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Abstract
We present an integrated interactive framework for the visual analysis of time-varying multivariate data sets.
As part of our research, we performed in-depth studies concerning the applicability of visualization tech-
niques to obtain valuable insights. We consolidated the considered analysis and visualization methods in one
framework, called TV-MV Analytics. TV-MV Analytics effectively combines visualization and data mining algo-
rithms providing the following capabilities: (1) visual exploration of multivariate data at different temporal
scales, and (2) a hierarchical small multiples visualization combined with interactive clustering and multidi-
mensional projection to detect temporal relationships in the data. We demonstrate the value of our frame-
work for specific scenarios, by studying three use cases that were validated and discussed with domain
experts.
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Introduction

Advances in software and hardware technology have

expanded data collection and storage capacity to such

an extent that ever increasing volumes of time-varying

multivariate data are produced with limited effort.

Data sets consisting of observations of multiple

sequentially recorded time-stamped variables play an

important role in many areas, for example, environ-

mental monitoring, social sciences, financial markets,

and population statistics. Typical time-varying multi-

variate data may describe heterogeneous variables,

possibly with missing data values, recorded at high res-

olution over long time periods. In this context, data

analysis can be extremely challenging, as it combines

the need of understanding data evolution dynamics

with difficulties introduced by high dimensionality.1

Regardless of the domain, data analysis requires

one to thoroughly explore the behavior of multiple

variables and how they relate to observations, and

identify how certain subspaces of variables are relevant

for characterizing a particular behavior. There are sce-

narios where analysts start investigating a data set with

limited prior knowledge about the phenomenon to be

understood. They may wish to explore the data con-

sidering different temporal scales, where scale refers to

a certain temporal aggregation appropriate for analysis

(e.g. minute, hour, days, month, year). A flexible
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context-preserving navigation strategy for data repre-

sented at multiple temporal aggregations is necessary.2

Approaches in visual analytics,3 exploring the

synergy between data mining from machine learning

and data representations from information visualiza-

tion, have been proposed to support processes for

extracting information from data. It has been demon-

strated that they can be successfully applied to various

problem domains.4–7 Fundamentally important is the

interaction with graphical data representations, which

supports integrating the human capability of recogniz-

ing visual patterns (inference capability) and a user’s

knowledge about the data analysis process. Visual ana-

lytics solutions assist users in creating adequate mental

models of complex data, supporting the perception of

global characteristics and identification of local beha-

vior through user-driven exploration. This is necessary

to confirm expected and discover unexpected beha-

vior.3 A visual analytics system should support users

to validate hypotheses and perform exploratory tasks

raising new questions about the data.8

In a previous contribution,9 we introduced a solu-

tion for exploring ionospheric scintillation data. The

solution is based on a time matrix representation and

visualization, coordinated with similarity maps pro-

duced with multidimensional projection techniques.

That solution is domain-specific, and it has great

potential to be generalized and extended as a general

framework for handling multivariate time data arising

in diverse problem domains.

Inspired by our previous solution approach, we

introduce a domain-independent visual framework in

this article, called TV-MV Analytics, to assist explora-

tory analytics for complex time-varying multivariate

data sets. TV-MV Analytics is based on a general strat-

egy guided by the objective of revealing global rela-

tionships in data variables and data instances. The

framework offers the following capabilities:

1. Visual exploration techniques for inspecting mul-

tivariate values at different temporal scales;

2. A hierarchical small multiples visualization com-

bined with interactive clustering and multidimen-

sional projection algorithms, in support of

recognizing temporal relationships.

These capabilities can be employed for interactive

investigation of variable spaces as descriptors of the

data instances and for assessing how different feature

spaces characterize a certain behavior. We demon-

strate the effective capabilities of TV-MV Analytics for

data from three very diverse application domains:

crime statistics from the State of São Paulo, Brazil; air

quality data from an Italian city; and stock market data

of US companies. Results obtained were discussed

with experts from the respective application domains.

We discuss related literature in section ‘‘Related

work,’’ addressing two topics, namely, exploratory

visualization of time-varying multivariate data and

visual analysis of spaces of variables—including our

previous approach to handle a database of measure-

ments of ionospheric scintillation. The overall pipeline

implemented is introduced and justified in section

‘‘TV-MVAnalytics framework’’. Section ‘‘Use cases and

results’’ introduces the selected data sets and illustrates

possible application of the TV-MVAnalytics framework

with three case studies illustrative of plausible data

analysis scenarios on those data sets. We assess how it

can assist in investigating a phenomenon and inter-

preting the behavior of its describing variables. Section

‘‘Conclusions and future work’’ summarizes our main

results and contributions, and points to possible future

research.

Related work

Experts analyzing time-varying multivariate data face

a growth in both the number of data instances and the

number of data variables. This scenario poses multiple

challenges to visualization designers,10 as standard

visualizations, such as line graphs and variations,

quickly become overcrowded and cannot be used. In

this section, we review research concerned with

approaches for exploratory visualization of time-

varying multivariate data, and visual representations to

support the analysis of variable spaces.

Exploratory visualization of time-varying
multivariate data

The simplest and oldest technique for visualizing time-

varying data are the line graph,11 which is unfeasible

for displaying many multivariate series. Alternative

solutions to visualize long time-varying data were pro-

posed, such as TimeSearcher visualization12 to query

on entity sets with one or more time-varying variables,

and CircleView visualization13 to represent multivari-

ate data flows.

Many visualizations support analysis of single or

multiple temporal variables, such as the Cluster and

Calendar based Visualization14 which presents the

data patterns in a calendar and a three-dimensional

(3D) chart along the time axis, and VizTree15 which

aims to support pattern discovery in data without

requiring prior knowledge. Turkay et al.16 introduce

two visualizations to assist the investigation and inter-

pretation of structural changes in temporal clusters. A

temporal clustering view conveys the structure and
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quality of a cluster set over time, which are assessed,

regarding quality, with the Silhouette Coefficient

(SC)17 (employed for similar purposes in TV-MV

Analytics), and a temporal signatures view summarizes

statistical properties of the cluster structures over

time.

Several contributions specifically target the visuali-

zation of time-varying multivariate data, to guide spe-

cialists in challenging tasks that require searching for

relevant data patterns in bulky data sets. Correlated

multiples18 is a method based on small multiple visua-

lizations19 that places spatially coherent multiples

views of chunks of time-varying data based on their

dissimilarities. TimeSpiral20 combines multiple views

to assist users in analyzing and exploring periodic

trends and correlations in time-varying multivariate

data, supporting multiple time granularities.

VIMTEX5 has been designed to assist geologists

observing temporal relationships in multivariate data

describing concentrations of chemical compounds. It

uses Parallel Coordinates for a time-varying view of

the multivariate data, in combination with a density

view to show univariate temporal distribution and a

small multiples matrix view which shows bivariate cor-

relations as time-series. Machado et al.6 use pixel-

based layouts called Player Attribute Heatmap (PAH)

to visually summarize the events in a soccer match

using as input the player positions over time.

Similarly to the solution introduced by Liu et al.,18

we adopt a small multiples visualization and a consis-

tent placement strategy to display groups of related

variables. Moreover, we consider arbitrary time peri-

ods and temporal scales by means of user-defined

observation periods and data aggregations,20 which

allow visual data explorations at multiple levels of

detail.

