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Abstract
We present a reverse engineering method for constructing a surface approximation scheme whose input
is a set of unorganized noisy points in space and whose output is a set of quadric patches. The local
surface properties, necessary for the subsequent segmentation, are estimated directly from the data using
a simple and efficient data structure - the neighborhood graph. Our segmentation scheme, based on
principal curvatures, constructs initial point sub-sets, which may be enlarged or further subdivided based
on associated approximation error estimates obtained through approximation of the initial segments by
quadric surfaces. Our method is highly efficient and produces a high-quality piecewise quadric surface
approximation of engineering objects, which we demonstrate for several simple and complex example
data sets.

1. Introduction

The problem of reconstructing a surface model from an unorganized set of points measured from the surface of a
given object arises in many areas including computer graphics, CAD/CAM, computer vision and reverse engineer-
ing [MM97, VMC97]. Building such a model is a problem of growing importance since efficient digital scanning
technologies, like laser range scanning devices, become more easily available. Through the rapid development of
accurate optical scanners point models are “cheap”, moving the focus from object reconstruction based on tradi-
tional scattered data interpolation to more efficient approximation schemes for very large point sets. Before the
points are approximated by surfaces, it is necessary to group the points into appropriate subsets, a process which
is often referred to as segmentation [BMV01, BV02, MLM01, VMC97, VM02]. Segmentation is usually based on
surface properties, which can be estimated from the data points. However, to implement an efficient and reliable
segmentation of an arbitrary data set is a real challenge: due to noise in the data and non-uniform point sam-
pling density the segmentation process can be ambiguous. This paper describes a new segmentation method for
constructing quadric surfaces from unorganized point sets and provides detailed information regarding various
problems that must be solved during constructing a meaningful segmentation.

In recent years, several papers dealt with the problem of segmentation of an object with subsequent sur-
face extraction and approximation from different sources [AFS06, BMV01, BV02, BV04, GFA04, LZHM06],
[LDB05, VFT07, VS05, WAFR99, WFRA98, WK05, YLL∗05, YLW06]. An in-depth review of these papers is be-
yond the scope of this paper, but we refer the reader to a few selected references.

Werghi et al. [WAFR99, WFRA98] described a method for recovering and creating a complete model consisting
of quadric surfaces. Instead of fitting separate quadric surfaces they took into account the relationship between
adjacent surface patches incorporating geometric constraints into the fitting process. The algorithm expects as
input depth images coming from range scanning. Other algorithms base the segmentation and fitting on meshes;
typically triangular meshes are used. A good survey of methods (until 2002) for recovering quadric surfaces
from meshes was provided by Petitjean [Pet02]. Guillaume et al. [GFA04] presented a curvature tensor-based
decomposition of an object into surface patches with near to constant curvature. The boundaries of the surface
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patches are rectified in order to obtain nicely shaped segments. Wu and Kobbelt [WK05] used a variational
framework for a subdivision of a mesh into so-called “proxies”, which are approximated by planes, spheres,
cylinders and rolling-ball blends. Yan et al. [YLW06] based their variational shape approximation, similar to Wu’s
method, on an L2,1 metric and extended it for all quadric surface types. Lai et al. [LZHM06] presented a top-
down hierarchical feature-based segmentation suitable for large models at multiple scales. First, the mesh points
are mapped into IR6 and subsequently a hierarchical feature-sensitive re-meshing step is performed. Finally,
the algorithm segments the object using k-means clustering. Another feature-sensitive mesh segmentation was
presented by Yamauchi et al. [YLL∗05] and is based on clustering of the normal vectors, using a modification of
a general purpose technique called “mean shift”. Lavoué et al. [LDB05] proposed a segmentation of a mesh into
regions with nearly constant curvatures using a region growing algorithm taking seed clusters provided by the
K-means algorithm. During the postprocessing the boundaries of the resulting segments are rectified based on a
Boundary Score error metric. Attene et al. [AFS06] used a hierarchical mesh segmentation based on a cost function
for extraction of algebraic surfaces from the mesh (they extract planes, spheres and cylinders). Their general
purpose greedy algorithm has different applications, e.g. mesh denoising and fairing or segmentation for character
animation. Vieira and Shimada [VS05] proposed another complex framework for mesh segmentation based on
region growing: they carefully select seed regions according to the surface properties and noise estimation from
the data, which are in the next step parameterized and approximated with bicubic Bézier patches. The segments
are then extended by adding compatible points to the seed regions.

The work of Benkö et al. [BMV01, BV02, BV04] seems to be the mostly related to our method, as they do not
expect meshes and base the segmentation directly on points. However, there are some important differences:

• Benkö et al. based their segmentation and surface extraction on normal vectors. Our approach is primarily
based on principal curvatures. Normal vectors are used only as additional information.

