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Abstract

The three-dimensional shapes of tectonic plates that sink into the Earth’s mantle (slabs) are the starting
point for a range of geoscience studies, from determining the forces driving the motion of tectonic plates,
to potential seismic and tsunami hazards, to the sources of magmas beneath active volcanos. For many of
these applications finite element methods are used to model the deformation or fluid flow, and therefore the
input model parameters, such as feature geometries, temperature or viscosity, must be defined with respect
to a smooth, continuous distance field around the slab.

In this paper we present a framework for processing sparse and noisy seismic data (earthquake locations),
defining the shape of the slab and computing a continuous distance function on a mesh with variable node
spacing. Due to the inhomogeneous volumetric distribution of earthquakes within the slab and significant
inaccuracies in the locations of earthquakes occurring hundreds of kilometers below the Earth’s surface, the
seismicity data set is extremely noisy and incomplete. Therefore the preprocessing is the major part of the
framework consisting of several steps including a point based smoothing procedure, a powerful method to use
other observational constraints on slab location (e.g., seismic tomography or geologic history) to extend of
the slab shape beyond earthquake data set and continuous resampling using moving least squares method.
For the preprocessed point data we introduce approaches for finding the three-dimensional boundary of
the slab and a subdivision of the slab into quadric implicit polynomials. The resulting distance field is
then compiled from distances to the piecewise continuous approximation of the slab and distances to slab
boundary.

1 Introduction

The Earth’s surface is divided into tectonic plates whose motion is driven by thermo-chemical convection within
the underlying mantle [Tac00]. Over long periods of time (millions of years) the mantle deforms as a fluid, i.e.,
its motion can be described as flow of a viscous material. Tectonic plates are formed and diverge at mid-ocean
spreading centers, slide past one another along transform boundaries or converge at subduction zones. When
two tectonic plates converge, one plate sinks asymmetrically beneath the other plate driven by gravitational
instability of the cold, dense tectonic plate. The portion of a tectonic plate that has subducted into the mantle
is referred to as the slab. The thermal signature of tectonic plates and slabs is approximately 100 km thick, and
the subducted portions of slabs can extend hundreds to thousands of kilometers laterally and sink to depths of
up to 2890 km (core-mantle boundary). The location of the slab in the mantle is discerned from the locations
of earthquakes within the slab, which extend to depths of 670 km [IB77], and from seismic tomography, which
detects three-dimensional regions of low (warm) and high (cold) seismic velocity [vdHESN91, Rom03] through-
out the mantle. The shape of slabs in the mantle combined with mechanical analysis (analytic or numerical
modeling) can provide information on the state of stress in the slab (e.g., compressional versus tensional), the
history of subduction (e.g., rate and direction), and interaction of the slab with mantle structure (e.g., lay-
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ers with different material properties) or with large-scale mantle deformation driven by heating from within
[VR84, wZ90, NMHJ96, BGS03, JB10, MGK06]. Therefore, an accurate determination of three-dimensional
slab shape is the starting point for several Earth science applications.

The primary source of information about slab location is seismicity. Therefore, the shape of slabs must be
reconstructed from inhomogeneously distributed and noisy observations. In publicly available data sets, ten
thousand earthquake locations may be known for a slab of size of 2000× 700 km2. However, the error in the
location of individual earthquakes may exceed 5–50 km depending on when the earthquake occurred (older
events having larger errors) and its depth (deeper events being more difficult to locate) [SPP00]. However, in
some regions, earthquake relocation studies have resulted in data sets with location errors of less than one to
five kilometers [ZTS∗03, RH02]. In addition, even if the locations of earthquakes are known exactly, they occur
in a volume of the slab with thickness of 10 to 50 km, rather than along a single surface.

Unlike engineered structures, whose shape is often constructed from standard geometric objects (e.g., planes,
cylinders), because slabs deform as stiff viscous sheets, their shape can vary substantially on both short and
long length-scales without a simple relationship to standard geometric objects. Previous attempts to reconstruct
three-dimensional slab shapes have relied on approximating the entire slab structure using the analytic solution
for a thin elastic sheet [Chi91], or smooth splines [GS98b, SA06]. However, both these approaches enforce a long
wavelength smooth shape on the slab structure that can miss shorter-length-scale features, or can introduce
short wavelength undulations that are unrelated to the actual slab shape. As the slab structure is often used to
create input for analytic or numerical models (e.g., thermal and mechanical structure for a finite element model
of deformation), errors in the slab structure can lead to errors in the predicted deformation [BGS03, JB10]. In
addition, assignment of properties (e.g., temperature or viscosity) to a finite element grid, which being spatially
related to the location of the slab surface (e.g., by Euclidean distance), also requires a method to create a
smoothly varying field without aliasing on the grid and a method for defining the three-dimensional slab edge.