Visualization and analysis of variable spaces

There are many strategies for user-driven exploration

of data sets described in high-dimensional variable

spaces. Yang et al.21 introduce the Visual Hierarchical

Dimension Reduction (VHDR) method to generate

lower-dimensional representation spaces exploring a

hierarchy of the variables, displayed in a radial visuali-

zation called InterRing, which inspired our hierarchi-

cal visualizations. The Value and Relation (VaR)

technique22 aims to facilitate data exploration, visuali-

zation, and variable selection, helping users to under-

stand relationships in variables and instances, where

variables are projected with multidimensional scaling

and represented by a glyph. The glyphs are ‘‘dense

pixel displays’’ of the corresponding data values (simi-

lar to some of our strategies) mapped into a spiral

arrangement of pixels.

Some approaches aim at comparing multiple vari-

able spaces using estimators of their discrimination

power, estimated from the uniformity of the histogram

of the distances between data clusters obtained in the

different spaces,23 or the concept of relevance feed-

back (RF), in which users, based on their knowledge,

train the system informing the perceived relevance of

the hits returned from a query.24 In TV-MV Analytics,

we use the SC as a sub-space relevance estimator. The

Dimension Projection Matrix/Tree25 and the visualiza-

tion model by Turkay et al.26 rely on projections for

interactive visual analysis of multivariate data focusing

on both the variables and the data instances. TV-MV

Analytics also uses multidimensional projections to cre-

ate two-dimensional (2D) maps of variables or data

instances to convey their similarity.

Visualization-assisted variable selection can also

rely on statistical techniques and measures, such as

the visual interface SmartStripes,27 a method for semi-

automatic refinement of results from variable selection

algorithms; the Hierarchical Clustering Explorer

(HCE) interface28,29 that includes a variable ranking

criterion and scatterplots and histograms to display

color-coded ranking results; and the Rank-by-feature

framework30 that considers local variables selected in

several data visualizations through the linking-and-

brushing strategy. Turkay et al.31 introduce the con-

struction of representative factors to analyze structures

in high-dimensional data, where the original variables

and factors are combined into an interactive visual

analysis cycle.

In Soriano-Vargas et al.,9 we introduced the con-

cept of time matrix representation and its use in a

small multiples visualization, in conjunction with simi-

larity maps obtained via multidimensional projection.

We demonstrated how these concepts could be com-

bined in an integrated approach for exploring iono-

spheric scintillation data. The time matrices were

constructed using pre-defined periods, that is, explora-

tions were performed considering static time units for

analysis. For application in other scenarios, a generali-

zation is required to allow for further flexibility in

choosing the representation and visualization para-

meters. Time matrices were represented by means of

feature vectors described by five standard statistical

moments. However, other compositions of feature

vectors may be employed to capture different data

behaviors. We faced the problems of visualizing a large

number of variables and loss of detail when visualizing

data via the small multiples method. New strategies

were required to support improved interactivity in the

exploration. These challenges led us to re-think the

interactive visualization software design, including

generalized strategies. We also developed an interest in

conducting studies with data from other domains to

Soriano-Vargas et al. 5



better understand the general requirements of time-

varying multivariate data representation and

exploration.

TV-MV Analytics framework

TV-MVAnalytics is a general framework that integrates

multiple data mining and visualization techniques to

assist in the exploration of multivariate time-varying

data. It abstracts and generalizes common functions

for processing time-varying multivariate data.

Specifically, it supports (1) data integration and trans-

formation into a unified representation, (2) interpreta-

tion of large collections of multivariate temporal data,

(3) understanding of incomplete data, and (4) analyti-

cal reasoning about the underlying causal phenomena

that generated the data.

We have identified our specific requirements follow-

ing the corners of the ‘‘Data-Users-Tasks’’ design trian-

gle.32 The requirements are as follows:

Data. The target data consist of large collections

of multivariate, time-stamped records from

certain domains, for example, stock market, air qual-

ity, or crime indicator records. Data variables are

quantitative and data instances can be aggregated for

user-defined temporal intervals and organized into

user-defined temporal cycles, for example, hours,

days, or months.

Users. Users are domain experts or consultants in

areas dealing with problems that require analysis of

large collections of multivariate temporal data. It is

expected they are familiar with standard data process-

ing and mining techniques, such as interpolation,

regression and correlation analysis, and clustering

algorithms.

Tasks. The system should support the following tasks:

(1) observing the behavior of variables over time, for

example, for finding patterns, trends, correlations,

outliers, missing values, and so on; (2) exploring data

behavior at multiple temporal scales by supporting

aggregation of measured values over user-defined time

intervals; (3) comparing the behavior of multiple vari-

ables over user-defined time periods; (4) identifying

representative variables and representative sub-spaces

of variables to explain observed behavior; and (5) pre-

dicting future values of variables based on historical

data.

It utilizes a specific data representation, which in

previous work has been found adequate to communi-

cate properties of time-varying variables.9

Furthermore, it supports inspecting the temporal

behavior of variables, individually or as sub-space

descriptors, at a user-defined temporal scale. A small

multiples visualization component that conveys the

temporal behavior of each variable is used in conjunc-

tion with clustering and multidimensional projection

techniques, based on a consistent data representation.

We define the input data handled by the framework,

the derived time matrix representation, and the analy-

tics functions it provides. After an overview of the data

handling pipeline, we describe the created visualiza-

tions supporting the pipeline.

Data representation

A time-varying multivariate data set consists of time-

stamped observations of n variables fx1, x2, x3 , :::, xng
recorded at a particular temporal scale (per minute,

hour, day, month, or year). Thus, each variable is

described as

xi = xt1
i , x

t2
i , x

t3
i , :::, x

tk
i

� �
ð1Þ

From the recorded values, it is possible to derive

new series by applying aggregation functions to the

data values for a given time span, for example, to

obtain a maximum, minimum, average, median, or

standard deviation value. Let xtse
i denote the result of

applying to the values of variable xi within time span

½ts, te�, an aggregation function f : Rl ! R

xtse
i = fag xts

i , x
ts+ 1

i , xts+ 2

i , :::, xte
i

� �
ð2Þ

A data instance at time tj given by p selected variables

(p4n) can be represented as a vector o(tj) with p values

o tjð Þ= x
tj
1, x

tj
2, x

tj
3, :::, x

tj
p

� �
ð3Þ

where x
tj
i can denote an original or an aggregated value

obtained with equation (2).

A multivariate time-varying data set is defined by

time series describing multiple variables, see equation

(4). In this matrix, each column corresponds to the

time series relative to a particular variable, see equa-

tion (1), and each row corresponds to a multivariate

observation at a particular time stamp, that is, a multi-

dimensional data instance, see equation (3)

D=

xts
1 xts

2 xts
3 . . . xts

p

xts+ 1

1 xts+1

2 xts+1

3 . . . xts+1
p

xts+ 2

1 xts+2

2 xts+2

3 . . . xts+2
p

..

. ..
. ..

. . .
. ..

.

xte
1 xte

2 xte
3 . . . xte

p

2
6666664

3
7777775

ð4Þ

The flexibility of TV-MV Analytics in handling data

from different domains is a result of how it handles the

input time series, using the time matrix representation

introduced in previous work.9 A time matrix
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represents the time series describing each variable,

which records the temporal behavior of this particular

variable for a defined observation period and a certain

temporal scale. Variables, observation periods, and

temporal scales are user-defined.

