with a dashed line. The colormap

of the glyph varies from blue (weak corotation) to red (strong corotation).

A depiction of a spherical glyph is shown in Figure 2, where corotation values are

indicated by offsetting vertices of a unit sphere along the normal according to the

local magnitude of ωres. For this purpose, we first convert the Cartesian coordinates

of each mesh vertex (relative to the center of the sphere) into a spherical coordinate

representation, obtaining azimuthal and polar angles α and β , respectively. Next, we
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compute the mesh offset as the corotation scalar magnitude for the angle pair (α,β ),
and normalize the offset based on the range of corotation values over the entire

sphere. We choose this type of local offset normalization over a global data-set-wide

normalization, since exceptionally strong vortical features in flow simulations tend

to lead to an unbalanced scaling. The offset value used per angle pair is the absolute

value of ωres, as we are interested in highest values of corotation magnitude that

exist on the sphere.

4.2 Glyph and Function Properties

The scalar residual vorticity function and the resulting glyph representation have

many interesting characteristics, some of which influence the applicability of topo-

logical methods as described in the next section. The ωres function that defines the

glyphs is specified in the domain [0,π ] for the angles α and β , and is periodic be-

yond that domain. As a result, the spherical glyph is point-symmetric with respect

to its center, meaning that each extremum exists twice.

The variable behavior of the gradient magnitude of residual vorticity can of-

ten make the glyph-based representation difficult to predict. As a consequence, the

shape of maximal regions in a glyph can vary strongly, and can include nearly flat

regions with small gradient values, and peaks with extreme gradients. In addition,

the use of absolute value and sign operators in the computation of residual vortic-

ity introduces discontinuous derivatives. This can be observed in the form of C0

continuous regions in glyph shapes. Large regions of the function may be zero, for

directions where the field is not rotating, or deviatoric strain exceeds quasiplanar

vorticity.

In general, i.e., when the flow field is not irrotational, ωres has at least one max-

imum pointing along the direction of maximal rotation (two opposing maxima on

the glyph representation). There are, however, multiple cases when additional lo-

cal maxima can occur. The analysis of glyph topology with respect to the number

of maxima present and shape characteristics of the corresponding topological re-

gions can aid in understanding vortical features in the data set as described in the

following section.

4.3 Topological Analysis of Individual Glyphs

The analysis of the topological properties of the glyph has the potential to indicate

the existence of one or multiple related vortex directions. For instance, a glyph with

two (opposing) peaks with two associated topological regions indicates that there

is a vortex that runs through the center of the glyph, with the axis of the vortex

being parallel to those peaks. Peaks that are associated with larger and less sharp

topological regions indicate multiple rotation directions with a less distinct vortex
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core direction. If a glyph has additional maxima, then there exist additional vortex

directions at those positions of the glyph, especially if the additional peaks are large

relative to other peaks that exist. In the following we discuss methods for topological

analysis of these glyphs and provide details about a sample implementation.

As mentioned in the previous section, the ωres function and therefore the topol-

ogy of the glyph shape may contain multiple local maxima. This property, coupled

with the lack of C1-continuity, precludes us from finding the maxima analytically.

Furthermore, it is difficult to perform gradient ascent on this function because of

the existence of sharp ridges (due to a discontinuous gradient), and because an ωres

function for a given ∇ f tensor may have multiple maxima. In the latter case, it is

challenging to find an appropriate seed point for gradient ascent that gives us the lo-

cation of the global maximum. An alternative to finding a maximum explicitly could

be based on ray-tracing, which is often used to represent the shape of a glyph. While

it is possible to ray-trace the glyph in order to examine the topology of the glyph

in image space, one will require a high-resolution image to make this analysis work

and the analysis would be view-dependent. For these reasons, we employ an ap-

proximation of topological structures by directly examining the glyph meshes. One

possible solution is to find local ωres maxima within a neighborhood of the mesh.