• The classes of surfaces to be reconstructed are different: we consider all quadric surface types and the torus.
Benkö et al. focused on circular quadric surfaces and on translational, rotational and sweep surfaces.

Our surface reconstruction is illustrated in Fig. 1. We assume that objects to be reconstructed consist mostly
of quadratic algebraic surfaces. The target input for our method are non-free-form engineering objects and parts.
The most frequent types of surface patches of technical CAD objects are parts of quadric surfaces like spheres,
cylinders and cones. In order to be able to process and segment a wide class of CAD objects, we do not restrict the
reconstruction to circular surfaces (surfaces of revolution), but we are able to recognize all quadric and circular
toroidal surface patches on objects.

The given points are organized using a simple data structure: the neighborhood graph. This graph provides
us with connectivity and adjacency information of the data points. Moreover, the points locally approximate
the surface shape, so they are used for the estimation of surface properties. “Sharp edges” negatively bias the
approximation of surface properties, and therefore we improve the surface properties estimation with a procedure
consisting of detection of sharp edges (based on the information provided by the first-order segmentation) and
of re-estimation of the surface properties on a modified neighborhood excluding neighbors behind sharp edges.
If necessary, the combination of the first-order segmentation and normal vector re-estimation can be repeated
several times in order to achieve better results. The following high-order segmentation step subdivides the point
set into initial point clusters and uses a surface fitting step for validation of the created clusters. If the segment
satisfies specified approximation criteria, it is accepted; otherwise, the segment is further subdivided.

In Fig. 2, the reconstruction process is demonstrated for a data set. Note that the triangulation in this figure
and in the whole paper as well is created after the reconstruction and is for visualization purposes only. Based
on the estimated normal vectors (b) top, the first-order segmentation is performed (c), which makes possible
detection of sharp edges. The normal vectors close to these sharp edges are re-estimated (b) bottom. Based on the
estimated principal curvatures (d) the final, second order segmentation, controlled by the quadric surface fitting,
is started resulting in the final reconstructed object (e).

In Section 2, we describe a stable estimation scheme for the normal vectors and principal curvatures. As principal
curvatures are more sensitive to noise than normal vectors, we implemented and compared the estimation quality
of several methods for points originating from algebraic surfaces.

In Section 3, we summarize the functionality and the benefit of our first-order segmentation, in detail presented
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Figure 1: Reconstruction process.

a) b) c) d) e)

Figure 2: Reconstruction process: a) unorganized point cloud; b) normal vectors - top: initial estimation, bottom:
normal vectors after re-estimation; c) first-order segmentation; c) curvature plot - top: minimum curvatures,
bottom maximum curvatures; d) reconstructed object.

in [VB04], especially for the detection of sharp edges and the re-estimation of the surface properties of points close
to these edges.

Section 4 provides a detailed description of our top-down segmentation procedure controlled by the surface
fitting. We present a method for the computation of the distance of a point to the quadric surface and compare
recent linear methods for approximation of a given points set by quadrics and discuss their stability.

We present results and computation times of our surface reconstruction approach in Section 5, and demonstrate
it for synthetically created point set data contaminated with random noise and one real data set obtained with a
high-end optical scanner.

2. Estimation of surface properties

As input we assume n unorganized points M = {P1, . . . ,Pn} which were acquired from the object’s surface during
a scanning process. Dependent on the accuracy of the scanning device, the digitized surface may be more or less
noisy. Apart from the points we do not require any other information. Local surface properties, like normal vectors,
principal curvatures or curvature directions, have to be estimated. We base the estimation process and the whole
subsequent segmentation and surface fitting on a simple data structure: the neighborhood graph. Compared to a
global triangulation of the point set [ACK01, BMR∗99, BC00, DGH01, DS05, EM94, HDD∗92, OBA∗03], which is
in general hard to compute and can be ambiguous depending on sampling density and noise level [ACK01, DS05],
the k-nearest neighbors can be computed very efficiently [VB07, VBS99]. For objects with insufficient sampling
on concave areas, Euclidean neighborhoods can contain incorrect neighbors (from the other side on the concave
area). Here, k-nearest geodetic neighbors are preferred [VB07]. In the following, we denote the neighborhood of a
point P as N (P).