The main focus of the paper is a case study of complex point-based methods for processing noisy data
in the context of generating a continuous distance field function from the data. In Section 2 we describe our
preprocessing methods, i.e., point-based smoothing, extending the slab beyond earthquake centers (using sparely
sampled contour and/or boundary lines), and resampling the point set based on a subdivision using moving least
squares (blended with elliptic weight functions resulting in a smooth continuous discrete approximation of the
original data). Finally, the slab boundary is determined. Section 3 describes steps necessary for computation of
the distance field. The point set is segmented into quadric patches, which are used as a continuous approximation
of the underlying surface for distance computation. For points outside the slab domain, a point-curve distance
calculation is performed. Section 4 provides results obtained with our method when applied to a digitized
slab beneath southern Alaska. In Section 5 we summarize the main points of the paper and present ideas for
potential future research.

2 Data preprocessing

We consider an input point set X = {P1, . . . ,Pn} that consists of three-vectors defined as (latitude, longitude,
radius) with the origin in the Earth’s center or (latitude, longitude, depth) coordinates with a zero depth on
the Earth’s surface. As mentioned in the Introduction, the input data reflects the positions of earthquake
hypocenters within a slab. Compared to point sets obtained via conventional scanning of an object’s surface
using range scanners, these data do not lie on a two-manifold surface, they rather represent a volumetric region,
as they can appear at an arbitrary place within the slab with thickness of several tens of kilometers. An
illustration of the difference between data scanned directly from an object’s surface and the slab data is shown
in Figure 1. Whereas the noise in the data scanned by a range scanner is determined mainly by the accuracy and
the properties of the scanning device, the noise level in the slab data is additionally increased by the diameter
of the slab.

Furthermore, the accuracy of the estimation of the earthquake positions is very poor. The measurement error
ranges up to several kilometers depending on the elevation of the Earth’s surface over the earthquake center.
In Figure 2, the underlying slab is visualized using a triangulation of the earthquake centers. The triangulation
(which is non-manifold and discontinuous at several places) was generated for visualization purposes only. To
measure distances to the slab (based on a distance field around the slab) or extend the slab shape beyond the
earthquakes centers (section 2.2), the point set has to be preprocessed. Depending on the noise level in the
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Figure 1: Difference between points approximating a manifold surface using, for example, laser range scanning
(right) and a point set corresponding to earthquake centers (left); viewed from the side.

data, the point set is smoothed (section 2.1) and/or resampled (section 2.3).

Figure 2: Triangulation of earthquake centers.

2.1 Smoothing

Denoising, smoothing or fairing of noisy data is one of the most important tasks during preprocessing of
experimentally obtained data. In recent years, many authors dealt with mesh-based smoothing [BO03, DMSB99,
FDCO03, JDD03, KCVS98, LW05, OBB01, SRML07a, SRML07b, Tau95]. All these methods have a common
feature: they operate on triangulated meshes. In [VB07] a few of these approaches were modified in order
to work directly on neighborhoods, and their smoothing quality and preservation of sharp features has been
examined and compared.

For point sets consisting of earthquake centers we considered the following facts:

1. No consistent triangular mesh can be generated from slab data, as the data does not form a two-manifold
surface. The result of a triangulation generation is a “triangle soup”, as can be seen in Figure 2. Therefore,
smoothing has to be performed prior the triangulation step.

2. Slabs do not contain sharp features, so we can use fairing methods suppressing all frequencies and pro-
ducing smooth surfaces without sharp edges or corners.

3. The noise level in the data is extremely high so that it is often impossible to distinguish between small
features and noise. A trade-off between strong smoothing and preservation of important features must
be found. Due to the extreme noise level, optimal smoothing parameters cannot be reliably estimated
automatically, so the user should alter by visual inspection the parameters in order to achieve the desired
smooth shape of a slab.
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The most appropriate fairing method for our data sets is a slight modification of the general purpose
moving least squares method [ABCO∗01]. Alexa et al. proposed a two-step approximation. In the first step,
a local coordinate system is determined, which is in the second step used for the approximation of the point
neighborhood with a high-order polynomial z = f(x, y). Apart from the order of the approximating polynomial,
the chosen neighborhood size is the most important parameter affecting the smoothing strength and quality.
In order not to approximate the noise and to find the underlying surface the neighborhood size has to be set
dependent on the noise level, ranging from 100 (almost “clean” data) to circa 2,000 (extremely noisy, large slab
diameter) nearest neighbors.

For large point sets, neighborhoods consisting of ∼1,000 and more points cannot be stored in the mem-
ory for every point, and therefore the neighborhoods have to be efficiently computed on-the-fly within the
smoothing procedure. This large neighborhood is compiled from “direct neighborhoods” (30–50 neighbors per
point [VBS99], which we store in main memory) in a similar manner to the finding of geodetic neighbors de-
scribed in Vanco and Brunnett [VB07]. The large neighborhood is created using a combination of a hash table
H and a queue Q.