Unfortunately, it is difficult to perform such a maxima search with fixed neighbor-

hood sizes due to the possible existence of high frequency features in the mesh.

We employ a watershed approach [35] instead, which effectively propagates the

labels of maxima to other mesh vertices. We first sort all of the vertices of the mesh

by function value, and identify the first vertex as a labeled maximum. As we move

along the sorted list, we effectively move downwards in corotation value and iden-

tify vertices or “nodes” which are adjacent to labeled regions and which propagate

those labels, or vertices where new maxima come into existence. We also track the

merging behavior of regions with different labels by creating saddle points, which

are assigned the label of the maximum with the largest ωres value. We identify re-

gions with nearly identical function values, or “plateaus,” and treat these regions as

single nodes during the labeling process. If there are multiple maxima connected

via a large plateau, the plateau receives the label of the largest maximum and ef-

fectively connects it to the other maxima. After the watershed algorithm is com-

pleted, we create watershed graphs, which are similar to the “split trees” defined by

Carr et al. [36]. We can filter the maxima of this tree that result from sampling arti-

facts, and color resulting descending manifolds of a glyph. An example of a glyph,

and its corresponding unfiltered and filtered trees are shown in Figure 3.

4.4 Topological Analysis of Multiple Glyphs

If multiple glyphs are positioned along a grid of a flow field, one can observe how

their topological regions change as the field is traversed. In order to detect these

changes, we first identify canonical glyph examples of various topologies that exist

in the test data sets used in this chapter. In Figure 4, we show these glyphs, and
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(a) Unfiltered glyph. (b) Filtered glyph.

0

0

1 2 3

(c) Unfiltered watershed tree.

0

0

1

(d) Filtered watershed tree.

Fig. 3 Example of a glyph 3(a) along with its normal watershed tree 3(c), and the corresponding

“filtered” representations 3(b) 3(d). The unfiltered versions contains small peaks, which include

the diminutive, teal-colored maximum close to the center of the glyph in 3(a) and other (hidden

from view) maxima. All maxima are connected to a large plateau (base icosahedron sphere). In the

filtered versions, we removed small branches of the tree corresponding to these spurious maxima

and subsequently recompute the topological regions.

discuss how it is possible to have glyphs with well-defined or ambiguous directions

for two or four peaks. Since the corotation function is symmetric, values beyond the

domains [0,π ] for α and β are repeated in the graphs for this figure.

In Figures 4(a), 4(c), 4(e) and 4(g), we show visualizations and plots of large

topological regions for two and four peaks, respectively. Each peak in these cases

indicates multiple directions with strong rotations in large areas of the sphere. This is

in stark contrast to Figures 4(b), 4(d), 4(f) and 4(h), where the pronounced peaks in-

dicate unambiguous vortex directions for the two and four peak cases, respectively.

It is notable how this glyph representation allows for the analysis of rotation in

multiple directions, a feature that is not possible in classic direction and magnitude-

based vortex visualizations.

Glyphs are likely to have two peaks that point along the forward and backward di-

rections of the vortex core’s axis at certain positions along a vortex core line, as seen

in Figure 4(a) and 4(b). In other cases, glyphs might have four peaks (Figures 4(c)

and 4(d), indicating multiple orientations with maximal corotation. If the number

of topological regions along a vortex increases from two to four, more vortex direc-

tions will start to appear. If two of the glyph’s four peaks begin to wane, then the

remaining two peaks will indicate dominating vortex directions. Additionally, the

widening or narrowing of individual topological regions indicate an increasing or

decreasing number of vortex directions in the region of each peak, respectively.
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(a) Two large topologi-

cal regions.

(b) Two small topolog-

ical regions.

(c) Four large topolog-

ical regions.

(d) Four small topolog-

ical regions.

(e) Two large topological regions. (f) Two small topological regions.

(g) Four large topological regions. (h) Four small topological regions.

