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Abstract. We propose a topology-based segmentation of 2D symmet-
ric tensor fields, which results in cells bounded by tensorlines. We are
particularly interested in the influence of the interpolation scheme on
the topology, considering eigenvector-based and component-wise linear
interpolation. When using eigenvector-based interpolation the most sig-
nificant modification to the standard topology extraction algorithm is
the insertion of additional vertices at degenerate points. A subsequent
Delaunay re-triangulation leads to connections between close degener-
ate points. These new connections create degenerate edges and trian-
gles. When comparing the resulting topology per triangle with the one
obtained by component-wise linear interpolation the results are qualita-
tively similar, but our approach leads to a less “cluttered” segmentation.

1 Introduction

Generally tensor fields are not easy to understand owing to their complexity.
Segmentation into regions of similar directional behavior offers a way to extract
the essential structure of the field. A segmentation based on tensor field topology
guarantees that all significant structural irregularities are captured. We build on
the basic work by Delmarcelle et al. [5], which introduces tensor field topology
to visualization, and the further advancement by Tricoche et al. [17], with the
goal of a more complete segmentation. In contrast to previous work we con-
sider the topological structure of both eigenvector fields as a whole. As both
eigenvector fields are orthogonal the topological graphs deliver a descriptive cell
structure bounded by tensorlines. The field in the neighborhood of degenerate
points of the combined topology is characterized by “half-sectors” instead of
“sectors” and allows a more general structure. The second focus of our work
is the influence of the chosen interpolation. Dealing mostly with discrete data
interpolation is an essential step in the visualization process. In order to keep
our method simple, we consider only piecewise linear methods defined in a tri-
angulated domain. Besides using the standard component-wise interpolation,
we introduce an eigenvector-based approach. This method minimizes the num-
ber of eigen-analysis by restricting it to mesh vertices and supports an exact
integration of tensorlines. By decoupling “shape” and “direction” we achieve
a shape-preserving interpolation. Introducing new vertices at degenerate points



and re-triangulating the domain leads to a simplified global topological structure
without any modifications to the initial tensor field.

Our algorithm is designed to be simple and to follow clear rules. The algo-
rithm consists of the following major steps: Eigenvector analysis at the vertices;
edge labeling to ensure consistent direction interpolation; localization of degener-
ate points in each triangle and insertion of new vertices; determination of radial
directions for both eigenvector fields; classification of the half-sectors defined by
radial lines; integration of separatrices, and finally generation of a segmentation
as intersection of the dual tensor field topologies.

2 Related Work

Most existing tensor field visualization methods are either specific to diffusion
tensor fields or mechanical engineering applications, the latter being the focus of
our work. The needs of domain experts in the area of diffusion tensor fields are
well-defined as opposed to the lack of specific questions with respect to the ten-
sors used in mechanical engineering. This difference in the driving force strongly
reflects on their respective tensor field visualization techniques. Direct tensor vi-
sualization approaches focus on displaying tensor values in selected points. In this
context research issues usually deal with the definition and placement of glyphs.
Commonly used glyphs are, e.g., ellipsoids, Haber glyphs [7], or superquadrics [9],
with improved perceptional properties. Different placement strategies are used
to maximize the information displayed per image [6, 11]. While glyphs are ap-
propriate for displaying single tensors, they are limited to low resolution and fail
to give insight into the structure of the entire field. A more continuous view of
2D fields can be obtained by using tensor splats [3] or textures based on line
integral convolution [8, 19]. The idea of using topological methods to analyze
the structures of tensor fields goes back to Delmarcelle [5] and Lavin et al. [12].
Tricoche et al. [17] improvised these ideas for applications of complex 2D tensor
fields, by developing algorithms to simplify the tensor topology and to track it
over time. Alliez et al. [2] proposed an application to curvature tensors for polyg-
onal remeshing of surfaces. First analysis of tensor field topology 3D tensor fields
shows that in 3D degenerate features form lines [20].

In a similar vein, we investigate the influence of different interpolation meth-
ods on the topology extraction process and the resulting topological structure.
Traditionally the component-wise linear interpolation has been used on tensor
fields. However, this interpolation generates artifacts, e.g., the swelling effect.
In an effort to alleviate these artifacts, methods separating direction and shape
interpolation have gained more attention lately. In context of diffusion MRI data
some direction-based interpolation methods based have been proposed for trac-
ing anatomical fibers, [4, 10, 13]. Several other advanced interpolation methods
based on components have been developed to achieve noise reduction or feature
preservation [1, 14, 18]. The emphasis of our interpolation method is to provide
a simple and consistent method, based on eigenvectors and eigenvalues, with a
focus on the behavior in the neighborhood of degenerate points.