Initially the direct neighbors N (P) = {Q1, . . . ,Qk} of a point P are projected into the hash table. The hash
function projects the points into the table sorted according to their distance to P (with the shortest distance
at the beginning of the table). The points are successively taken from the hash table, starting at the smallest
used table index, and their neighbors are inserted into the hash table (if they are not already included). If
a neighbor should be projected outside of the hash table range, it is instead inserted into the queue Q. The
process is stopped when the desired number of neighbors k has been found or when all points from the hash
table have been processed. In the latter case, if the desired neighbors have not been yet found, the points from
the queue Q are projected into a new hash table using a new hash function until k neighbors are found.

The obtained large neighborhood (denoted by ML) is first approximated by a best-fit plane in order to
determine a domain for the approximation of ML with a high-order polynomial in a least-squares manner, i.e.,

∑

i

(f(xi, yi)− zi)
2wi → min,

where wi are weights associated with the neighbors Qi and [xi, yi, zi] are the Cartesian coordinates of Qi.
The surface degree is an important parameter affecting the smoothing power. The higher the degree is, the
better is the neighborhood approximated by the surface. Unfortunately, higher-order polynomials can produce
unwanted waves and are more sensitive to noise. Thus, the surface degree should be chosen in conjunction with
the neighborhood size, and in accordance with the estimated noise level in the data.

Figure 3: Top row : side view of a digitized Tonga slab (north of New Zealand); bottom row : top view of a
triangulation of the point set. Left : original data set; right : data set after smoothing.

In Figure 3 the result of the smoothing procedure is demonstrated for an extremely noisy digitized slab
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north of New Zealand using a neighborhood containing 1,000 points and a cubic surface, i.e.,

f(x, y) = a0 + a1x+ a2y +
1

2

(

a3x
2 + 2a4xy + a5y

2
)

+
1

6

(

a6x
3 + 3a7x

2y + 3a8xy
2 + a9y

3
)

.

The triangulation was used for visualization purposes only.
The smoothing quality is superior compared to the standard smoothing methods, such as Laplacian, bi-

Laplacian, Taubin or bilateral smoothing. The only disadvantage is computation time; only 850 points per
second were processed. As neighborhood assembling is the most time-consuming part of the smoothing, we
project for each neighborhood more than one point onto the polynomial surface. This small optimization has
only a marginal influence on the smoothing quality. The larger the point neighborhood is, the more points
can be projected onto the surface without changing the smoothing effect. This approach reduces dramatically
computation time, see Table 1 1.

# of projected points 1 2 3 4
Time [sec] 11.69 4.66 3.94 3.45

Table 1: Optimization of the smoothing procedure, demonstrated for digitized Tonga slab containing 9,941
points, using 1,000 nearest neighbors.

2.2 Slab extension

The positions of earthquakes within a slab are determined from observations of arrival time of seismic waves
at many seismometers located globally. Outside the seismically active regions the locations of the slab can be
inferred through kinematic constraints on where the slab has been entering the mantle or seismic tomography.

The measured earthquake locations provide only a rough approximation of the form of seismically active
parts of the slab. Seismically inactive parts of slabs do not contain any earthquakes, and thus they have no
data. For the case, where the region of interest of a slab is bigger than the seismically active part, we provide
a few simple procedures for extending the digitized slab surface beyond the acquired earthquake data.

As input the extension procedure expects, apart from the earthquakes centers, sparsely sampled contours
and/or boundary lines. Boundary lines (denoted by CB in the following) define the borders of the region of
interest, and contours (denoted by CL) contain random points belonging to the slab surface. An example of a
slab (near Alaska) with several contour lines (middle of the figure) and a boundary line (lower-left corner) is
shown in Figure 4, on the left side.

Figure 4: Left : slab with contour lines (middle) and a boundary line (left-lower corner), right : extended slab.

The slab extension procedure is sketched in Figure 5. First, a subset Su of the slab surface S is determined
so that a high-order polynomial surface in a local coordinate frame approximates all Su, CL and CB well, i.e.,
the average distance of all points stays within a user-specified threshold.

1Test system: Dual Core Pentium Core 2 Duo, 2.16 GHz with 2 GB RAM.
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Figure 5: Slab extension.