Database user queries specify the target data for an

analysis session, that is, the time series relative to one

or multiple selected variables that describe the

sequence of data instances, see equation (4). A query

must specify the initial and final dates ds and de of the

time period, the aggregation function fag, and aggrega-

tion span tse, see equation (2); it must also specify the

target temporal unity cycle tc. All input data referring

to time are converted to milliseconds in a pre-

processing stage.

The aggregation span tse defines the temporal scale

of the analysis, for example, minutes, hours, months,

and so on; values recorded at a certain temporal reso-

lution can be aggregated at a coarser resolution, for

example, by selecting average, maximum, and so on.

over the time span, as defined by fag. For each variable,

the query retrieves a series of l data values, covering a

cyclical time period. For example, a user may

execute a query to retrieve data relative to 90 days,

aggregated over hourly spans. In this case,

l =(9037:776e9)3(2433:6e6)—in milliseconds—and

the temporal cycle tc corresponds to the 24 h of a day.

Data values are linearly normalized to the range [0,1]

to cancel the effects of the different orders of magni-

tude of means and variances, and possibly, interpo-

lated to reduce the effects of missing data.

The time matrix representation is illustrated in

Figure 1. Each time series is organized as a matrix

Mn3m, where an entry records a data value for this

variable at a particular time, n=(ds � de)=tc and

m= tc=tse. Each row consists of m time-stamped values

relative to a temporal cycle, and each column depicts

the values, over all rows (temporal cycles), relative to a

single time stamp. Algorithm 1 describes the proce-

dure for computing the time matrix representation of

a particular variable, from a series of retrieved values.

The time matrix representation supports multiple ana-

lytics functions and visualizations in TV-MV Analytics,

as discussed next.

Data analytics functions

While multivariate data analysis approaches usually

operate directly on given data, this approach is not fea-

sible for time-varying multivariate data because (1)

there are too many data instances, (2) it is important

to consider the temporal sequence of data, and (3)

there is a need to explore the behavior of the multiple

variables when their relationships become increasingly

complex.

The derived time matrix representation is highly

informative concerning the temporal behavior of indi-

vidual variables, and flexible in that it supports inspect-

ing data at different temporal scales. In order to

further enhance the analytical capabilities of the frame-

work, we derive representative feature vectors from the

time matrices, for use in subsequent mining and visua-

lization tasks. In order to satisfy task requirement (1),

the features must capture the relevant characteristics

of the variable behavior over time.

Figure 1. A time matrix is created per variable. Each
matrix row depicts the m time-stamped values relative to a
target temporal cycle and each column depicts the values
relative to the same time-stamp, over all temporal cycles.

Algorithm 1: Time matrix construction for variable xi

input: xi ) time series values of ith variable
ds ) initial date
de ) final date
tse ) aggregation time span
tc ) temporal cycle
fag ) aggregation function

output: Min3m ) time matrix of ith variable
n = (ds � de)=tc

m = tc=tsed e

for a 1 to n do

for b 1 to m do
/* index position */
index=a *m+b;
/* initial date */
d
0
s = ds + index � tse;

/* final date */
d
0
e = d

0
s + tse;

/*subset of values of xi */
x
0

i = xi d
0
s ! d

0
e

� �
;

m½a, b�= fag(x
0

i);
end

end
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A feature extraction function is used to obtain fea-

ture vectors Vi from the time matrix representation

Mi, as defined in equation (5)

Vi = fmom Mið Þ ð5Þ

TV-MV Analytics supports multiple feature extrac-

tion functions fmom to generate feature vectors

representative of the time matrices. For example,

statistical moments (color moments)33 and Abo-Zaid

moments34 can be computed.

In order to provide solutions in support of task

requirements (3) and (4), feature vectors can be clus-

tered as descriptors of time matrices to obtain groups

of variables with globally similar behavior over the

observation period captured in a time matrix. The

clustering operation is defined as a function fclus that

uses a distance function fdis for the set V of feature vec-

tors and returns a vector of cluster labels L for the set

V, see equation (6). The system currently supports

Euclidean distance and inverse Pearson correlation as

dissimilarity functions

L= fclus V, fdis Vð Þð Þ ð6Þ

The framework offers choices for selecting a cluster-

ing algorithm, including K-means and X-means clus-

tering choices that are popular and are used in a

variety of application domains.35 Furthermore, it sup-

ports a variation where the optimal number of clusters

k is set to the value that yields the best SC. SC values

are in the range ½�1, + 1�, with higher values indicat-

ing better cluster cohesion and separability. Users are

informed about the SC value of any cluster model,

and they can interact with multiple visualizations, see

sub-section ‘‘Visualizing the behavior of data vari-

ables’’; they can also modify the clustering according

to their perception of element similarity, causing SC

values to be updated accordingly. The categorical col-

ormaps available at ColorBrewer (http://colorbre-

wer2.org/)36 are employed to differentiate the clusters

in the visualizations.

For subspace analysis and variable selection pur-

poses, (according to task requirement (4)), the frame-

work offers five possibilities to identify representative

sub-spaces, illustrated in Figure 2: (a) the set of vari-

ables defined by the cluster medoids is initially

assumed to be the default set of representatives as a

descriptor of the data instances; (b) analysts can mod-

ify the default set selecting a different variable as clus-

ter representative; (c) analysts can select multiple

representative variables per cluster, picking those with

smallest distances to the virtual centroid; (d) analysts

may use linear regression to select the best correlated

variable; or (e) they can utilize multiple linear

regression to remove variables that do not contribute

to the regression function.

TV-MV Analytics embeds a decision tree and multi-

layer perceptron classification algorithms, as well as

linear regression and simple linear regression algo-

rithms. Analysts can execute them to obtain further

information regarding alternative sub-spaces of vari-

ables considered and assess potential data descriptors

effective for characterizing a target variable, as defined

in equation (7)

Rclas=reg = fclas=reg Vnð Þ ð7Þ

where Vn is a feature vector defined by a subset of rep-

resentative variables. Decision trees and neural net-

works were chosen since they are widely known and

have been successfully applied to pattern classification

problems.37

Moreover, the time matrix representation supports

prediction tasks based on historical data, according to

task requirement (5). A functionality is included to

predict the series of values in a row from a given time

matrix, from the values recorded in previous rows.

This is achieved by applying isotonic regression func-

tions to the time matrix columns, as illustrated in

Figure 3. The isotonic regression function fiso can be

Figure 2. Five strategies for variable sub-space selection.
Orange circles represent virtual cluster centroids, red
circles are points closest to virtual centroids, yellow
circles represent user selections, and green circles
represent results from linear regression.

Figure 3. Prediction task using isotonic regression.
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understood as a least-squares approach performed

under order restriction. It is defined as a monotonic

function best fitting the original data instances, mini-

mizing equation (8)

fiso T,Mibð Þ=min
Xn

j =1

wj Mibj �Tj

� �2 ð8Þ

where Mib refers to column b of time matrix Mi, T is

the time stamp (in millisecond) of element mibj , and wj

is set to 1. The result of the isotonic regression func-

tion is a model that fits the isotonic function of the

explanatory variables to estimate the response variable.