3 Basics and Notations

3.1 Tensors and Tensor Fields

In the rest of the paper, we will refer to symmetric 2D tensors of second order,
defined on a triangulated 2D domain, as tensor field. Using a fixed coordinate
basis, each tensor T can be expressed as a symmetric 2 × 2 matrix, given by
three independent scalars. We use the following notation

T =
(

d + ∆ F
F d−∆

)
. (1)

T is fully represented by its eigenvalues λ and µ and corresponding eigenvectors
↔
v and

↔
w. Since the multiplication of an eigenvector by any non-zero scalar yields

an additional eigenvector, eigenvectors should be considered without norm and
orientation. For symmetric tensors, the eigenvalues are real and the eigenvec-
tors are mutually orthogonal. Integrating the eigenvector fields results in two
orthogonal families of continuous curves. These curves are called major (red)
and minor (blue) tensorlines according to the eigenvector field integrated.

Usually the tensor data-sets represent a discretized tensor field, whose geom-
etry is represented by a triangulated mesh. Inside a triangle with vertices P1, P2,
and P3 we use barycentric coordinates β = (β1, β2, β3). The edge opposite vertex
Pi is named ei, for i = 1, 2, 3. We use

↔
v and

↔
w when referring to eigenvectors to

allude to the fact that the eigenvectors are bidirectional. We use v and w when
referring to vectors representing normalized eigenvectors with an arbitrarily but
fixed direction, e.g., when using the results of the numerical computation. The
direction of w is defined in such a way that v and w form a right-handed system.
We assign the names λ and µ, such that always λ ≥ µ.

3.2 Tensor Field Topology

Similar to vector fields, the structure of eigenvector fields is represented by its
topology. It defines a skeleton consisting of distinguished points, so called de-
generate points, and connecting edges, the separatrices. This skeleton segments
the domain into regions with characteristic tensorline behavior. In contrast to
previous work we do not look at the topology of each eigenvector field separately
but consider both topologies as a whole. In the following we resume the basics
of tensor field topology, concentrating on the aspects that we need later on. For
a more detailed discussion we refer the reader to [5, 16].

Degenerate points - Degenerate points are points where the two eigenval-
ues are identical λ=µ, and the eigenvectors are no longer defined uniquely. The
tensor is proportional to the identity matrix and all vectors are eigenvectors.
Degenerate points in tensor fields correspond to critical points in vector fields.
Due to orientation indeterminacy of tensorlines, these points exhibit structures
different from those seen in vector fields. A condition for degeneracy of a point is



∆=0∧F =0. Independent of the eigenvalues, an isolated degenerate point can be
categorized by the number of windings an eigenvector performs when encompass-
ing it on a closed curve. The undirected eigenvector field allows winding-numbers
to be multiples of one half. Only simple degenerate points (winding-number of
± 1

2 ) can exist in a tensor field, defined by linear interpolation of its components.

Separatrices - The behavior of the tensorlines in the vicinity of degenerate
points follows certain characteristic patterns, with respect to a characteristic
composition of basic sectors, explained further in Section 5.4. These sectors are
separated by distinguished tensorlines, which enter the degenerate point radi-
ally. Radial tensorlines bounding hyperbolic sectors are called separatrices and
constitute the edges of the topological graph.

4 Eigenvector-based Interpolation

The definition of tensor field topology is based on continuous data and hence we
rely on an interpolation of the available discrete data. The standard interpolation
is linear in tensor components. Instead we propose the use of an interpolation
based on eigenvectors and eigenvalues, see Figure 1. This method minimizes the
number of eigenvector computations. The interpolation is defined such that the
resulting topology per triangle is qualitatively the same as for component-wise
interpolation, see Figure 3. The main steps of this interpolation are: edge la-
beling, location and insertion of degenerate points, subdivision of triangles, and
vector interpolation.

Assignment of directions to eigenvectors - edge labeling
Using vectors for the interpolation we first have to assign orientations to the
eigenvectors to specify the interpolation uniquely. Doing so we have to consider
the fact that not all structures occurring in tensor fields can be simulated by
global vector fields, e.g., winding numbers of half integers. Thus a consistent
global orientation of the eigenvector field is not possible. Therefore we keep the
arbitrarily directed eigenvectors at vertices as generated by numerical computa-
tions and only encode relative directions between neighboring vertices using edge
labels. For the label definition we follow the eigenvector behavior given by the
component-wise interpolation. When moving from point Pi to Pj the absolute
value of the rotation angle of the eigenvectors is limited to π/2. The direction of
the rotation is given by the value Fj∆i−Fi∆j . If the value is equal to zero, then