All points of Su and CL are projected onto the xy-plane of the local coordinate system. To each projected
point, its 2D coordinates with regard to the new local coordinate system of the xy-plane are assigned, denoted
by Pd

i . A 2D convex hull of the Pd
i is computed (dashed lines in Figure 5), and the points of CB are projected

onto the xy-plane of the local coordinate system; their 2D coordinates Qd
j are determined. The convex hull

and the 2D polygonal chain Qd
j are merged forming a simple polygon P (dotted lines in Figure 5). For the

merging step, a slight modification of the merge step of a divide-and-conquer algorithm for generation of a
2D convex hull can be used. The interior of P is used as the domain of the high-order polynomial f(x, y).
Subsequently, the domain is rasterized according to a user-specified sampling density parameter Ud, and new
3D points [xi, yi, f(xi, yi)] are inserted into the original data set. In order not to increase the sampling on
overlapping parts with the original slab surface, the distance of a point P, which is to be added to its nearest
neighbor of S, is computed. If the distance is smaller than Ud, the point P is not inserted. A result of the
extension procedure after one step is shown in Figure 4, right side.

2.3 Resampling

In addition to a high noise level in the data provided by global seismic tomography, there is another issue making
the processing of this data difficult. For the parts of the slab with no earthquakes, global seismicity provides no
data, and on the other side there are regions with extremely high point density. Figure 6 demonstrates strong
irregular point density of a slab beneath Alaska.

To be able to create a continuous distance transform for the underlying unknown surface, the boundary of
the surface (slab) must be determined. Finding the boundary of an irregularly sampled point set is a difficult
and ambiguous task requiring a user intervention. To avoid consideration of many special cases during the
implementation of the boundary-finding procedure, we resample the whole point set providing an (almost)
regular sampling. The resampling procedure is based on moving least squares (MLS) surfaces [ABCO∗01]. In
the first step the slab is decomposed into overlapping MLS patches, of which domains are subsequently uniformly
sampled and a new point set is created.

Starting with an arbitrary unmarked point P (with all points being initially unmarked), its large neighbor-
hood NL is assembled using small point neighborhoods (section 2.1) and a local coordinate system for NL is
determined. The points of NL are approximated with a high-order polynomial staying within a user-prescribed
approximation threshold Ta, i.e., the average distance of the points to the surface must be less than Ta. If the
distance criterion is violated, outer points (boundary points) are excluded from NL and the approximation is
repeated. When an MLS patch has been successfully approximated, the following computations are performed:
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Figure 6: Highly irregular point density of the slab beneath Alaska.

• Project all points of NL onto the MLS surface; for each point Pi store its 2D domain point Pd
i .

• Compute a convex hull CH of the domain points Pd
i .

• Store the points Pd
min and Pd

max of CH with the minimum and maximum x-coordinate, respectively.
Knowing these points speeds up the query whether an arbitrary 2D point is inside or outside the convex
hull (O(log n), where n is the number of points of the convex hull).

• Store the distance dmax from the center of mass of the domain points to the most distant 2D point Pd
m of

NL.

• Estimate the best enclosing ellipse of the domain points Pd and determine its two axes ud and vd and
the lengths of the axes. The axes are extended from 2D into 3D space (assigning z = 0), and transformed
from the local coordinate system of the MLS surface into the global coordinate system (U,V).

• Create and store an empty quadtree QT . (See Algorithm 1 described below.)

All points of NL are marked, and the procedure proceeds with the next unmarked point until all points are
marked.

At the end of the first step, a neighborhood graph of the MLS surfaces is created. Each MLS surface stores
all its direct neighboring MLS surfaces, i.e., an MLS surface Si is adjacent to a surface Sj if there exists a point
P ∈ Si so that a direct neighbor Q of P belongs to the surface Sj , i.e., Q ∈ Sj .

Having decomposed the surface into MLS patches, all patches are successively rasterized (sampled) creating
one smooth continuous surface. Algorithm 1 consists of the steps performed during the rasterization of the
convex hulls of individual MLS surfaces.

The quadtree QT stores for each MLS surface S all its 2D points inside the domain of S, which has already
been rasterized, either directly by S or by any of the neighbors of S on the overlapping area with S. The
quadtree test prevents increase of sampling density in areas where two or more MLS surfaces overlap. For
instance, let S1 and S2 be two overlapping MLS surfaces. During rasterization of S1 all sampled points on the
overlapping area between S1 and S2 are transformed to the local coordinate system of S2 and inserted into its
quadtree QT (S2). During rasterization of S2 no points in the overlapping area, i.e., points with the distance to
the nearest neighbor from QT smaller than the sampling parameter, are processed.

In steps 3 and 4d of Algorithm 1 the weights of the sampled points are computed. In order to obtain
a continuous surface, the piecewise-continuous patches have to be blended together using proper blending
functions. If we can assume circular patches (i.e., circular domains of the large neighborhoods), an approach
based on Gaussian radial basis functions of the form

w(x) = e
−‖x−C‖2

2σ2

provides a smooth and satisfactory blending. Here, x is the point of interest, C is the midpoint of the sphere
and σ is a weighting radius. The choice of σ is very important; for smooth transitions between neighboring
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Algorithm 1 Rasterization of an MLS surface

For each rasterized point Pd
i = [x, y] in the convex hull CH of an MLS surface S do:

1. Search in the quadtree QT for the nearest neighbor Qd to Pd
i . If ‖Pd

i − Qd‖ < Ts, where Ts is a user-
defined sampling parameter, skip processing of Pd

i and select the next rasterized point. Otherwise, insert
the point Pd

i into the quadtree.