This model is employed to obtain a future time instant

Tn+ 1 (in milliseconds) associated with the value to be

predicted, pb, as defined by equation (9)

pb =predict fiso T,Mibð Þ,Tn+1ð Þ ð9Þ

If the actual data at this time stamp are known, the

correlation between the predicted and actual values is

computed and displayed. Thus, an analyst may assess

and compare the prediction capability of the model,

considering data from distinct temporal ranges.

Data exploration pipeline

Figure 4 shows all stages of a general data exploration

process. For a given data set, a user first issues a query

to retrieve a subset of the data for analysis. She/he may

select a subset of variables, and define the time period

of the observations, the temporal scale, and the data

aggregation function (equations (2) and (3)). The

query returns a matrix of data instances for the speci-

fied time period, according to equation (4). Each vari-

able is given by a series of time-stamped values,

possibly aggregated over a specified time window, as in

equation (2). The aggregation defines the temporal

scale of the analysis. Variable ranges are linearly nor-

malized to the range [0,1] to cancel the effects of the

different orders of magnitude of means and variances.

When data values are missing, a user may choose to

preserve them as missing or replace them by estimated

values obtained by interpolation.

The time matrices representing each variable are

constructed, following Algorithm 1, and representative

feature vectors, see equation (5), are derived from

them for subsequent mining and visualization. An ini-

tial clustering of the feature vectors, see equation (6),

is computed to convey groups of variables with similar

behavior over the selected time period.

Finally, visualizations of both variables and

instances can be created, detailed in the remainder of

this section. The visualizations of variables include a

hierarchical similarity map, correlation matrices, hier-

archical time matrices, and a time-circular diagram,

conveying further insight into temporal behavior and

correlations. There are also normalized line-graphs

views and aggregated and hierarchical similarity-based

visualizations of the instances as described by user-

defined sub-spaces of variables. Interaction with

these visualizations, combined with results from data

analytics functions for classification, regression, and

prediction, allow experts to assess the role of alterna-

tive sub-spaces of variables as representative data

descriptors. The multiple time matrix and similarity-

based visualizations are coordinated for enhanced user

interaction.

Visualizing the behavior of data variables

TV-MV Analytics offers four visualizations for

depicting variable behavior over time, driven by the

Figure 4. Stages of data exploration. A user query retrieves aggregated instances described by a subset of variables
over a time range. Values of each variable (normalized) are represented in a time matrix, where each entry stores a unit
value. Feature vectors describing each time matrix are clustered into groups of variables with similar temporal behavior,
employed in visualizations of sub-spaces of variables as well as data instances.

Soriano-Vargas et al. 9



analytical tasks relevant for multivariate temporal data

sets.

Hierarchical time matrix visualization. The time

matrix view introduced by Soriano-Vargas et al.9 sum-

marizes temporal behavior of a particular variable over

a target period. Each time matrix representation M

(see Algorithm 1) is visualized as a rectangular area

that includes a header area with information about the

variable and a main area split into cells representing its

corresponding time matrix entries, see Figures 5 and

8. The header areas are colored to reflect the cluster of

the corresponding variable. Cells depicting matrix entries

are colored using the heated-object colormap,38 with

brighter colors representing lower values and darker col-

ors representing higher values. Cells with red borders

indicate that the corresponding entry consists of interpo-

lated data, and gray cells represent missing values.

Time matrix views can have substantial space needs,

which is aggravated when the matrices describe a long,

high-resolution time period, thus requiring larger

visualization areas. This poses a disadvantage for sce-

narios where many variables must be analyzed. It is dif-

ficult to display the small multiples, and it is hard for

an analyst to inspect many time matrices simultane-

ously. Hence, we have extended that representation to

a hierarchical version of the small multiples view, in

order to provide an improved solution for task require-

ments (1), (2), (3), and (4). The hierarchical time

matrices view relies on the cluster tree resulting from

the X-means algorithm.

Leaf nodes represent single variables, whereas nodes

higher up in the hierarchy summarize the content of a

cluster by showing the time matrix of its medoid ele-

ment. Each cluster is sub-clustered using X-means (see

equation (6)), defining new sub-cluster nodes displayed

as their corresponding medoids, done repetitively until

reaching leaf nodes. An analyst can explore different

tree levels, exploring sub-clusters represented by their

medoids. The hierarchical tree representation is coordi-

nated with the hierarchical similarity map, as illustrated

in Figure 8 where the user selected a variable in the

map, which is highlighted in cyan both in the map and

in the small multiples time matrix visualization.

Time circular diagram. The time matrices are capable

of conveying variables’ global behaviors while preser-

ving detail. However, analysts may be interested in

inspecting whether a certain variable displays correla-

tions in time intervals within the observed period, thus

motivating the introduction of the time circular dia-

gram (TCD) visualization, to provide additional

mechanisms addressing task requirements (1), (2),

(3), and (4). This visualization is also split into two

areas (as shown in Figure 13), a header area with

information about the variable and a main area.

The main area displays the normalized entries of a

time matrix M (obtained with Algorithm 1), but cells

are now arranged in a circular, clockwise distribution,

again adopting the heated-object colormap.38 An ana-

lyst can define a target temporal window to assess pos-

sible correlations within sub-periods the observation

period. Lines are used to connect sub-periods when their

correlation is above a user-defined threshold, applying an

edge bundling strategy39 to reduce clutter and group simi-

lar edges. The sub-periods can be reduced using the Haar

wavelet40 to simplify the time series representation and

produce an approximation at a lowest resolution level.

The maximal resolution level is calculated using the sub-

period size sp size, defined by equation (10). This feature

is useful for exploring data relative to very long temporal

intervals (as shown in Figure 16)

sp size= 2level

level = log2 sp size
ð10Þ

Hierarchical similarity map of variables. A similarity

map depicts a 2D space embedding of the m-dimen-

sional feature vectors (see equation (5)) describing the

variables’ time matrices. In this representation, the

pairwise point distances are taken as proxies of the

Figure 5. Time matrices of indicators: total inquiries, arrests of flagrant offenders, seizure of narcotics, recovered
vehicles, imprisonments, and homicide rates (31 January 2002–28 February 2017).
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point distances in the original m-dimensional space.41

Therefore, variables with more similar temporal beha-

vior (as captured by the feature vector of their corre-

sponding time matrix) are relatively closer in the 2D

map, whereas those with dissimilar behavior are farther

apart, generally. The similarity maps of variables assist

users in assessing and modifying the clustering model

and identifying representative variables when looking

for representative sub-spaces of variables as effective

data descriptors, in order to address task requirements

(1), (3), and (4).

In TV-MV Analytics, the 2D embedding is com-

puted with the IDMAP (Interactive Document Map)

multidimensional projection,41 taking the pairwise

Euclidean distances or the inverse Pearson correla-

tions as proxies for pairwise dissimilarity of feature

vectors. The map is shown as a point plot in which

each circle depicts a variable and is colored to convey

its associated cluster, preserving the same color coding

adopted in the small multiples matrix view. The map

conveys overall similarity between variables and their

implicit groupings, regardless of their explicit cluster

assignments. The map can help analysts in identifying

natural group neighborhoods. This is the reason for

showing the map view in connection and coordinated

with the small multiples matrix view. Inspecting both

in combination provides an analyst with insights

needed to decide whether the explicit cluster assign-

ments should be modified and alternative cluster mod-

els should be investigated or not.