Fig. 1. Comparison of interpolation methods: left: eigenvector-based (shape preserv-
ing), right: component-based.
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Fig. 2. Triangle (a) without and (b) with degenerate point, edge labels indicate whether
two adjacent eigendirections match. (c) The location of a D is well-defined if the three
lines connecting the vertices and their opposite points intersect in one point.

either both eigenvectors are the same or they encompass an angle of π/2 and
the rotation direction is undetermined. Then there exists a degenerate point on
the edge. The edge label of an edge ek with endpoints Pi and Pj is defined as:

l(ek) =


1 if the directions of vi and vj match the direction propaga-

tion, meaning vi · vj > 0,
−1 if the directions of vi and vj do not match the direction

propagation, meaning vi · vj < 0,
0 if there exists a degenerate point on the edge, vi · vj = 0.

The existence of a degenerate point inside a triangle Pi, Pj , Pk with edges ei,
ej , ek, is directly related to the product of its edge labels, see Figure 2. It is:

3∏
i=1

l(ei) =

 1 no degenerate point in triangle,
-1 one isolated degenerate point in triangle,
0 there is a degenerate point on at least one of the edges.

(2)

If there exist two edges with degenerated points, we have a degenerate line. If
there are three degenerate edges, the entire triangle is degenerate.

Interpolation in triangles without degenerate point
The tensor in point P (β), β = (β1, β2, β3), which are the barycentric coordinates
of point P inside a triangle P1, P2, P3 is defined by its eigenvectors v and w,
which are not normalized, and eigenvalues λ and µ given by

v(β) = β1v1 + β2l(e3)v2 + β3l(e2)v3,
w(β) = β1w1 + β2l(e3)w2 + β3l(e2)w3,

λ(β) =
3∑

i=1

βiλi, and µ(β) =
3∑

i=1

βiµi.
(3)

Interpolation in triangles with degenerate point
In such triangles it is not possible to define a continuous vector field represent-
ing the tensor field structure. However, we can resolve this problem by inserting
an additional vertex D at the degenerate point and subdividing the triangle to
triangles without interior degenerate point. To determine the eigenvalue at D



we linearly interpolate the mean eigenvalue d = (λi + µi)/2 in the original tri-
angle and set the deviator ∆ = (λi − µi)/2 to zero. Thus we can reconstruct
the triangular domain by using piecewise linear interpolation in the subdivided
domains. The tensor at point D is defined as a multiple of the unit tensor. The
eigenvectors at D are set to zero, in correspondence to vector field singulari-
ties. Each new triangle with vertices Pi, Pj , D is interpolated separately. With
P (β) := βiPi + βjPj + βkD, (cyclic indices) eigenvalues and eigenvectors are
interpolated using Equation 3. The resulting eigenvectors are independent from
the coordinate βk.

5 Topology Extraction

The basic steps for extracting topology are: location and classification of degen-
erate points, determination of separatrix directions, and their integration. We
restrict this section to eigenvector-based interpolation; we refer readers to [5, 16]
for further details on linear component-wise interpolation. The main difference
between the two interpolation schemes is caused by the triangle subdivision. All
degenerate points lie on vertices with piecewise linear behavior in the vicinity
and can exhibit structures different from trisector and wedge points.

5.1 Location of Degenerate Points

Since degenerate points at vertices can be detected easily, this section is restricted
to triangles without degenerate vertices. Initially, we also assume that there is no
degenerate point along edges, and thus from Equation 2, the edge label product
has to be -1. We define the location of the degenerate point exclusively dependent
on the eigenvector field. Starting with a linearly interpolated eigenvector field
on the edges ei with endpoints Pk and Pj , i, j, k ∈ {1, 2, 3} cyclic, we compute

v(t) = (1− t) · vj + t · l(ei) · vk, t ∈]0, 1[. (4)

Even though the resulting vector field v on the boundary may not be continu-
ous at all vertices, the corresponding un-oriented direction field

↔
v is. It defines a

D1
DD2

D1

D2

(a) (b) (c)

P(trv)
v(trv)

Fig. 3. Interpolation comparison in one triangle: Degenerate points D1 from
component-wise, D2 from eigenvector-based interpolation, in the case of (a) trisector,
and (b) wedge point. (c) Radial tensorline entering degenerate point D.