2. For Pd
i compute the corresponding 3D point Pi by evaluating the MLS surface at [x, y] and transforming

the point [x, y, f(x, y)] into world coordinates. Let X0 = Pi.

3. Compute the point weight w0 according to the chosen blending function; explained below.

4. For all neighboring MLS surfaces Sj , j = 1, . . . , k, of S do:

(a) Project X0 onto Sj yielding a projected 3D point Xj and its domain point Xd
j .

(b) If Xd
j lies outside the convex hull CH of Sj , goto to the next neighboring MLS surface.

(c) Search the quadtree QT of Sj for the nearest neighbor Qd to Xd
j . If ‖X

d
j −Qd‖ > Ts, insert X

d
j into

QT .

(d) Compute, according to the chosen blending function, the weights of both points X0 and Xj in the
local coordinate system of Sj and choose the minimum of both (denoted by wj).

5. Compute the weighted result point as

Pr =

∑k

i=0 wiXj
∑k

i=0 wi

patches the points on patch boundaries should have small non-zero weights. Considering our extensive empirical
tests, we chose σ2 = 1

14d
2
max.

If the domain of some patches is not circular but elliptical, the radial basis functions can cause unwanted
cracks (discontinuities) in the vicinity of the elliptical patches, as shown in Figure 8. In Figure 7, the problem
is sketched using a top and a side view. The domain of the MLS surface S1 is elliptic (top view), but the
weighting function provides non-zero weights within a circular area (dotted circle). Point X0 lies outside the
approximation domain of S1, i.e., the distance of the nearest point from the original point set to X0 does not
have to fulfill the approximation threshold criterion Ta. Thus, the weight contribution for X0 coming from S1

should be zero. Unfortunately, X0 lies inside the influence area of the radial basis function of S1.
During the rasterization of S2 (Figure 7, side view) the point X0 is blended with its weighted projections

on the neighboring MLS surfaces, which overlap with S2. Note that the decision whether two MLS surfaces
overlap is done based on the weights of projected points: if the weight of a point projected onto a neighboring
MLS surface is non-zero, we assume overlapping of both surfaces. In our example, the point X0 is projected
onto S1, yielding point X1, and the weight w(X1) in the local coordinate system of S1 is computed. X1 lies
outside the approximation domain of S1 (dotted part of S1) but inside the perimeter of its radial basis function.
Therefore, X1 is assigned a non-zero weight contribution from S1. Thus, a part of the MLS surface S2 is pushed
in an undesired direction creating a crack, see Figure 8.

To resolve this problem, we decided to use weight functions that provide non-zero values only in the ap-
proximation domain of the MLS surface, i.e., in the area, where the points of the original point set fulfill
the approximation threshold Ta. Elliptic weight functions offer the desired flexibility, but their evaluation is
computationally more expensive and they make necessary calculation and storage of additional structures.

During the first step (creation of MLS patches) the 2D domain of each MLS surface has to be enclosed with
an ellipse. For efficiency we estimate the axes of the ellipse using principal component analysis (PCA). PCA is
a good trade-off between accuracy and computation speed. The result of PCA is not the best smallest enclosing
ellipse, but it is very close to the best one. Further, PCA is much faster compared to methods for computing
a smallest enclosing ellipse [GS98a, Wel91]. Both 2D axes [ud,vd] are extended to 3D space (assigning z = 0)
and transformed from the local coordinate system of the MLS surface to global coordinates.

The weight of an arbitrary 3D point P (in the global coordinate system) with regard to an MLS surface
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Figure 7: Problems with elliptic-shaped MLS patches using radial basis functions.

Figure 8: Slab data with a discontinuity in vicinity of an elliptic patch.

S [C,N,U,V] - with C being the origin of the local coordinate system of S, N being the normalized z-axis of
the local coordinate system, and U,V being the non-normalized x, y axes of the local coordinate system - is
computed as follows:

P′ = P+ 〈C−P,N〉N (1)

d2 =

(

〈P′ −C,U〉

〈U,U〉

)2

+

(

〈P′ −C,V〉

〈V,V〉

)2

(2)

w(P) = e
−

d
2

σ2
e (3)

Here, 〈A,B〉 denotes the dot product of two vectors A and B. In equation (1), the point P is orthogonally
projected onto the xy-plane of the local coordinate system of S. Equation (2) calculates the squared elliptic
algebraic distance of P′ to the ellipse center.