In order to reduce the undesirable effect of overlap-

ping circles, the map can be explored at multiple levels

of detail. We implemented a KD-tree-based spatial

representation42 of the points embedded in 2D space.

The root represents the set of all projected variables,

whereas the the leaf nodes represent individual vari-

ables. At higher tree levels, the map shows bigger cir-

cles that represent multiple variables. The map is

initially displayed at the leaf level, but a user can navi-

gate up the tree hierarchy to reduce the level of detail,

and then down to increase it. Circles that represent

multiple variables assigned to a single cluster are ren-

dered with the cluster color, while circles rendered in

gray represent a heterogeneous group of variables that

have been assigned to multiple clusters. Hovering over

a circle prompts the display of more detailed informa-

tion about the variables it represents.

Variable correlation matrix. A correlation matrix of

time matrices is computed for all variables, or for a

user-selected subset, see Figure 11. This provides a

complementary view to verify cluster cohesion to effi-

ciently identify groups of variables with similar tem-

poral behavior, as identified by task requirements (1),

(2), and (3). Pairwise correlations between variables

are computed using Pearson’s correlation coefficient,

as implied directly by their corresponding data values,

rather than their feature vectors.

Variable correlation is displayed as a heatmap visua-

lization, where each cell depicts an entry of the correla-

tion matrix. Values are mapped to a color scale where

darker blue shades indicate strong negative correla-

tions and darker brown shades indicate high positive

correlations. Matrix rows and columns are sorted

based on the clustering of the variables, and clusters

are signaled by the colored borders at the top and the

left side. Analysts can inspect it to assess the similarity

of variables assigned to a single cluster.

Normalized time series line graphs of the variables

can also be inspected, with lines colored according to the

variable’s cluster. Motivated by task requirements (1),

(2), and (3) and inspired by the temporal pixel-oriented

layout introduced by Machado et al.,6 this view is associ-

ated with an array showing the corresponding matrix val-

ues, as in a timeline, as illustrated in Figure 7. These

visualizations are coordinated, for example, a data point

has been selected in the pixel-based layout, highlighted

with a border in cyan, which is also highlighted in the

corresponding line graph. These combined and coordi-

nated views facilitate identifying common patterns and

values in different time windows.

Visualizing the behavior of data instances

It may be also relevant to visualize the behavior of data

instances, in particular, 2D similarity maps can convey

groups of similar data instances. Multiple maps can be

created considering the data instances described by

alternative sub-spaces of variables (see equation (3)),

allowing one to compare the behavior of distinct

descriptor spaces in relation to a target variable, in

support of task requirement (4).

After some empirical investigation, we chose the

Least Square Projection (LSP) introduced by

Paulovich et al.43 for this purpose. The technique

attempts to preserve local neighborhoods identified in

the original data space. Initially, it projects a subset of

so-called control points with a dimension reduction

method that preserves distance relationships accu-

rately. It constructs a linear system of equations con-

sidering point neighborhoods in the original space and

the projected coordinates of the control points. The

solution of this linear system defines the remaining

positions in the low-dimensional space.

Each data instance is shown as a colored circle,

mapping either a category or a scalar variation of a

selected target variable. Pairwise distances can be

computed with the Euclidean distance or the inverse

Pearson correlation. Analysts can filter out data
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instances based on the value of the target variable,

which is useful to reduce overlapping and conduct

more focused data analysis.

Use cases and results

The TV-MV Analytics framework is applicable to

domains where large time-varying multivariate data

arise and must be understood. It can be used for inter-

active exploratory data visualization considering differ-

ent temporal ranges and scales, from a variable and/or

instance perspective. We have used three time-varying

multivariate data sets from distinct domains, namely,

crime statistics of the state of São Paulo, Brazil, air

quality measurements from an Italian city, and US

stock market data, summarized in Table 1.

In the case studies, we considered several realistic

questions and scenarios to exercise multiple explora-

tion paths and illustrate the framework’s potential, as

described in the remainder of this section.

In the case studies, we considered several realistic

questions and scenarios to exercise multiple explora-

tion paths and illustrate the framework’s potential, as

described in the remainder of this section.

Crime statistics of São Paulo state, Brazil

Crime statistics provide information about public

safety and relevant for planning police actions and

investments. In the state of São Paulo, the Secretariat

of Public Security is responsible for data collection

and analysis to support crime prevention and repres-

sion. A public crime statistics data set is available

(Secretariat of Public Security, State of São Paulo,

Brazil, Police Productivity http://www.ssp.sp.gov.br/

Estatistica/Pesquisa.aspx (28 December 2017)) storing

several indicators of criminal occurrences in 12 mesor-

egions, recorded monthly from 1 January 2002 to 1

February 2017.

The data instances comprise 13 variables recording

the numbers of monthly occurrences related to the fol-

lowing: (1) possession of narcotics, (2) traffic of narco-

tics, (3) seizure of narcotics, (4) criminal possession of

weapons, (5) seized firearms, (6) official reports of

flagrant crimes, (7) detentions of flagrant offenders,

(8) detentions of offenders by warrant, (9) arrests of

flagrant offenders, (10) arrests of offenders by war-

rant, (11) imprisonments, (12) recovered vehicles, and

(13) total inquiries. We added variable (14) informing

the homicide rates over the period, also reported by

the state Secretariat of Public Security.

The data then available were investigated in an ear-

lier study by Arvate and Souza,44 who estimated the

impact on crime indicators of a law approved to regu-

late firearm adoption by municipal police forces in

2003. They constructed indicators for each state

region for the years 2002, 2004, 2006, 2009, and

2012, using the following indicators: total number of

inquiries, individuals arrested in flagrant, drug seizure,

recovered vehicles, prisons issued, and homicide.

They created regression functions using these indica-

tors as dependent variables and concluded that armed

municipal police forces contributed to a reduction in

crime indicators after 2003. They also attributed to

this factor a significant increment observed in the

number of individuals arrested in flagrante.

We discussed the value of our analysis framework

for this scenario with a police officer. He stated that

the crime indicators explored provided a meaningful

and helpful way to assess criminal activity and police

effectiveness in the different regions. Indeed, some

indicators, such as number of seized firearms, occur-

rences of narcotics traffic, and number of imprison-

ments, can be viewed as indicators of police activity.

Hence, an increase in their occurrence can be inter-

preted as a positive indicator of stronger police action.

Our framework was tested by the police expert, who

interacted with it for about an hour. It took no more

than 10 min for him to utilize the tool properly and

begin to recognize important behavior.

Our case study considered two illustrative data

analysis questions: (Q1) Can we confirm that fire-

armed police impact crime rates? and (Q2) How do

crime indicators relate to homicide rates? Analysis

considered variable dissimilarity measured with the

inverse Pearson correlation and the Abo-Zaid

moments as time matrix features, emphasizing data

variability.

Table 1. Data sets analyzed in the case studies.

Domain # Variables Rate # Instances Interval

Crime statistics 14 Month 2366 01 January 2002
01 February 2017

Air quality 13 Hour 9357 10 March 2004
04 April 2005

Stock market 7 Day 1,773,230 01 January 1995
30 November 2016
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Our exploratory investigation covers a longer period

than the original study, from 31 January 2002 to 28

February 2017 (with time matrices shown in

Figure 5), in order to determine whether the conclu-

sion still holds. We considered the same six indicators

that had been analyzed in a previous study:44 total

inquiries, arrests of flagrant offenders, seizure of narcotics,

recovered vehicles, imprisonments, and homicide rates.