The computation of the normal vector N(P) of a point P can be done locally using the computed neighborhood
in a two-pass procedure: in the first pass, a best-fit plane B of the neighborhood N (P) = {Q1, . . . , Qk} is
determined as

P
j
〈Qj −C,N(P)〉 → min with the constraint ‖N(P)‖ = 1, where C is the center of mass of

the neighborhood N (P). Here, 〈., .〉 denotes the dot product of two vectors. In the second pass, a new local
coordinate frame is defined (P, X,Y,N(P)), where X and Y are two arbitrary orthogonal vectors in the plane
B, and N (P) is approximated in this new coordinate frame by a quadratic or a cubic polynomial z = f(x, y).
With increasing noise level we prefer quadratic polynomials and a larger neighborhood, as a quadratic function
has worse approximating but better smoothing behavior than a cubic one [VB07].
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Stable estimation of principal curvatures and curvature directions is an
interesting research topic [DB02, Ham93, GI04, KLM98, RB05, Rus04, TT05]. Hamann [Ham93], for example,
approximated the natural neighbors of a point, where an explicit triangulation is known - the “platelet” - with
a bivariate function z = f(x, y). Krsek et al. [KLM98] provided an analysis and comparison of the estimation
quality of three different methods: a) approximation by circles, b) Hamann’s method and c) a Dupin cyclide
method. Douros and Buxton [DB02] approximated the neighborhood with an implicit polynomial of second order
(a quadric surface). Rusinkiewicz [Rus04] presented an efficient finite-differences approach for irregular triangle
meshes that resembles the common method for estimating per-vertex normals on meshes. Goldfeather et al. [GI04]
extended the approximation of the neighborhood with a bivariate function (generalization of Hamann’s method for
neighborhoods) with estimated normal vectors. Razdan and Bae [RB05] proposed a Bézier patch-fitting method,
computing the curvatures from biquadratic Bézier patches that are locally fit to the data.

We compared several methods for synthetically created point sets with known exact principal curvatures. Every
test was applied to a data set without noise, which was subsequently contaminated with light and medium noise
levels. Note that the noise level is related to the average edge length of the six nearest neighbors to each point of
the data set: eave = 1

n

Pn

i
1
6

P6
j ‖Pi − Qj‖, where Qj ∈ N (Pi). Perturbing the points with a random noise with

an amplitude up to 40% of eave is considered light noise, up to 80% of eave medium, up to 120% strong and above
120% extreme.

A slight modification of Goldfeather’s approach turned out to work well for all tested noisy data sets:X
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T are the coordinates of its transformed

normal vector, K = (a0, a1, a2, a3, a4, a5, a6, a7, a8, a9)
T is the coefficient vector, and wi = max(〈N(P),N(Qi)〉 , 0)

is our introduced weight. As the neighborhood is transformed to the local coordinate frame, N(P) = (0, 0, 1)T,
the weight can be rewritten to wi = max(nz

i , 0).

The weight introduced into the estimation algorithm guarantees more stability, especially for objects containing
many sharp edges or areas with high curvature, assigning low weights to these points. Due to more degrees of
freedom, cubic polynomials tend to approximate the neighborhoods better than quadratic ones. Nevertheless, with
increasing noise level the approximation using cubic polynomials provides worse results. Quadratic approximation
smooths the estimates, suppressing the noise, when it becomes significant relative to the neighborhood size. Up
to light noise levels a cubic polynomial is a better choice and provides good results; for higher noise levels we
switch to the quadratic approximation as it prevails regarding approximation accuracy over the cubic one. At the
beginning of the whole reconstruction process, the user has to specify an estimate of the noise level in the data En.
This value is then used for the computation of the parameters (method, neighborhood size, etc.) for estimation
of all surface properties and later for the segmentation procedure.

As stated by other researchers before, the neighborhood size is the crucial parameter for stable curvature
estimation. While small neighborhoods are suitable for clean data, larger neighborhoods tend to be less sensitive
in the presence of noise by smoothing the estimates. In our application, the neighborhood size is adjusted according
to the user-specified parameter En.

3. First-order segmentation

The goal of a segmentation is to subdivide the point set into “meaningful” parts according to surface properties.
During the first-order segmentation step the point set is split according to the identified discontinuities in the
information related to the surface first-order derivatives, the normal vectors. We use a region-growing algorithm
with two segmentation thresholds [VB04]. In Fig. 3, the differences between the first-order (left image of (a)
and top image of (b)) and second-order (right image of (a) and bottom image of (b)) segmentation with fixed
thresholds are shown. The point set (a) was contaminated with light noise, (b) with medium noise.

The first-order segmentation provides reliable information about sharp edges and areas with high curvature in
the point set. These highly curved regions cannot be in general approximated well by a smooth quadratic or cubic
polynomial and therefore the normal vectors of points close to these sharp features are often estimated inaccurate.
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a) b)

Figure 3: Examples of first- and second-order segmentation with fixed thresholds.

