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Abstract

Laser wakefield particle accelerators have shown the po-
tential to generate electric fields thousands of times higher
than those of conventional accelerators. The resulting ex-
tremely short particle acceleration distance could yield a
potential new compact source of energetic electrons and ra-
diation, with wide applications from medicine to physics.
Physicists investigate laser-plasma internal dynamics by
running particle-in-cell simulations; however, this gener-
ates a large dataset that requires time-consuming, manual
inspection by experts in order to detect key features such as
beam formation. This paper describes a framework to auto-
mate the data analysis and classification of simulation data.
First, we propose a new method to identify locations with
high density of particles in the space-time domain, based
on maximum extremum point detection on the particle dis-
tribution. We analyze high density electron regions using a
lifetime diagram by organizing and pruning the maximum
extrema as nodes in a minimum spanning tree. Second, we
partition the multivariate data using fuzzy clustering to de-
tect time steps in a experiment that may contain a high qual-
ity electron beam. Finally, we combine results from fuzzy
clustering and bunch lifetime analysis to estimate spatially
confined beams. We demonstrate our algorithms success-
fully on four different simulation datasets.

1. Introduction

The radiation pressure of an intense laser pulse fired into
plasma allows laser wakefield accelerators (LWFAs) to gen-
erate self-trapping and acceleration of particles to relativis-
tic speed in plasma density wakes. LWFAs are of interest
because they are able to achieve very high particle ener-
gies within a relatively short distance when compared to
traditional electromagnetic accelerators. The VORPAL [13]
simulation code is used to model experiments such as those
performed at the LOASIS facility at LBNL [8, 7, 11], and is
useful in helping to gain deeper understanding of the phe-
nomena observed in experiments, as well as to help formu-
late and optimize methodologies.

Particle-in-cell (PIC) simulation codes describe the
physics of a new operating regime, where an initial trapped
bunch of electrons loads the wake, forming a bunch of elec-
trons isolated in phase space. At the dephasing point, as the
bunch begins to outrun the wake, the particles are then con-
centrated near a single energy [8], when a high quality beam
can form. PIC codes model the dynamics of particles in a
simulation window that travels at approximately the speed
of light, showing the position and velocities of the particles
as well as fields at specified time intervals.

Identifying beam formation and quality are key prob-
lems in the analysis of laser wakefield simulation data. Cur-
rently, physicists must manually inspect 2D plots of the en-



tire dataset, visually determine adequate parameters to se-
lect a subset of particles (corresponding to the beam) and
further analyze this subset. The procedure requires physi-
cists to laboriously examine massive data over many time
steps in different plots, which is a time-consuming process.
Current simulation datasets are typically between 1GB and
100GB in size, and it is anticipated that future datasets will
be of the order of TBs. As the number and size of datasets
increase, there is an emerging need for routines to automati-
cally mine datasets for interesting structures such as beams.

Application of machine learning methods for scientific
data mining is a growing field; however, few publications
address similar efforts to the proposed framework on laser
wakefield simulations. Bagherjeiran et al.[1] presented a
comprehensive report on applying graph-based techniques
for orbit classification in plasma simulations. They use the
KAM classifier [15] to label points and components in sin-
gle and multiple orbits. Love et al.[12] conduct an image
space analysis of coherent structures in plasma simulations.
They use a number of segmentation and region-growing
techniques to isolate regions of interest in orbit plots. Both
approaches analyze particle accelerator data, targeting the
system dynamics in terms of particle orbits. However, their
techniques do not address particle dynamics as a function
of time or inspect the behavior of bunches of particles.

We apply signal processing and machine learning tech-
niques to a very different problem: we are interested in
searching for electrons with high acceleration and with spa-
tial coherence in a time-dependent, large and complex sci-
entific data set created by a numerical simulation of a laser
wakefield particle accelerator. The high-quality beam must
be picked out from a large field of high-energy particles.

We describe our approach and implementation details in
Sec.2. Section 3 presents the results obtained with our inte-
grated approach of combining data visualization and anal-
ysis with classification of electrons from simulation time
series. We conclude with discussions and future directions
in Section 4.

2 Methods

We address particle dynamics as a function of time, in-
specting the behavior of bunches of particles across the sim-
ulation for later combination with a clustering algorithm,
so that we can estimate which are the accelerated parti-
cles that form the electron beam. Our focus is on design-
ing a framework to aid physicists in detecting beam forma-
tion and characterizing beams. These beams are collimated
groups of particles exhibiting high momentum along the x-
axis, parallel to the propagation direction of the laser pulse
and having a small spread in the spatial-energy dimensions.