The target data were retrieved with the query opera-

tion as illustrated in Figure 6. It retrieves the observa-

tions relative to the six target indicators as stored in

the database, without the application of an aggregation

function; values were normalized. Algorithm 1 was

executed to create the time matrices from the resulting

set of time series. Feature vectors with Abo-Zaid

moments as features, see equation (5), were extracted

from the time matrices, and an initial clustering was

generated.

Three clusters were identified (SC= 0:44) using

inverse Pearson correlation as dissimilarity measure

and the SC-optimized K-means clustering algorithm.

The small multiples time matrix visualization was cre-

ated, and a color mapping selected using distinct col-

ors for each cluster. A blue cluster (C1) includes the

indicators concerning arrests of flagrant offenders and

seizure of narcotics, a yellow cluster (C2) includes impri-

sonments and homicide rates, and a pink cluster (C3)

includes recovered vehicles and total inquiries. We

observe a reduction in all indicators for a small period

after 2003. A significant increase is observed from

2011, except for the indicators homicide rates and

recovered vehicles, which exhibit different behavior. The

numbers of recovered vehicles decreased in 2007 and

2008, but it increased later. The homicide rates

decreased after 2004.

As clusters were computed using the inverse of

Pearson correlation as dissimilarity measure, we found

that cluster C2 conveys the negative correlation of

the indicators imprisonments and homicide rates, that is,

the number of reported homicide rates decreased as the

number of imprisonments increased. This is noticeable

in the patterns of both time matrices in the yellow

cluster. This observation supports the alleged positive

impact of fire-armed municipal police of short dura-

tion. Other factors could be causing an increase in the

crime indicators reported. This reasoning is supported

by the time series graphs depicting the behavior of

these indicators, see Figure 7, where reported num-

bers increase after 2010.

Figure 7. Time series graphs of arrests of flagrant offenders, seizure of narcotics, imprisonments, homicide rates,
recovered vehicles, and total inquiries (31 January 2002–28 February 2017). Most indicators show an increase after 2010.

Figure 6. Query operation to retrieve six indicators: total
inquiries, arrests of flagrant offenders, seizure of narcotics,
recovered vehicles, imprisonments, and homicide rates,
covering a longer period, from 31 January 2002 to 28
February 2017.

Soriano-Vargas et al. 13



As a second investigation, we wanted to verify the

role of the remaining 13 indicators for characterizing

the behavior of the homicide rates indicator. In this

case, the data were retrieved by sampling maximum

values recorded over 1-month periods for each year

from January 2002 to February 2017, and values were

normalized. Algorithm 1 was executed to create the

time matrices relative to the resulting set of aggregated

time series, and feature vectors defined by the Abo-

Zaid moments, see equation (5), were extracted from

the time matrices.

We initially inspected the small multiples time

matrices view combined with the IDMAP similarity

map for the 14 indicators for the State of São Paulo,

see Figure 8. We clustered feature vectors with the SC-

optimized K-means algorithm and the inverse Pearson

correlation as dissimilarity measure, yielding four clus-

ters, with SC = 0:51, indicating a high-quality cluster-

ing. The views of the time matrices and similarity map

confirm that variables in the same cluster are highly

correlated regarding their temporal distribution of val-

ues. For instance, in cluster C1 (blue) we notice that

the three indicators official reports of flagrant crimes,

imprisonments, and arrests of flagrant offenders are highly

correlated. The indicators in clusters C2 (pink) and

C3 (red) show lower correlation, confirmed by the

similarity map. Cluster C4 (yellow) merges two groups

with a strong positive correlation, a first group contain-

ing criminal possession of weapons, seized firearms, and

homicide rates, and a second group containing seizure of

narcotics and traffic of narcotics. These two groups pres-

ent high negative correlation. The selected medoids

are the following: official reports of flagrant crimes, deten-

tions of offenders by warrant, arrests of offenders by war-

rant, and seized firearms. Considering this, cluster C4

was split into two subgroups. The adjusted model,

shown in Figure 9, is defined by five clusters and has

an improved value of SC= 0:56. A new medoid, sei-

zure of narcotics, has been added to the representative

indicators, see equation (7).

Visually, the indicators most correlated with homi-

cide rates are criminal possession of weapons and seized

firearms. In order to further investigate this issue, we

compared the results of linear regressors, see equation

Figure 8. Crime indicators São Paulo state, Brazil: (a) IDMAP similarity map view, with each circle depicting an
indicator, and (b) small multiple time matrix view, where matrix entries show the maximum values recorded over a
monthly period for each year. Four clusters are identified.
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(7), for the set of data instances described by alterna-

tive sub-spaces of indicators, see Figure 2, with indica-

tor homicide as target. The following sub-spaces were

considered as descriptors:

1. All indicators: 13 indicators, excluding homicide

rates.

2. Four cluster medoids (from initial automatic clus-

tering): official reports of flagrant crimes, detentions of

offenders by warrant, arrests of offenders by warrant,

and seized firearms.

3. Five cluster medoids (from user-adjusted cluster-

ing): official reports of flagrant crimes, detentions of

offenders by warrant, arrests of offenders by warrant,

seized firearms, and seizure of narcotics.

4. Nine indicators from automatic linear regression:

traffic of narcotics, criminal possession of weapons,

seized firearms, official reports of flagrant crimes,

detentions of flagrant offenders, arrests of flagrant

offenders, arrests of offenders by warrant, imprison-

ments, and recovered vehicles.

5. One indicator obtained by simple linear regres-

sion: criminal possession of weapons.

6. Five indicators considered by Arvate and Souza:44

arrests of flagrant offenders, seizure of narcotics, impri-

sonments, recovered vehicles, and total inquiries.

Results are summarized in the projection maps

shown in Figure 10 (except in (e)) in which the circle

colors map the indicator homicide rates, accompanied

by the regression correlation indices between the tar-

get variable and the variable sub-spaces. They suggest

that multiple variable sub-spaces can properly charac-

terize this indicator, and good prediction models can

be attained. Notice that in most similarity maps, high

homicide rates (represented by dark circles) are

placed distant from the low homicide rates (light

colored circles). This analysis confirms that the visual

interaction is beneficial for identifying the best subset

of indicators to characterize the indicator homicide

rates. Figure 10(e) shows the time series of variables

criminal possession of weapons (in blue) and homicide

rates (in red), which also show strong correlation.

The domain expert concluded that the TV-MV

Analytics made it possible to study relevant correlations,

inconsistencies, and behavior over time, regarding both

crime indicators and police activity. She affirmed that

the framework allowed her to identify regions with high

Figure 9. IDMAP similarity map view of the 14 indicators depicted in Figure 8, now considering a user-adjusted cluster
model (five clusters).

Figure 10. Similarity maps and regression correlation of
data instances described by the distinct indicator
subspaces, which suggest that different variable
subspaces represent data behavior well (numbers
correspond to the correlation coefficients): (a) 13
indicators (0.97), (b) 4 indicators (0.94), (c) 5 indicators
(0.94), (d) 9 indicators (0.97), (e) 1 indicator (0.95), and (f) 5
indicators (0.82).
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concentrations of certain types of crimes, suggesting

the need for reinforcement of police activity.