Using the first order segmentation we can detect locations with sharp edges in the data set and re-estimate
the normal vectors of points close to these edges by temporarily excluding the points behind the edge from the
neighborhood and re-constituting the neighborhood with neighboring points only on one side of the edge. The
idea of the re-estimation is sketched in Fig. 4. The normal vector re-estimation leads to a significant improvement
of the accuracy of the normal vectors for objects with many sharp edges [VB04].

N(P)

P

N(P)

P

Figure 4: Re-estimation of normal vectors of points close to sharp edges.

4. Higher-order segmentation and surface fitting

The first-order segmentation is suitable for the detection of sharp edges, i.e. C1 discontinuities, but it has a few
drawbacks due to insufficient information provided by the normal vectors:

• It is unable to detect tangent-continuous, but curvature-discontinuous transitions between two algebraic surfaces
- like a G1-transition between a cylinder and a sphere, see Fig. 5 a).

• Due to the segmentation parameters one algebraic surface can be subdivided into many segments, see Fig. 5
b).

• It can happen, especially for noisy point sets, that G1 discontinuous transitions are not detected, like the
transition between a cylinder and a cone shown in Fig. 5 c).

Due to these disadvantages of the first-order segmentation and the fact that the normal vectors do not provide
enough information to segment and recognize algebraic surfaces reliably in a straightforward manner, higher-
order surface properties - principal curvatures - are additionally used for the subsequent segmentation and surface
fitting. We note that principal curvature-based segmentation may be unable to detect sharp edges if the principal
curvatures of points close to sharp edges were exact, e.g. in the case of two perpendicular planes coming together.
In order to handle correctly this possible but very improbable case, the angle between normal vectors of two
adjacent points must fulfill the angle criterion from the first-order segmentation.
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a) b) c)

Figure 5: Problems during the first-order segmentation.

Compared to normal vectors, principal curvatures offer more information about the local behavior of the surface,
but they have also disadvantages:

• They are more sensitive to noise in the data.
• They are not uniformly scale-invariant like normal vectors. While for the first-order segmentation the seg-

mentation parameters work for almost all point sets, the curvature thresholds necessary for the second-order
segmentation as presented in [VB04] have to be adjusted to object size; they can even vary within one object.

To deal with the first problem we compared several recently published curvature estimation methods described
in Section 2. We chose the Goldfeather’s approach [GI04] as it supports stable curvature estimation. If the noise
level exceeds a threshold we apply an appropriate smoothing method to the points [VB07]. To solve the second
problem we designed a new segmentation procedure, which automatically subdivides an object into general quadric
surfaces with minimum user interaction.

The overall structure of the segmentation procedure is outlined in Algorithm 1. The algorithm supports multiple
passes with each pass improving and enlarging existing recognized segments that already have been successfully
approximated with a quadric surface, and creating new segments fulfilling the segmentation criteria. The main
part of the whole segmentation process is described in Alg. 2. It is based on a top-down subdividing approach of
the point set based on region-growing. Sorting the points with regard to their principal curvatures in the beginning
guarantees that the segmentation procedure starts with points on simple surfaces, e.g. points on planes, cylinders
or cones. Points on or close to sharp edges or highly curved areas where the curvature estimates can be quite
inaccurate are processed at the end, with a high probability that only a few of these points remain unmarked, as
they can be assigned to already recognized segments during segment enlargement.

One general problem of a region-growing algorithm is a proper specification of thresholds, e.g. a good ter-
mination criterion for the growth of a segment. Determining universal thresholds for the principal curvatures
is complicated by the fact that principal curvatures depend on the object size. Furthermore, with increasing
noise level estimated curvatures are smoothed by increasing the neighborhoods, which makes the estimation more
robust against noise but unfortunately blurs transitions between two algebraic surfaces. Therefore, the segmenta-
tion thresholds have to be estimated directly from the curvature differences on such transitions between surfaces.
Unfortunately, these transitions are not known a priori and their estimation directly from the data, e.g. from cur-
vature derivatives [BPK98, YBS05], is a complex process typically requiring substantial user interaction [YBS05].
Furthermore, computation of curvature derivatives is extremely sensitive to noise.

As the goal of our segmentation procedure is to minimize user interaction and the number of parameters to be
provided, and to produce a stable subdivision of the object into distinct quadratic algebraic patches, a top-down
segmentation approach has been chosen. The top-down approach allows us to start with arbitrary thresholds and,
after checking the segmentation using surface fitting, either to accept the segmentation or decrease the thresholds
and refine the segmentation.