Figure 1 illustrates our processing pipeline, explained in
the following subsections. First, we compute the location

Figure 1. Processing pipeline

of high-density bunches of high-energy particles for each
timestep via stationary point detection on probability den-
sity functions (pdf ) of the particles along the laser propa-
gation axis (see Sec. 2.1). Detected points are organized in
a graph to characterize the lifetime of the detected high-
energy bunches (see Sec. 2.2). In Sec. 2.3, we perform
fuzzy clustering for each timestep to detect particles form-
ing a potential beam. Based on the information from the
bunch lifetime analysis and the fuzzy clustering, we can es-
timate the most energetic beam (see Sec. 2.3).

We illustrate our methods using 2D datasets, contain-
ing 5 variables: 2 spatial variables (x, y), 2 momentum
variables (px, py) and a unique particle identifier. Table 1
presents details of the datasets used in our tests.

Dataset Particles (106) Timesteps Total Size (GB)
A 0.4 37 1.3
B 1.6 35 4.5
C 0.4 37 1.3
D 3.2 45 11

Table 1. Tested simulation Datasets.

2.1. Locating High-Density Bunches

The beams of interest are characterized by high density
of high-energy particles in small spatial regions. A first step
can be to identify potential groups of particles, computing a
histogram of particle distribution in the x-direction for each
recorded time step of the simulation. Since energy is pro-
portional to the momentum in the x-direction (px), we do
not use the entire particle dataset, but instead choose a sub-
set such that px > 1e10, which eliminates low energy par-
ticles without compromising the beam detection procedure.
The threshold px > 1e10 is justified by the physical phe-
nomena of interest, the beam, formed by relativistic par-
ticles. The expected wake oscillation is up to px = 1e9
and the bunch should be observed near px = 1e11. Also,
this threshold excludes both wake oscillation while includ-
ing anything that could be an accelerated bunch of particles.
The threshold is not precisely chosen, and a lower threshold



could be used at higher computational cost. The algorithm
is insensitive to this choice since the low energy particles
will be randomly distributed throughout the cavity.

Given this subset, we estimate the pdf, f(x), of parti-
cles according to their position in the simulation window.
We detect the maximal extremum (maximal turning point
or relative maximum) at a point x = Xo, by calculating
df(x)/dx, for f(x) changing from positive to negative [10].
Differentiability is guaranteed by using a Gaussian smooth-
ing kernel, where we use a rule of thumb to choose the
bandwidth: 0.9 times the minimum of the standard devia-
tion and the interquartile range divided by 1.34 times the
sample size to the negative one-fifth power, as suggested
by [14]. The maximal extremum points represent potential
beam-point candidates for the next step in our analysis.

2.2. Analysis of Bunch Lifetime

Once potential beam-point candidates have been iden-
tified for each time step, we represent each maximum ex-
tremum point as a node n in a graph. First, we construct
an incidence matrix for a graph by discretizing the spatial
axis into bins with d = 2µm and noting a non-zero entry
where a candidate (n) was found. We repeat this process
for different time steps, stacking up each time step as rows
of a matrix. We use the relative position of the particles in
the moving simulation window to align multiple time steps.

Then we run a minimum spanning tree (MST) algo-
rithm [2], that penalizes connections among nodes in the
same time step. Next, we prune the graph by eliminating
candidates that are connected by long arcs, since we do not
expect high density regions to move erratically or by large
amounts. This is scientifically motivated, as the high energy
particles travel at approximately the speed of light, which is
also the speed of the simulation window. Assuming that
the time lag between recorded time steps is small enough to
capture physical phenomena such as bunching and dephas-
ing, we eliminate disconnected nodes.

Consequently, we now have a representation of the tem-
poral history of the high-density particle regions, where a
node ni is connected to nj if they are from different time
steps. The distance between nodes is smaller than a value
d = 2µm, the approximate size of a beam, as suggested by
the physicists, so that the lifetime diagram represent tempo-
rally stable high density regions.

2.3. Fuzzy Clustering and Beam Estimation

As discussed in Sec. 2.1, a high particle density is not
sufficient to identify a high quality beam - both the spatial
and momentum features play an important role in classify-
ing a bunch of particles as a beam of interest.

