PP11B-1356 A Comparison of Methods for Ocean Reconstruction from Sparse Observations Gregory J. Streletz^[1], Markus Kronenberger^[3], Christopher Weber^[1], Geoffrey Gebbie^[2], Hans Hagen^[3], Bernd Hamann^[1], Oliver Kreylos^[1], Louise H. Kellogg^[1], Christoph Garth^[3], and Howard J. Spero^[1] (1) University of California, Davis, CA 95616 USA (2) Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA (3) University of Kaiserslautern, Germany

Introduction

Problem: reconstructions from scattered observations of sediment cores distributed on the ocean floor in a sparse and irregular manner

- Data: measurements from benthic foraminifera in deep sea sediment cores (e.g., the data compiled by Peterson et al. [1])
- Solution: reconstruction methods useful for interpolating or approximating sparse scattered data
- Goal: comparison of the advantages and disadvantages of methods in order to enhance reconstruction quality

Methods Reconstruction using a modified Moving Least Squares Approach

- Modified Moving Least Squares (MLS) approach without assuming any additional information (e.g., the flow field)
- Input: A scalar field of observations f, precomputed weighting parameters α , β , γ (see Distance Measure section)
- Computation of matrix B from quadratic basis functions b
- Set up diagonal weight matrix $W(\rho)$ with weight function ρ (depending on the weighted distance)
- Evaluate MLS function^[2] $MLS(x) = b^{T}(x)(B^{T}W(\rho)B)^{(-1)}B^{T}W(\rho)f,$ with $\rho(L_1, L_2) = 1/(\text{distance}(L_1, L_2)^2 + \epsilon^2)$ ε is a smoothing parameter
- Output: Reconstructed values

Distance Measure

- distance Generalized measure spherical nature of the data set:
- Input: Two locations L1 and L2
- distance $(L_1, L_2) = \alpha \cdot \Delta(phi) + \beta \cdot \Delta(theta) + \gamma \cdot \Delta(r)$
- α , β , γ are weights
- Δ (**phi**) and Δ (**theta**) are geodesic distances between L1 and L2 (see figure)
- $\Delta(\mathbf{r})$ is the depth difference between L₁ and **L**2
- Machine-learning pre-processing step performed to estimate good values for α , β and γ

Physical Boundaries of the Ocean

- Consideration boundary to reconstruction results Core samples partitioned into
- bathymetry-based subsets Cores not OŤ connected ignored

considering

ocean improve directly subsets are

Reconstruction using a Flow-Based Approach

- Exploits correlations between the scalar field to be reconstructed and the vector field representing the ocean flow
- Input: A scalar field of observations **f** and a vector field representing flow
- Output: Reconstructed values
- Optimal Interpolation used as the underlying reconstruction method
- Modification of underlying method: utilize a non-Euclidean distance measure defined using the input flow field:

distance $(L_1, L_2) = \sqrt{(\alpha \cdot (\text{distance along streamline})^2 + (\text{distance across streamline})^2)}$ • Streamlines are calculated for the flow field using a fourth-order Runge

- Kutta method
- Parameters: α , correlation length
- Parameters optimized dynamically using an objective function defined with respect to the RMS error for a leave-one-out cross validation using the given observations

Results Modern day

- Comparisons of the Reconstructions for the modern-day Atlantic Ocean based on a gridded data product [3] as reference data
- Reconstructions based on a subset of 186 data points corresponding to the distribution of the sediment cores
- Due to lack of a gridded climatology of modern-day δ^{13} C data we used phosphate, because of its nearly linear relation to $\delta^{13}C$

Modified Moving Least Squares (MLS)

Modified Optimal Interpolation (OI)

WOCE data set

• Difference images between reconstructions and WOCE data set

_GM

• A reconstruction for the LGM

- Both methods show promising results
- reconstruction
- future collection of sediment cores

References

des Bundesamtes für Seeschifffahrt und Hydrogr.

Modified Moving Least Squares (MLS)

Modified Optimal Interpolation (OI)

Summary and Future Work

 They have advantages and disadvantages in different regions • In the future a combination of both may merged to a more precise

 Further improvements may allow a estimating the glacial changes in multiple seawater properties and guide the analysis of existing and the

^[1] Peterson, C., Lisiecki, L., and Stern, J. Deglacial whole-ocean δ^{13} C change estimated from 493 benthic foraminiferal records. Submitted to Paleoceanography.

^[2] Agranovsky, A., Garth C. and Joy, K., (2011) Extracting Flow Structures Using Sparse Particles. Vision, Modeling and Visualization Workshop 2011

^[3] Gouretski, V., and K. Koltermann (2004), WOCE global hydrographic climatology, Bericht