Air quality data of an Italian city

The second data set (UCI, Air Quality Data Set,

https://archive.ics.uci.edu/ml/datasets/Air+Quality (28

December 2017)) concerns urban environment pollu-

tion monitoring, with measurements obtained from

four sensing devices deployed in an Italian city with

heavy car traffic, from 10 March 2004 to 04 April

2005. One of the devices is referred to as the MOX

sensor, as it is equipped with five Metal Oxides

(MOX) sensors,45 and their concentrations were

recorded hourly concerning our data set. The other

sensing device is a conventional air pollution monitor-

ing station (ST) equipped with spectrometer analyzers

to provide reference data. Two commercial tempera-

ture and humidity sensors were co-located with the

pollution monitoring sensors.

The following six pollutant gases were tracked

(some of them by both devices): carbon monoxide CO

(tracked by ST and MOX); non-methanic hydrocar-

bons NMHC (STand MOX); nitrogen oxide NOx (ST

and MOX); nitrogen dioxide NO2 (ST and MOX);

ozone O3 (MOX); and benzene C6H6 (STand MOX).

The data instances are therefore described by 13 vari-

ables including the six pollutant gases information

tracked by the respective sensors, plus the the three

sensor information of temperature, relative humidity,

and absolute humidity (hourly averages).

This data set was previously investigated by Vito

et al. In the first study,45 the authors employed back-

propagation neural networks to predict benzene

(C6H6) concentration, with low estimation errors.

They found that the NMHC pollutant has a notable

benzene-related component. The second analysis46

also used back-propagation neural networks to study

the influence of variable selection and correlation anal-

ysis for estimating CO, NOx, and NO2 concentrations.

Interestingly, the best performance values for estimat-

ing NO2 were obtained when using data from all sen-

sors. Results concerning CO estimation revealed that

NMHC can follow the concentration of CO, and that

estimations deteriorate when NO2 and NOx are added.

We discussed this scenario with an environmental

engineer. She stated that the pollution problem in

urban environments is highly affected by the dense

distribution of outdoor air pollutants (some of them

covered in this section) due to city design.

According to the specialist, the correlation study

may help to identify the cause of pollution, for exam-

ple, pollutants emitted by the same sources or pro-

duced by the transformations induced by chemical

mechanisms. In this context, TV-MV Analytics sup-

ports further exploration of a correlation matrix visua-

lization of selected variables. We created correlation

matrix views to verify the variable correlations

Figure 11. Correlation matrix of (a) original and (b) aggregated values measured for the following variables: C6H6, plus
CO, NO2, and NOx (reference and MOX), from 10 March 2004 to 04 April 2005. Dark blue shades indicate strong negative
correlation and dark brown shades indicate high positive correlation.
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considering the original hourly values recorded, which

were retrieved as stored in the database, see Figure

11(a), and considering the daily maximum values

recorded, which were retrieved from the database with

a query setting the maximum value over a 24-h period

as the aggregation function (as defined in equation

(2)), see Figure 11(b). Our goal was to assess how the

data reduction due to aggregation impacts the out-

come of a correlation analysis. After aggregation, the

time series have been reduced from 9384 to 391 sam-

ples. We observe that, although correlation values are

slightly different, the global patterns are preserved.

These results, where correlation behavior remains sta-

ble over time, suggest to the specialist that pollution is

not merely a current, isolated problem, but that it has

been an ongoing issue.

The correlations were computed between the mea-

surements obtained from the spectrum analyzers (the

reference device) and the multi-sensor device (MOX),

for each pollutant. We notice that values are not corre-

lated, as confirmed by the correlation matrices shown

in Figure 11. ST NO2 and MOX NO2 have a corre-

lation of 0.16, ST NOx and MOX NOx have a corre-

lation of 0.66; and ST CO and MOX CO have a

correlation of 0.89. However, there is a higher correla-

tion between ST C6H6 and MOX CO, which can be

confirmed observing two visualizations: the line graphs

in Figure 12 and the TCDs in Figure 13.

In Figure 12, we observe a high correlation between

measurements of ST C6H6 and MOX CO recorded

over a short period (Figure 12(a)), and similar correla-

tion patterns are observed over a longer 6-month

period considering the aggregated data (Figure 12(b)).

It is also possible to observe certain patterns in

Figure 12(a) in the period 18–21 May for MOX CO

and in the period 17–21 May for ST C6H6. These

patterns can be confirmed in the TCDs computed for

the same time period for variables MOX CO (Figure

13(a)) and ST C6H6 (Figure 13(b)), which highlight

days for which correlation measures are above a user-

defined threshold, 0.8 in this case. For instance, we

identify in both diagrams that correlation between

hourly measurements each day is higher in 18–21

May.

The environmental engineer highlighted the

resources provided by TV-MV Analytics that facilitate

visual investigation of correlations in air quality mea-

sures considering both small and large time windows.

US companies stock market data

The stock market data set was extracted from Quandl

(Wiki EOD Stock Prices, https://www.quandl.com/data/

EOD-End-of-Day-US-Stock-Prices (28 December

2017)), originally containing information about 3000

companies. For this study, we considered data on equi-

ties from 438 technology companies (as listed by the

New York Stock Exchange (https://www.nyse.com/ (28

December 2017)) and the Nasdaq Stock Market (http://

www.nasdaq.com/ (13 January 2017))), from 2 January

1962 to 30 November 2016. From the seven

original variables, we selected to explore the variable

close (the stock’s closing price), recorded daily. This use

case explores only one variable and, therefore, does

not demand multivariate data analysis. However,

it illustrates the scalability and flexibility of the

TV-MV Analytics framework, as it supports handling

extensive time series relative to over 400 different com-

panies to compare their behavior regarding the attribute

close.

Several authors proposed visualizations for stock

market data analysis. Similar to the solution by Ziegler

Figure 12. Line graphs depicting normalized series of measurements of ST C6H6 (pink) and MOX CO (blue): (a) ST_C6H6

(pink) and MOX_CO (blue) (original hourly values, 15 May–22 May 2004), and (b) ST_C6H6 (pink) and MOX_CO (blue)
(aggregated daily values, March–August 2004). Patterns can be observed at both temporal scales.
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et al.,7 where segments of software/bank stocks are

clustered into similar patterns, we investigated possible

global patterns in the technology sector. Considering a

segment of 438 technology companies, is it possible to

identify groups of companies with globally similar

behavior? We defined a query to retrieve the average

monthly values of close from 1 January 1995 to 30

November 2016 (aggregated data values as described

in equation (2)) for the target companies. We created

the corresponding time matrices for each company,

and obtained their feature vectors using color

moments as features. For clustering the feature vec-

tors, we employed the Euclidean distance as dissimi-

larity measure and the X-means clustering algorithm.

We explored the hierarchical small multiple time

matrix views to identify representative behaviors over

the observation period, considering the impact of miss-

ing data. Figure 14(a) shows the similarity map of

variables, indicating the five clusters obtained with the

X-means algorithm (SC = 0:33). The blue cluster

(C1) includes 99 companies, the lilac cluster (C2) 60

companies, the red cluster (C3) 45 companies, the

olive cluster (C4) 121 companies, and the green cluster

(C5) 113 companies.