Unsupervised algorithms are appropriate for “data min-
ing” applications, where the information content of a large

database is not known beforehand, but can emerge during
the partitioning process. Without supervision, nonhierar-
chical clustering methods can use an optimization model to
classify inter-point distances and dissimilarity data. The ob-
jective is to minimize total dissimilarity amongst all objects
and the corresponding most representative objects.

In this context, our approach focuses on searching for the
primary beam particles: the beam is confined to a small spa-
tial region, having high energy in the px-direction. Classi-
cal clustering algorithms would try to assign each data point
to exactly one cluster [6], but our problem requires relaxing
this condition so that each particle has some graded or fuzzy
membership in each cluster.

We use the R package cluster, which contains the
algorithm fanny for fuzzy analysis clustering, to identify
two clusters of particles in a multivariate space, defined by
x, y, px, py. First, we normalize all the spatial and momen-
tum variables before calculating dissimilarities: the most
frequent normalization strategy consists in the transforma-
tion of the original data such that the new feature set is
now guaranteed to have zero mean and unit standard de-
viation [3]. The algorithm performs fuzzy C-means clus-
tering, regarding dissimilarities between observations using
the squared Euclidean distances and then minimizes the ob-
jective namely:

F =
k∑

v=1

∑n
i=1

∑n
j=1 um

ivum
jvd(i, j)

2
∑n

j=1 um
jv

(1)

where v is a cluster, n is the number of observations, k
is the number of clusters, m is the membership exponent
and d(i, j) is the dissimilarity between observations i and
j, uiv is the membership of observation i to cluster v
[9]. The dissimilarity measure appears as an L1 norm; it
finds “medoids” (median-based centroids) instead of ordi-
nary centroids. The minimization algorithm is based on di-
rect application of the Lagrange multiplier approach with
Kuhn-Tucker conditions [5].

Finally, we compare the estimated-beam cluster, calcu-
lated for each time step independently, with the beam-point
candidates, as described in Sec. 2.2. The method consists in
checking if a beam-point candidate fall in a bounding box,
given by the lower and higher (x, y) coordinates of parti-
cles in the cluster output. If the most accelerated group of
particles, expected to be at the rightmost cluster, contains a
beam-point candidate, we conclude that we have located the
beam and return the particles in the current cluster assign-
ment. The time complexity of the algorithm is O(N2), con-
sidering the pairwise particle distance calculation and the
objective function minimization separately. The member-
ship parameter, number of features and number of cluster
are constant in the current analysis.



Figure 2. Locating high-density bunches for
Dataset A at a single time step: detection of
three beam-point candidates (peaks).

3 Results

Physicists need auxiliary mechanisms to identify high
quality beams and track their accelerated particles along
simulations. We propose an automated framework to de-
tect time steps in a simulation that may contain a high qual-
ity electron beam. We test the methods discussed in the
Sec. 2 on different particle simulation datasets, illustrating
each step of the pipeline for the simulation dataset A. Sim-
ilar analysis was conducted for three other datasets: B, C
and D, then we only present their plots for the final beam
segmentation result.

The proposed framework contains data processing and
machine learning algorithms from R project [4]. The R
project, or simply R, is a free multi-platform software envi-
ronment for statistical computing, containing useful pack-
ages for data analysis, visualization and machine learning.
We perform our computations on a Dell Optiplex 755 Intel
Core Duo 3GHz; the processing took≈1-4 minutes for each
time step using 2 GB RAM memory.

As discussed in Sec.2.1, we locate high-density regions
for each time step. Figure 2 presents x-position of candi-
dates to beam locations for the dataset A. The smoothed
pdf presents distinct beam-point candidates that correspond
to high-density regions, collected for the lifetime diagram
analysis. Both Figure 2 and 4 illustrate the same time step
in database A, where the beam is most visible.

We implement a novel procedure to analyze the history
of particles (Sec2.2): we start with a tree representation
of high density points in the whole time series, followed
by calculating the minimum spanning tree to connect the
nodes. We then use a pruning procedure, which guarantees
no node connection within the same time step and a dis-
tance greater than d = 2µm. Figure 3 shows the temporal

Figure 3. Life time representation for Dataset
A: particle history as a pruned MST with likely
branches and connected nodes.

tree-based representation of the particle history after prun-
ing (“lifetime”), conveying only the most likely candidates.

The tree representation combined with the clustering
output yields two important pieces of information: (a) de-
tection of the time step containing high energy particles by
checking for overlapping; (b) estimation of a beam contain-
ing particles that behave similarly, according to their spatial
coordinates and energy attributes.