continuous rotation angle varying from zero to ±π. The intermediate value the-
orem implies that for each vertex a parameter ti ∈]0, 1[, i=1,2,3, exists such that
vi · v(ti)=0. Thus, for every vertex there exists a point on the opposite edge,
called opposite point of the vertex, with rotation angle ±π/2 with degenerate
point on its connection. The parameters ti are given by

vi · ( (1− ti)vj + l(ei)tivk ) = 0, (5)

where i, j, k ∈ {1, 2, 3} are cyclic indices. This leads to the following definition:
The location of the degenerate point is defined as the intersection of the connec-
tions of triangle vertices to their opposite points, see Figure 2(c)
It can easily be seen that the point D is well-defined. From the definition of ti
in Equation 5, it follows t1t2t3 = (1− t1)(1− t2)(1− t3), which is the condition
that three lines connecting the vertices to points on the opposite edge, defined
by parameters ti, intersect in one point. For degenerate points on edges the three
connecting lines degenerate to a line. In this case we use the eigenvalues at the
vertices to determine the degenerate point.

5.2 Non-isolated Degenerate Points

Two degenerate vertices connected by an edge gives a degenerate line. The result-
ing eigenvector field inside adjacent triangles is constant and does not contribute
to the final structure. Similarly a degenerate triangle, where all vertices are de-
generate points, is enclosed by three triangles with constant eigenvector field.
Thus from a structural point of view it is enough to consider the vertices of the
degenerate entity and ignore the connecting edges. It is not uncommon to see
degenerate polylines when applying a subsequent Delaunay re-triangulation.

5.3 Determination of Radial Directions

The neighborhood of the degenerate point is characterized by segments separated
by radial tensorlines. For linear eigenvector interpolation, radial tensorlines are
straight lines and are determined by their intersection P (tr) with the edges of
adjacent triangles, see Figure 3. For each edge of the triangle,

v(trv)× (P (trv)−D) = 0, w(trw)× (P (trw)−D) = 0, trv, trw ∈ [0, 1]. (6)

trv and trw specify the radial directions for the eigenvector fields v and w re-
spectively. In contrast to component-wise interpolation, where radial directions
are given by one cubic equation, we obtain one quadratic equation per edge and
per eigenvector field. If not trivially fulfilled this leads to a maximum of two
solutions per edge and eigenvector.

5.4 Sector Classification

For the skeleton computation only radial lines, which are boundaries of hyper-
bolic sectors, are relevant. In the case of component-wise interpolation a point
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Fig. 4. The neighborhood of a degenerate points is characterized by a number of half-
sectors with specific behavior.

classification into trisector or wedge points serves as basis for the classification.
To cover all possible cases of degenerate points, for piecewise linear behavior, we
built on an immediate sector analysis similar to [17]. In contrast we classify “half-
sectors”, as we consider the topology of both eigenvector fields together. These
are radial segments enclosed by two neighboring radial directions, independent
of the eigenvector field, either red or blue, see Figure 4.

Hyperbolic sector - bounded by one red and one blue radial line: tensorlines
approach, sweep past the degenerate point and leave the sector through one
bounding radial line.

Parabolic sector - bounded by two radial lines of same color: all tensorlines, of
this color, start from the degenerate point and then diverge. The tensorlines
of the other color enter and leave the sector through bounding lines.

Fig. 5. A close-up of sector classification for the one-point load data-set using linear in-
terpolation of eigenvectors, with (left) and without (right) subsequent re-triangulation.
Shaded regions show the sectors: green and yellow for non-hyperbolic and hyperbolic,
respectively; red and blue lines show radial lines, which are not integrated; black points
and lines are the degenerate points and lines.



Elliptic sector - bounded by one red and one blue radial line: the tensorlines
start from the degenerate point, and leave the sector through one of the
bounding lines.

To classify the sectors the rotation angle of the eigenvectors ∆α is compared to
the opening angle of a half-sector ∆Θ as shown in Figure 4

∆α = ∆Θ radial, concentric,
∆α = ∆Θ − π/2 hyperbolic,
∆α = ∆Θ + π/2 elliptic.

The same sector classification can also be used for degenerate lines and triangles.
In this case all radial lines entering one of the participating vertices have to be
considered. An example from a real data-set is shown in Figure 5.

5.5 Separatrix Computation

To complete the topological skeleton we integrate all radial tensorlines bound-
ing the hyperbolic sectors using Runge-Kutta 4th-order integration scheme with
adaptive step size. Alternatively, an exact tensorline integration for the linear
eigenvector field can be used [15]. Direction consistency is not an issue in our ap-
proach, as in the case for component-wise interpolation, since eigenvector inter-
polation gives directed eigenvectors. We implemented the following termination
conditions, to obtain a clean integration of tensorlines.