The initial segmentation thresholds are derived from the mean value of all principal curvatures of processed
points, and a segment Sk is created using these thresholds. The points of Sk are approximated by a quadric
surface, and the average distance Da of the points to the fitted surface is computed. If Da < Ts, Sk is accepted
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and enlarged. Note that we handle a torus using an extra procedure, following [VB04]. When a torus is detected,
the torus parameters are estimated and a special enlarging procedure for the torus case is called. During general
enlarging, additional neighboring points of Sk are added to it, as long as their distance to the fitted surface stays
within Ts and they do not belong to any other segment. Ts is the only segmentation threshold the user has to
provide, ranging from 0.05 for “clean” data set to one for extremely noisy data. If no more points can be added to
Sk, all points of Sk are marked and the region-growing procedure proceeds with the next unmarked seed point from
the sorted array. If Da > Ts, Sk is released, the segmentation thresholds are decreased, and the region-growing
procedure creates a new segment Sk.

Compared to region-growing with fixed thresholds [VB04], our procedure can process (segment and approximate
by a quadric) all points several times, if created segments are rejected due to large initial thresholds, leading to
longer computation times. The most time-consuming part is the computation of the average distance of the
points in a segment to the corresponding approximated quadric surface, which is non-linear and iterative, see
Section 4.1. The times for the segment creation and approximation procedures can be neglected compared to the
average distance computation times. But not all distances from all segment points to the fitted surface have to be
computed in order to determine that a segment should be rejected. Thus, segment rejection can be optimized by
testing the average distance after a few distance computations.

Algorithm 1 Segmentation Algorithm

1. Unmark points in non-regular segments. (We call a segment regular when it contains more points than a
prescribed number.)

2. Perform Algorithm 2 described below.
3. Sort all segments in descending order according to their numbers of points.
4. For all regular segments Sk, k = 1, . . . do

Let Q be a neighbor of Sk and Q(Sk) be the quadric surface which approximates Sk (Alg. 2). If d (Q, Sk) < Ts

and for segment Sm containing Q applies m > k (i.e. Sm is processed later than Sk), remove Q from Sm and
insert it into Sk.

5. If the number of points in all non-regular segments is higher than λn, where n is the number of all points and
λ is a parameter (typically we choose λ = 1%− 3%), then slightly increase Ts and repeat the whole procedure.
Note that Algorithm 2 takes as input only points of non-regular segments.

6. If the number is less than λn, then for all points in all non-regular segments do:

• Pick a point Pi.
• Find all neighboring segments S = {S1, . . . , Sj} in the vicinity of Pi.
• Find in S the segment Sk with the shortest orthogonal distance from a neighboring point Q to the fitted

surface of Sk.
• If the distance is less than 2Ts, remove Q from the current segment and add it to Sk.
• Repeat until non-regular segments are empty or the distances from the remaining points to the nearest

segment is greater than 2Ts.
• If there are points remaining, remove them from the data set, as they are possible outliers.

Setting a proper value for the segmentation parameter Ts is very important, and it affects not only the number
and the shape of resulting segments, but the processing time as well. Choosing a small value for Ts causes many
segments refusals after surface fitting. In the worst case, after one pass of Alg. 2 all points belong to non-regular
segments. Then, Ts is slightly increased and Alg. 2 is repeated. It is desirable that Ts is larger than the maximum
noise amplitude. Otherwise, even correctly segmented and fitted algebraic surfaces may stay incomplete, as the
distance of some noisy points to the surface is greater than Ts, as shown in Fig. 6 (a).

Fig. 6 illustrates the behavior of the segmentation procedure using various values for Ts. Both point sets were
contaminated with medium noise with a maximum amplitude of 50% of eave. For case (a), the segmentation
parameter was set Ts = 0.1 and for (b) it was Ts = 0.3. The segmentation procedure required 19.24 seconds and
created 20 regular segments in case (a), and 2.28 seconds and 11 regular segments in case (b).

The data set in Fig. 6 (c), (d) and (e) is more difficult to segment properly, as the point density of the data
set is low. The segmentation parameter was Ts = 0.1, Ts = 0.5 and Ts = 0.9 for the cases (c), (d) and (e)
respectively. For case (c) 20 regular segments were produced in 9.56 seconds, for case (d) 24 regular segments in
2.08 seconds, and for case (e) 19 regular segments in 0.56 seconds.
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8 M.Vančo, B. Hamann, G. Brunnett / Surface Reconstruction from Unorganized Point Data with Quadrics

Algorithm 2 Segmentation and Fitting Algorithm

1. Sort all unmarked points lexicographically according to their principal curvatures, i.e. Index(Pi) < Index(Pj)
if κmin

i < κmin
j or κmin

i = κmin
j ∧ κmax

i < κmax
j . Set the initial segmentation thresholds according to the mean

value of the principal curvatures of all points: Tmin
init = γ 1

n

Pn

i=1 κmin
i and Tmax

init = γ 1
n

Pn

i=1 κmax
i , where γ is a

constant.
2. Pick the first unmarked point from the sorted array and create a regular segment Sk using a simple and efficient

region-growing algorithm.
3. Approximate Sk by a general quadric surface. We denote the surface by Q(Sk).
4. Compute an average distance Da of the points of Sk to the fitted surface, i.e. Da = 1

nk

P
i d (Pi,Q(Sk)).