When defining the parameter σe of equation (3), one must consider the fact that one is not dealing with
Euclidean distances (radial basis functions) but with elliptic algebraic distances, i.e., the distance of boundary
points of S to the coordinate system origin is always one. The calculation of weights of projections of P onto
the neighboring MLS surfaces of S is described in step 4d of Algorithm 1. The minimum of two weights -
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corresponding to the point P and to the point Xj , which is a projection of P to Sj - is chosen.

Figure 9: Resampling of slab close to Alaska. Upper-left corner : top view; bottom row : side view; upper-right
corner : curvature plot of resampled point set.

The elliptic weight functions provide smooth, curvature-continuous transitions between adjacent MLS sur-
faces, as demonstrated on the slab surface close to Alaska, shown in Figure 9. The original point set contained
13,918 points. The resampling procedure produced 33,501 points in 5.01 seconds2 using an approximation
threshold Ta = 4.057 km. The upper-right part of the figure shows the curvature plot of the resampled point
set. Note that the principal curvatures were not estimated from the point set. They were computed exactly
from the MLS surfaces. Curvature discontinuities can be observed for a few transitions where the shape of the
approximation domain is different from an ellipse. The visible boundaries between MLS surfaces are due to the
fact that the sampling (rasterization) is performed in the local coordinate system of the elliptic domains. For
our purposes these boundaries have no influence on further data processing.

Figure 10: Resampling of Tonga slab north of New Zealand. Left : top view; right : top view of the maximum
curvature plot.

In Figure 10 the resampling effect is demonstrated using a smoothed point set of the Tonga slab north of
New Zealand. For resampling we used the approximation threshold Ta = 3.457 km and a cubic surface.

2Computer system: Intel Pentium Core 2 Duo, 2.16 GHz, with 2 GB SO-DIMM DDR RAM.
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2.4 Boundary of a point set

The computation of a distance field to an open point set requires the knowledge of the boundary of the open
point set in order to compute the distance from an arbitrary point P to the boundary rather than to the
underlying surface when P lies outside the point set domain (Figure 14).

After the resampling step, the boundary of the new resampled point set can be found by using a simple and
robust procedure. Algorithm 2 describes the necessary steps.

Algorithm 2 Finding a boundary of an open point set

Initially, all points are unmarked.

1. Pick an unmarked point P. Find large neighborhood NL to P.

2. Approximate NL with a high-order polynomial f(x, y) in the local coordinate system of NL.

3. For each point Pi of Nsub ⊂ NL, Nsub being a fixed-percentage subset of NL, do:

• Project Pi and its k-nearest Euclidean neighbors {Q1, . . . ,Qk} onto f(x, y) and determine their
domain coordinates Pd

i and Qd
j , respectively.

• Sort Qd
j with regard to the angle to line Qd

1 −Pd
i , i.e., ∠(Q

d
1,P

d
i ,Q

d
j ), j = 1, . . . , k.

• If the angle between two consecutive points
(

Qj ,Q(j+1) mod k

)

, j = 1, . . . , k , is larger than a
user-specified threshold (usually 90◦ - 120◦), mark the point Pi as a boundary point.

The principle of Algorithm 2 is based on the observation that a boundary point Pe is incident with two
boundary edges e1 and e2 so that a local neighborhood of Pe, projected onto an appropriate 2D domain (e.g.,
a plane or a higher-order polynomial), lies on one side of e1 and e2. This observation can be transformed to
finding the largest angle between two consecutive projected points sorted according to their polar coordinates
(angle, radius), with origin Pd

i and an axis Qd
1 −Pd

i . For the projection domain we use a high-order polynomial
surface in a local coordinate system of large neighborhoods NL. It turned out to be very robust compared to a
plane, especially for points close to edges or highly curved areas.

Let σ be the distance from a point P to its kth nearest neighbor (we usually choose k = 50). The point P
can be incorrectly marked as a boundary point, if the local feature size [AB98, ACK01] in the vicinity of P is
LFS(x) ≥ σ

2 , for an arbitrary sample x ∈ F , where F is the smooth underlying surface.

Figure 11: Comparison of boundary detection of original slab (left) and resampled point set (right).

For regularly sampled point sets the k-neighborhood projected onto the high-order polynomial surface can
be small (10–20 neighbors) resulting in short processing times. With growing irregularity the neighborhood size
must be increased to obtain stable results. Unfortunately, with growing neighborhood boundary points in highly-
curved concave areas are usually not detected correctly. For irregular point sets without any assumptions about
point sampling regularity, the algorithm can fail, as illustrated in Figure 11, left, using the original earthquake
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centers. However, the procedure is successful for the point set after resampling (right).

3 Distance field of a slab

The primary need of geophysical simulations of the slab deformation is knowledge of the distance of an arbitrary
point in 3D to the slab. For instance, using distances the viscosity and other important slab properties at the
point can be estimated.