1. A separatrix leaves the domain, a trivial condition.
2. A separatrix gets close to a degenerate point, line or triangle. It is terminated

at its intersection with the degenerated entity, see Figure 6a.
3. A separatrix describes a circle or spiral and passes itself closely in parallel

integration direction , see Figure 6b and 6c. Circulating separatrices overload
the topological graph without adding structural information for the final
segmentation. We delete circulating tensorlines in a clean up process, which
starts at the end of the separatrix and continues as long as the separatrix
has a neighboring separatrix of the same color. The cleanup process ends in
a point of intersection with a separatrix of the other color.

(a) (b) (c) (d) (e)

Fig. 6. Close-up from one-point load data-set: (a) tensorline runs into a degenerate line
(black line); circulating tensorline (a) before and (b) after clean up; (d,e) comparison
of separatrix integration for component-wise and eigenvector-based interpolation.



6 Segmentation

After computing the topological skeleton for both eigenvector fields, we find
the intersections of the red and blue tensorlines. The properties of the resulting
segmentation as can be seen in Figure 4 are (a) Cells without degenerate point
are quadrangular with two red and two blue tensorlines as boundary, in an
alternating order. All red tensorlines passing through this segment enter at one
of the blue boundaries and leaves the cell at the opposite boundary and vice
versa. All angles are orthogonal. (b) Cells with one degenerate vertex lying in
a hyperbolic sector are quadrangular. The angle at the degenerate point is in
general not orthogonal. (c) Cells having a degenerate point in one vertex, lying
in a parabolic segment, degenerate to a triangular shape. (d) In elliptic sectors,
cells with either two or three vertices are possible. (e) Cells containing degenerate
lines as edges can exhibit more complicated structures.

7 Results

We tested our method on 2D slices of three different data-sets simulating stress
behavior in a solid block: one and two forces applied to the top of a solid
block and multiple forces applied to a notched block. Since the results for the
eigenvector- and component-wise interpolation schemas are qualitatively sim-
ilar we focus in the results in close-up views showing the major and typical
differences. In Figure 6(d,e) a section of the one-point load containing three de-
generate points is shown. While the basic structure is the same, the changes of
the eigenvector directions is smoother for the eigenvector-based interpolation,
resulting in less curved tensorlines in the vicinity of degenerate points. As a
consequence, a proper step size adaption is especially important for component-
wise interpolation to obtain tensorlines of the same quality. The calculation of
the topological skeleton using eigenvector-based interpolation is in general faster
than the one based on the component-based interpolation. This speed gain is a
result of restricting the eigen-analysis to the vertices. For the component-wise
interpolation it has to be performed for each integration step.

The effect of the re-triangulation on the complexity of the resulting topo-
logical structure is shown in Figure 5. These images are close-up views of the
one-point load data-set, both using eigenvector-based interpolation. The left im-
age was computed using a Delaunay re-triangulation after vertex insertion com-
bining seven degenerate points in one degenerate line, which nicely represents
the dominant radial structure of the red tensorlines. The number of separatrices
that have to be integrated is reduced from 35 to 14. Details of the local topolog-
ical structure are often not features of the data-set, but instead are by-products
of the chosen interpolation schema. This is an incentive to keep the resulting
topological structure simple while still being consistent with the data.

We have applied our method to data-sets representing the simulation of differ-
ent force combinations acting on a solid block. Figure 7 shows complete segmen-
tations of a slice of each data-set. In the top right image the cells are randomly



colored. The other images displays the blue and red tensorlines bounding the
segments. Black dots, lines and triangles show the degenerate entities. The one-
and two-point load data-sets are simulated with very low resolution resulting in
artifacts that are reflected in the complicated topological structure. An adaptive
finite element method was used in the third dataset which results in a much
clearer structure, even though the physical configuration is more complex.

Fig. 7. Full segmentation: left: two-point load, right top: one-point load with randomly
colored segments, right bottom: slice of strain simulation of forces on notched block.

8 Conclusions

We have presented a method that delivers a segmentation that capture the eigen-
vector behavior in a 2D tensor field. With the classification of the sectors we are
able to extract separatrices that build the topological structure. Simultaneously
the insertion of the degenerated points in the Delaunay triangulation decreases
the number of separatrices and therefore the number of segments. The resulting
degenerated lines and triangles capture the invariants in the field in a simplified
way, without changing the given tensor values. Though the results for the topol-
ogy extraction of the component-wise interpolation and our eigenvector-based
method are qualitatively similar, the latter is faster. Albeit slight differences in
the segmentation obtained using both the methods, the quality of the segments
is the same. Future work includes a further clean up to simplify the segmentation
by combining similar elements and a further refinement of large cells, using the
boundary topology.
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