Fig. 4 Visualizations of various types of glyph topologies that we have observed, as well as their

corresponding graphs (where the range of scalar corotation values is indicated by a color gradient

of black to yellow). The corotation function is periodic, which explains why the visualizations and

graphs portray symmetry. One can see that there may exist multiple directions with strong rotation

close to the maximal corotation values in 4(a) and 4(e), while in 4(b) and 4(f) the maximum point

is unique. Similarly, we observe four large topological regions in 4(c) and 4(g), while we observe

sharp, unambiguous peaks in 4(d) and 4(h).
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5 Results

We have used our rendering technique to observe the topological behaviors of

glyphs in our data sets. Our data sets include the “Blunt Fin” [37] and a von Kármán

vortex street. The blunt fin data set is represented by a 40x32x32 structured curvi-

linear grid, while the vortex street is represented by a 167x34x34 structured curvi-

linear grid. The glyphs rendered are scaled based on the dimensions of the data set

cell that they reside in. In these visualizations, topological regions are assigned in-

dividual colors. Sampled glyphs are excluded assuming their individual corotation

ranges did not exceed a pre-specified threshold value.

5.1 Blunt Fin

We rendered our glyphs by uniformly sampling the data set as seen Figure 5. In

Figures 5(b) and 5(c), one can see that the many four-peak glyphs reside next to their

two-peak counterparts. In 5(d) and 5(e), we observe more instances of four-peak

glyphs. The presence of this type of glyph indicates additional vortex directions that

exist at this position. A standard vortex core line extraction technique only portrays

the dominant vortex axis per point. In the future we hope to employ a sophisticated

extraction technique to portray splitting or merging behaviors that could be related

to these additional vortex directions.

5.2 Von Kármán Vortex Street

We visualized glyphs in the Von Kármán Vortex Street data set by uniformly sam-

pling the grid as seen in Figure 6 . We observed glyphs near five stable vortex regions

parallel to the y-axis of the data set, and the glyphs’ peaks are aligned with the y-axis

as we expected. Most of the glyphs’ topologies are similar to their neighbors, and

they mostly point in the same direction. This indicates a lack of additional vortex

directions per glyph, a behavior that was present in the Blunt Fin data set.

6 Conclusions and Future Work

In this work we have introduced glyph-based visualization of corotation-based vor-

tices. We have shown how topological analysis of these glyphs both visually and

in an automatic fashion can reveal complex vortex behaviors, such as interactions

between rotational components present in a single core. In the future we hope to

represent the corotation function using multiple levels of detail in order to sample

the function more effectively, and investigate how one can extract glyphs in time-
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(a) Overall visualization of Blunt Fin vortex cores and glyphs.

(b) Close-up view of a Blunt Fin core with

peaks identified.

(c) Close-up view of a Blunt Fin core with

corotation colormap.

(d) Close-up view of a Blunt Fin core with

peaks identified.

(e) Close-up view of a Blunt Fin core with

corotation colormap.

Fig. 5 Visualization of glyphs sampled uniformly in the Blunt Fin data set. The vortices in this

data set are parallel with the blunt fin boundary and are parallel with the longest dimension of the

data set. A visualization of most of the glyphs is shown in 5(a). The first close-up visualization

is shown in 5(b) and 5(c), where there exist many glyphs that possess four peaks. Figures 5(d)

and 5(e) show more four-peak glyphs.
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(a) Overall visualization of von Kármán glyphs.

(b) Close-up view of a von Kármán

glyphs, with peaks identified.

(c) Close-up view of a von Kármán

glyphs, with corotation colormap.

Fig. 6 Visualization of glyphs sampled uniformly in the von Kármán vortex street, as visualized

in 6(a).A close-up view of various glyphs is shown in 6(b) and 6(c), which show that there exist

glyphs that correspond to the canonical “two-peak” examples that mostly point along a uniform

direction.

dependent flows as the current method applies to discrete time steps. Furthermore,

we hope to visually represent vortex core splits and merges in conjunction with the

glyphs to investigate a possible relationship between the two.
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