In the previous sections, we described necessary steps for preparing raw data acquired from global seismicity
in order to compute a distance field around the slab. Computation of the distance from an arbitrary point to a
discrete approximation of the slab (i.e., to the original point set) can suffer from aliasing effects, which grow with
decreasing distance to the slab, see Figure 12. While the difference between the distance from P1 to its nearest
neighbor of the point set and to the continuous approximation of the underlying surface can be neglected,
for the point P2, which is in general more interesting than far points, the point-to-point distance computation
causes unwanted wave-shaped distance field and aliasing effects close and beyond the slab boundary. To prevent
possible discontinuities and inaccuracies in the distance field, we compute the distance to a piecewise-continuous
approximation of the point set.

P
2

1
P

Figure 12: Calculating distance to a discrete (dashed lines) and continuous (solid lines) approximation of
underlying surface.

In general, it is impossible to approximate the whole point set with one algebraic surface (with a fixed surface
degree), keeping the average approximation distance within a user-specified threshold. Therefore, we segment
the point set into several low-degree algebraic surface patches creating a piecewise-continuous approximation of
the underlying point set.

For the segmentation a top-down, region-growing-based algorithm is used, see [VHB07]. A starting seed
cluster consisting of points with similar principal curvatures is fitted with an implicit polynomial. If the fitting
distance, i.e., the average distance of the seed points to the approximated surface, is smaller than a user-
prescribed threshold Ts, the point cluster, or segment, denoted by Si, and its corresponding approximated
implicit surface by I(Si), is accepted and extended by adding neighboring points Qj to Si satisfying a distance
criterion d(Qj , I(Si) < Ts, d(., .) being the Euclidean distance. If no more points can be added to Si, the
procedure proceeds with next seed points until all points are processed.

In Figure 13, the segmentation of the slab close to Alaska is shown. The segmentation threshold was
Ts = 1.522 km.

3.1 Distance function computation

After preprocessing and segmenting the point set the distance field calculation can be performed. For an
arbitrary 3D point P its distance to a slab part is determined. Figure 14 shows different positions of the point
P and different calculations to be performed depending on its position. If the point of interest lies above or
below the slab (point Pi), the distance to a quadric surface (or surfaces) is computed. If the point is located
beyond the slab boundary (point Po), the point-curve distance is calculated.

The decision concerning the location of the point P is made based on its k-nearest neighbors from the
point set. Usually, we choose k = 6. If the nearest or the second nearest neighbor is a boundary point, the

12



Figure 13: Segmentation of slab close to Alaska, top view.

distance from P to an approximation of the boundary is computed, see section 3.1.2. Otherwise, we perform a
point-surface calculation, see section 3.1.1.

i
PoP

Slab surface

C

S

Pe

Figure 14: Computation of distance to surface or boundary of slab.

3.1.1 Point-surface computation

Let Si be a segment with its corresponding quadric implicit polynomial represented as

I(Si) = F(x) = ax2 + by2 + cz2 + 2fxy + 2gyz + 2hzx+ 2px+ 2qy + 2rz + d =

xTAx+ 2BTx+ d = 0

where A is the 3x3 symmetric matrix A =





a f h

f b g

h g c



 and B is the vector (p, q, r)
T
.

It can be shown that the distance function of an arbitrary point P to the quadric surface is a polynomial
of degree at most six. It is not acceptable to search numerically, in the worst case, all six solutions to find the
nearest one. One can iteratively minimize the quadratic distance d(x) = ‖P− x‖2 with a constraint F(x) = 0
using Lagrange multipliers, i.e.,

D(λ,x) = ‖P− x‖2 − λF(x) → min with

▽D(λ,x) = 0. (4)

13



Equation (4) can be solved by using, for example, a globally convergent quasi-Newton method. Unfortunately,
for fast convergence the Newton method requires suitable starting values. As the quadric surfaces have infinite
area of definition, we use the original points to restrict the domain of the quadric surfaces. In Figure 15, the
problem of an appropriate starting point on quadric surface is illustrated. Let P be an arbitrary point in space;
we want to compute the distance from P to its nearest quadric surface Fn(x) = 0. First, k-nearest neighbors
{Q1, . . . ,Qk} from the point set to P are determined. For each neighbor Qi its corresponding quadric surface
is found. In order to find a good starting point, an intersection between the quadric surface and a line through
P in direction Qi−P is computed (in Figure 15, left, the points P1 and P2). From a maximum of two possible
intersection points we pick the one closer to Qi. If there are no intersection points (Figure 15, right), we
compute the intersection between Fn(x) and a line passing through Qi in the direction of N(Qi), N(Qi) being
the estimated normal vector in point Qi. If this intersection computation yields no intersection points, we
compute the intersection between Fn and a line passing through Qi in the direction of ▽Fn(Q). For our data
sets it never happened that all three procedures yielded no intersection point.