5. If Da > Ts (Ts being a user-defined threshold), reduce the segmentation thresholds and go to step 2.
6. Otherwise, enlarge Sk by inspecting its neighboring points which do not belong to any other segment (unmarked

points): for a neighbor Q, if d (Q,Q(Sk)) < Ts, add Q to Sk. At the end of the enlarging process, all points
of Sk are marked and the procedure proceeds with the next unmarked point using the initial segmentation
thresholds.

7. If points have been added to Sk repeat surface fitting. i.e. go to step 3.

a) b)

c) d) e)

Figure 6: Segmentations obtained by different values of the segmentation parameter Ts.

4.1. The orthogonal distance

While the computation of the orthogonal distance from an arbitrary point P to special cases of quadrics like planes,
circular spheres, cylinders, cones or of the quartic surface like circular tori is a relatively simple computational
task, the orthogonal distance to a general quadric is much more complex and it cannot be found analytically. We
consider the quadric surface equation in the form

F(x) = ax
2 + by

2 + cz
2 + 2fxy + 2gyx + 2hzx + 2px + 2qy + 2rz + d =

xTAx + 2BTx + d = 0, (1)

where A is the 3x3 symmetric matrix A =

0� a f h

f b g

h g c

1A and B is the vector (p, q, r)T.

The normal vector N at a point x is given by N(x) = ▽F(x)
‖▽F(x)‖

= Ax+B

‖Ax+B‖
.

To obtain the nearest point on F(x) to P we intersect a line g : x = P+t▽F(x) = P+t(Ax+B) in the orthogonal
direction to F(x) with the quadric surface. The point x on g can be expressed as:

x = (I + tA)−1(P + tB). (2)
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Substituting (2) (after singular value decomposition) into F(x) yields an equation of order 6 at most.

It is not acceptable to search numerically the six solutions in order to find the shortest distance. Therefore,
numerical iterative approaches are usually used. One can iteratively minimize the quadratic distance d(x) =
‖P − x‖2 with a constraint F(x) = 0 using Lagrange multipliers:

D(λ,x) = ‖P − x‖2 − λF(x) → min with

▽D(λ,x) = 0. (3)

Equation (3) can be solved by using, for example, a globally convergent quasi-Newton method. We observed that
a correct convergence of equation (3) highly depends on the starting point x0 and the value λ0.

As every point of the underlying point set has an associated estimated normal vector, we intersect a line through
P in the direction of its normal vector with the quadric surface F(x) to obtain a suitable starting point x0.
Unfortunately, for outliers and some special cases the intersection can yield an empty set. In these cases we repeat
the intersection using the gradient of the quadric in P, i.e. ▽F(P). ▽F(P) provides a reasonable approximation
of the normal vector only if P is close to F(x). If this second attempt returns no intersection, we set x0 = P.

Tests have shown that the correct estimation of λ0 is crucial for the convergence of the equation (3). If the
starting point x0 lies on the quadric, i.e. we get an intersection point using the associated normal vector or gradient
in P, we set

λ0 =
2

3

�
(P− x0)x

▽F(x0)x

+
(P − x0)y

▽F(x0)y

+
(P− x0)z

▽F(x0)z

�
. (4)

This heuristics leads in almost all cases to a globally minimal distance. In some rare cases of divergence λ0 has to
be slightly decreased.

The choice of λ0 is more critical when the starting point x0 = P. Here, we observed more divergence cases,
even when using different starting values for λ0. Minimization of an extended Lagrangian function D(λ, α, β,x)
containing an additional constraint ▽F(x) × (P − x) = 0 provided more stable results for these cases using the
same strategy for estimation of the starting values. We prefer minimization of (3) since we need to minimize only
four variables in that approach instead of six (the computation of the distance is the most time-consuming part
of the whole segmentation process).

4.2. Surface fitting with quadrics

Approximation of points with implicit polynomials is a well-studied field in geometric modeling. The general
approach minimizes the sum of squared algebraic distances:

ga =
X

i

F(xi)
2 → min , (5)

with F(xi) = PTK, where PT is the monomial basis of the implicit polynomial and K is the coefficient vector.