Figure 4. Beam-point candidates (Fig. 2) com-
bined with fuzzy clustering: beam-points
(squares), beam particles (in black) and non-
beam particles (in gray).

Figures 4 and 5 show classification results from cluster-
ing, narrowing the membership to 0.7, so that the cluster
closer to the rightmost high-density point will contain only
particles which have 70% probability to belong to this clus-
ter. This idea is analogous to the search for the core particles
in the multivariate distribution given by x, y, px, py for the



primary beam.
The beam cluster is labeled in black in Figure 4, showing

the (x, y) position of the particles in the simulation window.
Figure 5 illustrates the phase space for the different datasets
in a time step where the beam is most visible. Physicists
have noticed that the estimated beams completely enclose
the high energy bunch of particles.

3.1. Validation

Figure 5 shows the resulting phase space diagrams using
the proposed methodology for four different 2D datasets.
The datasets vary in size as well as overall behavior. In
practice a physicist is interested in finding single, distinct,
and compact particle bunches of high momentum and low
energy spread in the data.

While no automated detection system was available,
thresholding in px was a common practice to help iden-
tify high energy particles and the beam of interest. In ad-
dition, a researcher investigates movies of a variety of plots
to determine an appropriate timestep and threshold values.
As illustrated in Figures 5(a)- 5(c), for simulations A, B,
C a researcher may choose, for example, a threshold of
px > 9.75e10. In these examples only a single high en-
ergy beam is formed and a single threshold in px is suffi-
cient to isolate the beam-particles. However, simulation D
contains secondary structures, formed behind the beam and
a single threshold in px is not sufficient to isolate the beam-
particles (see Figure 5(d)). Therefore, a single threshold
may result in a selection that is too large and only multiple
thresholds in px, x and possibly y can isolate the beam of
interest. One main deficiency of thresholding is that it is
arbitrary and time consuming, requiring manual inspection
of the dataset.

Figure 5 demonstrates that our method detects a single,
distinct, bunch of high energy particles in all four datasets.
Both thresholding and the proposed algorithm depict parti-
cles of the beam for dataset A, B, and C, but our method is
capable of identifying subsets of condensed particles among
the highly accelerated particles without requiring user in-
teraction. For experiments where no high quality beam is
formed, neither thresholding nor the proposed method can
accurately detect beam particles as show for dataset D; the
most condensed structure is located on the depression be-
tween the first and second peak (px =≈ 4.5e10), as shown
in Figure 5(d). While our algorithm detects a single, spa-
tially distinct particle bunch of high energy, it is driven to-
ward finding distinct bunches of high energy and the clus-
tering result encloses the second highest quality bunch.

The proposed approach presents promising results to-
ward automated analysis of laser wakefield particle simu-
lations. Our method is capable of extracting particle beams
from the a large set and isolating time steps without user
interaction, in contrast to manual thresholding wherein an

expert is required to manually investigate the whole data in
order to identify the beam of interest.

4 Conclusions and Future Work

In this paper, we propose a novel method for identify-
ing and tracking density patterns in particle acceleration
data. We generate a novel lifetime diagram of high-density
bunches of electrons. We use a minimum spanning tree
representation and prune that to recover high density peaks
which are further combined with fuzzy clustering to seg-
ment the beam particles. Four different datasets illustrate
our validating results by comparing to a manual selection
by an expert. Also, we observe that low quality beams, not
formed by the highest energy particles, may not be detected,
hence algorithm improvements are necessary.

Future work must address the particle history for sta-
tistically significant centers using both spatial and energy
components. In addition, beam-point candidates could be
used by other clustering algorithms. We plan to quantify the
beam quality in terms of intra-cluster measures and estab-
lish a relationship between the number of the particles in a
beam given their membership. Correlating the beam forma-
tion to the underlying electromagnetic field remains an open
problem. Analysis of 3D simulations have started, which
includes spatial dimension z and its momentum pz into ac-
count. Besides the massive 2D simulation dataset genera-
tion, we expect to parallelize our computations to handle
the significantly larger number of particles and overall size
of the 3D datasets.
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(a) Dataset A (b) Dataset B

(c) Dataset C (d) Dataset D

Figure 5. Clustering result in the phase space scatterplot for different datasets. All particles with
px > 1e10 are shown in gray and the particles detected by our analysis in black.
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