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1 Introduction

An emerging area of research in environmental monitoring
involves the use of wireless networks of motes, autonomous
sensor nodes. This “smart dust” is deployable in nearly any
environment. Areas that could greatly benefit from the use
of motes include energy conservation, preservation of avian
species, and determination of structural integrity of build-
ings. The Smart Dust project at UC Berkeley aims to fit a
mote within a cubic millimeter and to make the manufac-
turing cost negligible – under a dollar per mote [1]. Motes
currently in use range in size from a matchbox to a large coin
and may cost up to $100 each; however, a prototype the size
of an aspirin and one-tenth the cost may be in production
within a year. These motes can be configured to collect and
transmit a multitude of data such as temperature and light.
Sensor networks can contain a few or a few thousand motes,
and when deployed, motes are generally not positioned in a
regular fashion. Motes can transmit data synchronously or
asynchronously; in order to preserve battery life it is prefer-
able to transmit data asynchronously. We describe recon-
struction and visualization methods for two specific mote
applications.

2 Scattered Data Methods

Scattered data methods seek to reconstruct a function from
samples taken at irregular positions. We have employed
two common scattered data methods, Shepard’s method
and Hardy’s multiquadric method, to create reconstructions.
Both methods work well but are slow, and hence not appro-
priate for real-time visualization. Shepard’s method uses
inverse distance weighting of nodes, such that nodes closer
to some arbitrary point have more influence on the recon-
structed value. Shepard’s method is defined by the formula
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where di is the distance, in a Euclidean or non-Euclidean
metric, from a point (x, y) to node i, and n is commonly 2.
Hardy’s multiquadric method uses radial basis functions
defining a reconstruction as
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where R is an ad hoc positive real-valued constant and
the coefficients ci are the solution to the interpolatory con-
straints

√
R2 + d2

1,1

√
R2 + d2

1,2 · · ·√
R2 + d2

2,1

√
R2 + d2

2,2 · · ·
...

...
. . .


 c1

c2

...

 =

 f1

f2

...

 ,

where di,j is the distance between nodes i and j [4].
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3 Case Study: Great Duck Island

Great Duck Island, Maine, may be one of the largest breed-
ing colonies of Leach’s Storm Petrel, a seabird common to
the eastern United States [2]. The island is relatively un-
touched, so researchers wish to investigate the habitat of the
petrel without disturbing the birds. Motes provide an ideal,
non-intrusive solution. In the summer of 2002, researchers
from UC Berkeley placed 32 motes in an area slightly smaller
than a football field, recording temperature, humidity, and
barometric pressure values. Motes were placed above ground
and inside burrows. Although there were few motes, the
number of sensor readings between June and October 2002
totaled over one million, making it difficult to analyze the
data.

Figure 1: Two visualizations of temperature on Great Duck
Island; left: day conditions, right: night conditions.

3.1 Reconstruction and Visualization

The images in Figure 1 were generated using Hardy’s lo-
cal multiquadric method with twenty neighbors for func-
tion reconstruction. Dark areas are cooler and light areas
are warmer. The measured temperature ranges from about
50◦ F to 100◦ F. Note that the temperature recorded is the
temperature inside a mote enclosure rather than the tem-
perature in the environment. On a typical day, the temper-
ature in the environment does not reach 70◦ F. The buried
motes recorded nearly consistent temperatures throughout
the day, whereas the motes above ground recorded much
warmer temperatures during the day than at night.

Figure 2: Two interpolations of the data set, with one spatial
dimension on the horizontal axis and time on the vertical
axis. Left: actual reconstruction, right: Voronoi diagram.

Since all motes were placed close to ground level, it
is possible to treat the Great Duck Island data set as a
two-dimensional time-varying data set. For visualization



purposes, we can alternatively interpret the data set as a
three-dimensional data set as sensor readings are weighted
based on their distance in space and time. The data set
is extremely dense in the temporal dimension but sparse
in spatial dimensions. Since the data set is not a true
three-dimensional data set but rather a (2 + 1)-dimensional
data set, an animation is the most appropriate visualization
tool. Some example movies are located on the website
http://graphics.cs.ucdavis.edu/~valie/sensor.html.
Two frames from two different movies are shown in Figure 2.
Both images are taken at the same point in time and space.
The image on the left uses Shepard’s local method with
twenty neighbors for reconstruction, and color corresponds
to temperature, light and dark representing warmer and
cooler respectively. The image on the right is a Voronoi
diagram [5] such that each colored tile corresponds to a
particular sensor. The dark area in the center of the image
on the left correspond to the darkest sensor in the Voronoi
diagram. Notice how the area of influence from the darkest
sensor expands near the top as the lightest sensor stops
reporting sensor readings and fades out of relevance.

4 Case Study: Cory Hall

Cory Hall, a building on UC Berkeley’s campus, is the sub-
ject of research involving “smart energy,” a potential break-
through concept in energy conservation. Sensors can be
placed in the environment, monitoring lighting and tempera-
ture, or can be attached to a particular appliance, analyzing
its usage. Sensors theoretically can passively monitor or ac-
tively control energy consumption. If sensors are used to
actively control energy consumption, energy efficiency can
be dramatically increased by reducing usage during peak
times; hence, the cost of energy will drop significantly [3].
In 2001, fifty sensors were installed on a floor in Cory Hall
to monitor temperature and light.

Figure 3: Two stages of the shortest-path algorithm to cal-
culate the distance needed for reconstruction purposes.

4.1 Distance Metric

When reconstructing functions from sensor data inside a
building, one has to consider its floor plan. Nodes might
be close in Euclidean space, but may be separated by walls
or other obstacles. Hence, we need a non-Euclidean metric
that takes the building’s floor plan into account by weaving
through halls and around corners. The complex domain of
a building requires us to use a specific data structure and
a visual aid to model the floor plan. Each room, hall, or
doorway is split into convex polygons, or sectors [6]. In or-
der to visualize functions obtained by reconstruction using
standard scattered data methods, it is necessary to know the

distances between a location where we wish to approximate
the unknown function and certain sensor locations. Figure 3
is a two-dimensional illustration of an approach that finds
the shortest path through a complex domain. The floor plan
is structured as a graph, with each sector linked to any other
sector it is connected to. Thus, it is quite easy to traverse
a path from one point to another within the floor plan. We
first find a path from the origin to the destination by travers-
ing the graph, and determine which sectors the path passes
through. We also calculate a point on each line connecting
two sectors, which the path travels through. These points
may be manipulated to minimize the distance between the
origin and destination, as shown in the lower image.

As we are still putting the framework in place, no visual-
izations of Cory Hall data are available yet. However, once
the framework is in place, little additional work will have
to be done, as we can use the same methods applied to the
Great Duck Island data set.

5 Future Work

Sensors have already been placed on Great Duck Island for
the summer of 2003. More motes are in place, the sensors are
more reliable, and mote positions are more accurate. Height
above sea level is now available.

The motes used on Great Duck Island are placed stati-
cally. The next step in wireless sensor network technology
would involve motes that fly or crawl. Existing reconstruc-
tion and visualization techniques support moving sensors;
however, these techniques may need to be adapted to be used
by the motes themselves, so they may self-organize, moving
to optimal locations for data reception. Current scattered
data methods are limited since they are too slow for real-
time data processing. New techniques must carefully sort
through the large amount of data received and decide on
the fly which data is important and which can be discarded.
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