Unfortunately, an infinite number of coefficient vectors minimizes the expression (5), including the trivial solution
K = 0. Therefore, a minimization constraint for K should be specified. Different constraint schemes for (5)
have been proposed, see for example [Alb74, Gna77, Pra87]. The most common of these schemes is based on
normalization of the coefficient vector, i.e. KTK = 1. This leads to an eigenvalue problem, where the solution is
the eigenvector associated with the smallest eigenvalue. However, the numerical stability of the solution is poor
and the resulting implicit polynomial is extremely sensitive to changes of the coefficients; small changes of the
coefficients may result in large fitting errors.

Our modification of (5) involves estimated normal vectors which are incorporated into the minimization process:

P
T
K = 0,

▽F(x) × N(Pi) = 0. (6)
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The fitting quality of this method is better than that of (5), especially for cylindrical and parabolic surfaces, but
it still exhibits instability problems depending on noise and estimated normal vectors.

Taubin [Tau91] proposed to minimize the first-order Taylor approximation of the orthogonal distance instead
of squared algebraic distances:

gt =
X

i

F(xi)
2

‖▽F(xi)‖2
. (7)

The minimization problem defined by (7) is non-linear and leads to an iterative evaluation with the need for
a global search, which still does not guarantee convergence. Furthermore, (7) can become numerically instable
when ‖▽F(xi)‖

2 is small. Taubin [Tau93] included into the orthogonal distance approximation higher-order partial
derivatives at the points. However, this higher-order approximation remains still non-linear.

Ahn et al. [ARCW02] introduced a two-step approach for the approximation of point sets by implicit polynomials
based on true orthogonal distance. In the first step, for every point Pi its orthogonal “contacting point” P′

i on
the implicit surface is computed. In the second step, the sum of distances

P
i ‖Pi −P′

i‖
2 is minimized. Both steps

are non-linear and computationally expensive.

Recently, two approaches for linear implicit polynomial approximation were published [BLCC00, HB04]. The
authors’ description of a linear approximation is that the solution can be found by AK = b, where A is a known
matrix, b is a known vector, and K is the unknown coefficient vector.

The “3L algorithm” suggested by Blane et al. [BLCC00] is based on the construction of two additional level
sets of f(x) = 0 having distances −ε and ε from the zero set. The goal of this approach is to find a polynomial
with zero values at the original points and values −ε and ε at the two additional constructed point sets below
and above the original data:

gb =
X

i

(PT(xi)K)2 +
X

i

(PT(xU
i )K − ε)2 +

X
i

(PT(xL
i )K + ε)2 , (8)

where ε is a small positive constant and PT is the monomial vector of the implicit polynomial.

Helzer et al. [HB04] presented another method - called “MinMax method” - for implicit polynomial fitting
based on an in-depth analysis of the zero set sensitivity function. They examined the changes of the fitting error,
assuming small changes of the polynomial coefficients, and established a zero set fitting error bound. On the
contrary to the 3L method, the MinMax algorithm uses the points as well as the normal vectors.

Numerous tests have shown that the MinMax method performs best for most cases; it exhibits very good
stability for all quadric surface types. Helzer et al. [HB04] demonstrated superior fitting quality of the MinMax
method when compared to the 3L approach for curves of high degree in 2D. For surface fitting, the differences
between MinMax and the 3L method are marginal; the 3L fitting approach suits for our purposes well. As both
methods are linear in the number of points contained in a segment, computation time can be neglected when
compared to the non-linear evaluation of the orthogonal distance function. Therefore, the points of every segment
are approximated by a quadric surface twice using both presented methods, and we use the coefficient vector of
the fit with the shortest average distance of the points to the quadric.

Algebraic Distance Orthogonal Distance

General LSF 0.00146943 0.02559303

Normal-constrained LSF 0.00148268 0.02342658

3L Method 0.00642055 0.00924565

MinMax 0.20496235 0.00924533

Table 1: Average algebraic and orthogonal geometric distances of cylinder points to fitted surface.

Fig. 7 illustrates the fitting quality of the discussed four linear methods for an elliptic cylinder, containing
4,613 points contaminated with medium noise. The corresponding algebraic and orthogonal distances are listed
in Table 1. The points of the cylinder were projected onto the fitted quadric and triangulated for visualization
purposes.
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Figure 7: Comparison of fitting quality of different methods. From left to right: minimization of squared algebraic
distances; 3L method; MinMax method; normal vector-constrained minimization of squared algebraic distances.

5. Results

We present segmentation results for synthetically created and scanned data sets. All synthetic data sets were
contaminated with medium noise using an amplitude of at least 40% of eave. Furthermore, they were scaled using
non-uniform scaling factors in order to obtain general quadric surfaces (elliptical surfaces).