2
P

1
P

P
Q

F(Q)

P
Q

N(Q)

Figure 15: Finding the proper starting point on a quadric surface.

Having found a starting point we compute the distance from P to a quadric surface through Newton it-
erations. If the neighbors Qi belong to different quadric surfaces, we calculate all distances and weight them
according to the number of neighbors belonging to them. The final distance is computed as a weighted average
of all distances.

3.1.2 Point-curve computation

If the nearest or the second nearest point of the point is a boundary point Pe, we compute the distance of P to
an approximation of the boundary rather than to a quadric surface.

First, the boundary in the vicinity of Pe is extended by recursive parsing through the neighborhoods of
current boundary points and searching for further boundary points in their neighborhood. The procedure
stops when the desired number of boundary points (denoted by B = {B1, . . . ,Bm} , m = 10 − 30) has been
found. B is approximated by a best-fit line, and the points Bi are projected onto the line to acquire a suitable
parameterization (we use centripetal parameterization). B is approximated by a quadratic Bézier or spline
curve. The curve with the best fit is chosen and the distance from P to this curve is computed analytically (the
distance function of a quadratic parametric curve being a cubic polynomial).

4 Results

In Figure 16 all processing steps starting with the earthquake centers data and leading to the segmentation of
the extended resampled point set are shown. Figure 16 a) shows pre-filtered earthquake centers, where several
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outliers were removed. The slab has approximate dimensions of 700 km × 400 km × 180 km and contains 14,081
earthquake centers. Its thickness is circa 20 km. For better visualization, the point set was triangulated, see
Figure 16 b). In the first step, the point set was smoothed, see Figure 16 c) and its triangulation is shown in
Figure 16 d), using a neighborhood of 500 points and a cubic surface. For the extension, see Figure 16 e), four
additional boundary lines and two sets of contours were used, resulting in 100,114 points. Subsequently, the
extended point set was resampled with approximation threshold Ta = 4.0175 km and a cubic surface, producing
69,580 points, see Figures 16 f) and 16 g) (triangulation of resampled point set). The segmentation of the
resampled point set was performed using a segmentation threshold Ts = 1.3 km, see Figure 16 h).

The visualization of the calculated distance field using 14 million gridded points is demonstrated in Figure 17.
In the left figure, the zero set surface is rendered red and two additional section through the distance field are
shown. In the right figure, an additional cross section through an offset surface to the zero set surface of the
distance field is shown.

The most time-consuming step of the processing pipeline is the distance field computation. For simulation of
a viscous flow, which requires distance calculation, a grid file with circa 14 million points was created. Distances
to the points of this file were computed in about 12 minutes. This time also includes I/O operations, i.e., reading
grid points from a file and writing distances to a file (together circa 1.2 GB), which took 30%–40% of the whole
time. All other stages of the point set processing required only a few seconds.

a) b)

c) d)

e) f) g) h)

Figure 16: Stages of point set processing (digitized slab beneath Alaska).

15



Figure 17: Visualization of distance field

5 Conclusions and Future Work

We presented a framework for computation of a distance field around a data set consisting of earthquake
locations measured within subducted tectonic plates (slabs). Due to large measurement inaccuracies and the
fact that earthquakes can be measured anywhere within a slab with thickness of several kilometers, extremely
high noise level in the data requires us to perform special preprocessing prior to distance field computation. Our
smoothing procedure uses large neighborhoods in order to find an approximation of the underlying surface for
projection of noisy points onto this surface. We introduced a simple, powerful tool for extension of a slab beyond
the earthquake centers using sparsely sampled contour and boundary lines. Subsequent resampling converts
slab data into point sets with almost regular sampling and user-defined sampling density using a subdivision of
the point set into MLS surfaces. Elliptic weight functions support continuous transitions between adjacent MLS
patches. The boundary finding procedure provides a robust marking of boundary points, even for irregularly
sampled point sets satisfying our prescribed sampling criteria (local feature size). The slab is subdivided into
implicit surfaces, which provide an approximation of the underlying surface supporting the computation of
a piecewise continuous distance field. For points outside the extended slab domain, an analytic point-curve
distance calculation is used. Apart from the distance field computation, all other steps can be performed within
a few seconds making possible iterative fine tuning of the slab shape and smoothness by the user.

The choice of a seed point during resampling is done randomly. On or close to highly curved areas, which
cannot be approximated well by a polynomial, this random seed point placement can result in a large number of
MLS surfaces. We plan to use a more sophisticated approach based on a modification of the Voronoi diagram,
driven by the curvatures, i.e., starting in areas with low Gaussian or mean curvature.
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[GS98a] Gärtner B., Schönherr S.: Smallest Enclosing Ellipses - An Exact and Generic Implemen-

tation. Tech. Rep. B 98-05, Institut für Theoretische Informatik, ETH Zentrum Zürich / Institut
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