Considering these five clusters of companies with

similar behavior over time, we take their correspond-

ing medoids as companies representative of the char-

acteristic temporal pattern of each cluster: TeleTech

(TTEC), AOL, JDS Uniphase Corporation (JDSU),

Rovi Corporation (ROVI), and Fortinet (FTNT);

their corresponding time matrix views are shown in

Figure 14(b). This view corresponds to the first level

of the hierarchical small multiples view. The user can

browse to further inspect the time matrices relative to

the companies within each cluster. As an illustration,

we show in Figure 15 a possible view resulting from

further inspecting the contents of each cluster. It

shows the time matrix views of three arbitrarily

selected companies from each cluster in Figure 14.

These examples illustrate that the groups are well-

formed, including companies with similar temporal

behavior of variable close.

In the blue cluster, low values of close occur mostly

at the beginning of the observed period and higher val-

ues occur mostly toward the end. The behavior of the

lilac cluster is characterized by a high percentage of

missing data and extreme values, both high and low.

The yellow group is characterized by reduced variabil-

ity. The green cluster is characterized by a high ratio

of missing data, and also presents extreme values. The

red cluster exhibits a particular behavior where high

values occur at the beginning of the period (initial

rows) and low values predominate later; this behavior

is observed for all companies in this cluster.

To illustrate the potential of the TCD to support

the investigation of periodic correlation patterns, we

Figure 13. TCD of variables ST C6H6 and MOX CO, considering values for the period 15–22 May 2004, where values were
grouped in 1-day sub-periods.
Note: The gray labels indicate the change of sub-period (in this case 1 day) in a clockwise motion.

18 Information Visualization 19(1)



consider the behavior of IBM close over an extensive

time period (from January 1962 to November 2016).

Each cell in the interactive TCDs represents a month

in the original data (a)–(b) or the Haar-aggregated

data (c)–(d), see Figure 16. Lines relative to monthly

values are joined into groups of 12 (user defined),

defining 1-year periods, where the lines are visually

perceived as triangles. We explore the TCDs at four

different levels of the Haar wavelet transformation: (a)

and (b) show views of level 0 (i.e. the original data),

and (c) and (d) show views of level 3, obtained aggre-

gating the 12-month intervals. The correlations

Figure 14. Hierarchical time matrices of the variable close for 438 companies (from 1 January 1995 to 30 November
2016): (a) IDMAP similarity map view, with cluster medoids highlighted in bright green, and (b) small multiple time matrix
view of the variables that are the corresponding medoids of each cluster (TeleTech (TTEC), AOL, JDS Uniphase
Corporation (JDSU), Rovi Corporation (ROVI), and Fortinet (FTNT)). Each matrix entry shows the maximum monthly value.

Figure 15. Time matrix views of variable close for three US technology companies randomly selected from each of the
five representative clusters of companies identified in Figure 14 (TTEC, AOL, ROVI, FTNT, and JDSU). They are illustrative
of companies that can be accessed in the second level of the hierarchical time matrices visualization, upon user
interaction. The examples confirm that the clusters illustrate groups with very different behaviors of close, but
companies in a same cluster do show similar behavior.
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between different periods can be highlighted by select-

ing a target period, a functionality illustrated in the

TCDs depicted in (b) and (d). In both, the 12-month

period relative to year 2002 has been user-selected,

and eight 12-month periods are identified as highly

correlated (above 0.8) with year 2002 and highlighted

in red. The years in which the monthly behavior of

close have been found to be highly correlated with 2002

are 1962, 1966, 1968, 1970, 1973, 1981, 1991, and

2004. This is more clearly observed in Figure 16(d),

which uses a higher Haar compression level, than in

Figure 16(b), which shows the original data and lines

are highly overlapped. Thus, the TCD views at higher

Haar levels allow dealing with information overload, as

strong correlation patterns are preserved and can be bet-

ter perceived at higher compression levels.

Finally, the prediction functionality is illustrated

with an experiment of predicting the behavior of vari-

able close for a particular year, considering different

intervals of known historical data (equation (9)).

Results are shown for the variable close of IBM, whose

time matrix view is shown in Figure 17. The more

information the model has, the more accurate is the

prediction.47 This is confirmed by the prediction

results for 2016, obtained by considering distinct peri-

ods of historical data as input: 31, 15, and 5 years,

shown in Figure 17 in comparison with actual values.

More precise results were obtained considering a lon-

ger periods of historical data, as expected.

We discussed these scenarios with a business man-

ager who is also a stock market investor. According to

him, individual investors own approximately half of all

stocks available on the US stock market. Tools that

can assist in the decision-making process are crucially

important for stock selection. Many factors cause vola-

tility in the stock market, and TV-MV Analytics sup-

ports the identification of companies that are stable or

unstable over a long term, which is an important

aspect for investors.

Figure 16. Time circular diagrams depicting the behavior of IBM close from 1962 to 2016, where each cell represents: a
month in the original data (a, b) and aggregated data (c, d). The monthly values have been bundled in groups of
12 months (set by the user), where the lines are visually perceived as triangles. The TCD was explored at four Haar
levels, where (a, b) depict the original data, and (c, d) shows the TCD at level 3 by aggregating the intervals in the user-
defined groups of 12 months. Eight 12-month periods were identified as the most correlated to year 2002, namely, 1962,
1966, 1968, 1970, 1973, 1981, 1991, and 2004: (a) TCD level 0, (b) TCD level 0 highlighting periods correlated with a
selected period, (c) TCD in level 3, and (d) TCD level 3 highlighting periods correlated with a target period.

Figure 17. Prediction results of variable close for
company IBM, obtained considering three alternative
periods of the historical records available from January
1985 to December 2015.
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Conclusions and future work

We have introduced the visual analytics framework

TV-MV Analytics supporting exploratory data analysis

of complex time-varying multivariate data. The frame-

work supports, in an integrative manner, feature

extraction, clustering, individual and global visualiza-

tions of data variables and data instances. The sup-

ported analyses and visualizations convey a detailed

representation of temporal behavior of data at multiple

user-defined aggregation levels. The framework pro-

vides overviews of multiple variables regarding beha-

vioral similarity for user-defined time periods and

enables users to identify representative variables for

characterizing a target phenomenon. We have con-

ducted an experimental assessment of the capabilities

and effectiveness of TV-MV Analytics, by considering

time-varying multivariate data from three different

domains: crime statistics indicators for the state of São

Paulo, air quality measurements in an Italian city, and

US stock market prices.

The case studies are representative of the use of the

system for gaining insight into the historical behavior

of multiple variables. The framework can greatly assist

an analyst to answer questions and uncover previously

unknown relationships. TV-MV Analytics is useful

when (1) the number of variables is high, (2) there are

defined target variables, and (3) there is interest in

investigating behavior at different time scales and for

different periods time.

The framework in its current form has limitations.

For example, to obtain a solution it is necessary to

derive informative feature vectors from time matrix

representations. However, the task of selecting the

appropriate moments for a given data set is not

straightforward, and an analyst is required to have

knowledge about data properties. Establishing an

appropriate dissimilarity measure for data is another

complex and often domain-specific issue that cannot

be addressd in a simple or automatic way.

A more extensive evaluation of the usability of the

TCD is desirable, as well as a systematic evaluation of

the framework done by domain experts. Such evalua-

tions are important to provide relevant information

about the potential advantages and limitations of the

framework and its supported techniques before its

intuitive use is possible.
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