In all cases, our reconstruction provided a complete decomposition of the point set into quadric surfaces and tori.
For special cases (spheres and circular cylinders, cones and tori) we provide surface parameters like axes, radii,
etc. The reconstruction pipeline is based on neighborhoods. Triangulation of segments was done for visualization
purposes only. Holes in the segments are flaws in our triangulation procedure. In Fig. 9, left we have included a
dialog showing the types of reconstructed surfaces and the number of points they contain.

Minor problems can arise during the reconstruction of the object shown in Fig. 8 c) - Revolution+Block. The
transition between the green plane and the purple elliptic cylinder causes the problems. During processing of the
green plane the enlarging procedure “steals” points from the cylinder, as they fulfill the distance criterion, i.e.
the distance of the cylinder points to the plane equation is smaller than Ts. Even the built-in check requiring
the normal vectors of two adjacent points to enclose a small angle, does not prevent this effect. For special cases
of segments with constant, at least one, curvature we could perform additional tests of the curvature(s) of two
adjacent points. But for general quadrics it is very difficult to detect or prevent assignment of points to wrong
segments on such or similar transitions. Therefore, we assume that this disadvantage of our reconstruction can be
dealt with manually by the user.

A general reconstruction problem involves a correct detection of C1-continuous transitions between surfaces.
Normal vectors do not provide enough information for it, and even detection using principal curvatures is not
reliable due to smoothing of curvatures in such transition regions during curvature estimation. In our approach
the shape of a C1-continuous transition between surfaces is controlled by the noise. The higher the noise level,
the greater the thresholds are set, leading to C1-transitions that are less reliable, as demonstrated in Fig. 8 d).
For moderate noise, see Fig. 8 a) and c), the C1-transition was found correctly, without any outliers.

Processing times of the segmentation procedure together with surface fitting (excluding computation time for
surface properties) are listed in Table 2. All tests were performed on a Windows XP based system with 2.16 GHz
Intel Core 2 Duo T7400 CPU and 2x1GB SO-DIMM RAM, 533 MHz. Only the times for the first segmentation pass
are listed. The processing times depends not only on the number of points but also on the number of constructed
surfaces, the noise level and the user threshold Ts. When the user is not satisfied with the result, one can improve
(enlarge) the segments by increasing the segmentation parameter Ts (Section 4). Usually, the second and further
passes of the segmentation procedure introduce only small changes in the segmentation, as they operate on points
which have not been assigned to any other regular segment before. The running times of the next passes are less
than one second even for objects containing several hundred thousand points.

submitted to COMPUTER GRAPHICS Forum (9/2007).
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Revolution MechPart Revolution+Block Curved Box ITW Object

No. of points 54,854 22,211 90,974 27,792 158,562

No. of quadric surfaces 11 28 21 19 34

Computation time 2.30 4.92 3.56 0.95 5.95

Table 2: Computation times in seconds.

a) Revolution b) MechPart

c) Revolution+Block d) Curved Box

Figure 8: Segmentation and reconstruction results of synthetic point sets contaminated with noise levels of 50%
of eave (a), (b), (c) and 80% of eave (d).

Key Fandisk

Figure 9: Segmentation and reconstruction results of point sets contaminated with noise levels of 50% of eave

(left), and 40% of eave (right).
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Figure 10: Segmentation and reconstruction result of real data set (courtesy of ITW, Chemnitz, Germany).

6. Conclusions and future work

We have presented a new method for constructing several quadric surface patches from an unorganized noisy
point set. Geometrical surface properties, necessary for the segmentation, are estimated directly from the given
points using methods that are stable even in the presence of high noise. For the segmentation procedure, a top-
down approach combined with region-growing has been used in order to generate a meaningful and high-quality
subdivision of the underlying surface. We also ensure that the number of parameters to be provided by user is small.
The subsequent fitting of the segmented points by quadric surface patches provides a continuous approximation
of the object’s surface and it controls the segmentation procedure by returning needed feedback, that allows to
decide, whether a segment was approximated well by a quadric or it should be further subdivided.

Although every point in the data set can be processed several times, our implementation of the segmentation
procedure is efficient, processing on the order of 100,000 points within a few seconds, running on a computer with
a 2GHz Intel Core Duo CPU. Through modification of the one user-specified segmentation parameter, the initial
segmentation, when it was not satisfactory, can be improved easily and quickly, as the segmentation procedure is
optimized for multi-pass processing.

The result of the segmentation strongly depends on the segmentation parameter Ts, which the user has to
provide. We intend to analyze the noise in the data and provide a good estimation of Ts, in order to avoid
unnecessarily long processing times.
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[VFT07] Várady T., Facello M. A., Terék Z.: Automatic extraction of surface structures in digital shape
reconstruction. Computer-Aided Design 39, 5 (2007), 379–388.
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