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Abstract 
Numerical simulations use past reservoir behavior to calibrate models used to predict future             
performance. Traditionally, this process is carried out deterministically through history matching and            
most current approaches focus on developing probabilistic procedures, called data assimilation, whereby            
reservoir simulation models are calibrated to reproduce plausible performance under different operating            
conditions.  
The output of different data-assimilation strategies can over-reduce the variability by having several             
highly-similar scenarios. Consequently, the need to ensure the variability of simulation models arises, to              
consider multiple possible solutions. In this vein, we introduce a visual analytics approach, based on               
phylogenetic trees, as a means to evaluate the variability of numerical reservoir simulation models              
throughout the probabilistic data assimilation process. Phylogenetic trees arrange simulation results           
based on similarity and visually convey match quality through color encoding.  
We applied our methodology to two scenarios: (i) a synthetic scenario to exemplify the properties of the                 
phylogenetic tree for the analysis of simulation models; and (ii) two different ensembles of simulation               
models, each representing a data-assimilation iteration, from the UNISIM-I-H benchmark case based on             
the Namorado Field, Campos Basin, Brazil.  
Our strategy is intuitive and easy-to-use, allowing the user to assess the similarity of the numerical                
reservoir scenarios, ensemble variability, and match improvement during data assimilation iterations. 
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Introduction 
 
Despite efforts to develop new sustainable energy sources, oil is still one of the most important sources                 
for energy. The management of oil reservoirs requires reliable models that must reproduce past reservoir               
behavior to estimate the dynamic behavior of the field, for reservoir management and to forecast oil                
production. 
 
Creating a numerical simulation requires the generation of a reservoir model that contains the reservoir               
characteristics. However, the lack of information to correctly characterize the reservoir generates            
uncertainties about the properties, and, consequently, the selected parameters may not represent the             
actual reservoir. Therefore, it is necessary to develop a process capable of obtaining models with               
estimates that represent the reality of the field.  
 
Traditionally, this process is carried out deterministically through what is known as history matching,              
where a single numerical model is generated, from which model uncertainties are evaluated. However,              
this approach is somewhat limited, as the process has characteristics of inverse problems, where multiple               
inputs can generate results of the same quality. Thereby, existing efforts focus on probabilistic              
approaches where multiple scenarios are evaluated together and uncertainties are updated in what we              
know as data assimilation, which involves information from observations and numerical scenarios to             
reduce the uncertainties and increase the reliability of forecast estimations (Jahanbakhshi et al., 2018).  
 
There are many methodologies used to perform data assimilation, such as Kalman filter (Jazwinski,              
1970), Kalman smoother (KS, Jazwinski, 1970), Ensemble-based methods (Evensen, 2009b), Optimal           
Interpolation (Daley, R., 1991), 3D/4D Variational Data Assimilation (Lewis and Derber, 1985;            
Talagrand and Courtier, 1987; Rabier and Courtier, 1992; Errico et al., 1993; Courtier, 1997; Lewis et                
al., 2006), of which the ensemble Kalman filter (EnKF) and the ensemble Kalman smoother (EnKS) are                
the most popular examples. Nonetheless, in practical applications, some probabilistic methodologies can            
greatly reduce the variability of uncertainties, achieving at the end of the assimilation, several scenarios               
matched that present equal properties parameters, collapsing the uncertainties to the same point.             
Ensuring the variability of simulation models is vital to consider multiple possible solutions, especially              
when the focus is on the probabilistic forecast. 
 
Reliable reservoir simulation should be transparent and empower decision-makers rather than create a             
black box (Islam et al., 2010). Uncertainties are the key elements that largely impact the               
decision-making process based on modeling (Caers, 2011). In this context, Schiozer et al. (2015)              
proposed a 12-step methodology to improve the decision-making process. In Step 5, it is highlighted the                
importance of the data assimilation through a reduction of scenarios on the closed-loop process.  
 
Many authors propose strategies to reduce the scenarios to be considered without running the costly               
flow simulations. Some automatic techniques are based on ranking (Ballin et al., 1992; Steagall and               
Schiozer, 2001; Schiozer et al., 2004; Sarma et al., 2013; Meira et al., 2016), based on certain objective                  
functions and dependent on the property selected. These methods sort the simulation models based on a                
given measure and, then, may select models in the top, medium and/or bottom of the ranking. The main                  
problem with this approach is that if the measure has no correlation with the reservoir production, then                 
the selected models will not represent the variability of the uncertainties. Probability-based techniques             
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(Rahim and Li, 2015) are also applied to find an optimal subset of simulation models. However, they are                  
computationally time-consuming for a large set of models and sensitive to the presence of outliers.               
These strategies do not provide an overview of the simulation model distribution. 
 
Other authors have proposed projection maps to represent the similarity space of simulation models,              
whereby each point represents a simulation model, by analyzing how the models are different or similar                
to each other to select representative ones. Distance functions have also been proposed, such as the                
Hausdorff distance (Suzuki et al., 2008; Suzuki and Caers, 2008) and the EnKF metric (Caers and Park,                 
2008; Park, 2011). Other authors, see Sahaf et al. (2018) and Scheidt and Caers (2009), have suggested                 
applying a clustering method on the projection map and, subsequently, selecting a representative model              
from each cluster. The drawback of these strategies is that models are significantly reduced considering               
just the similarity between them and not the objective functions.  
 
In general, these strategies, despite giving some clues about uncertainty, fail to (1) assess the variability                
of the simulation models in the uncertainty reduction process; (2) see a global view; (3) consider                
similarity between simulation models or the number of objective functions within an accepted range;              
and (4) evaluate the collapse of reduction of uncertainties. The main contribution of the present work                
relies upon a visual approach to evaluate the variability of numerical reservoir simulation models              
throughout a probabilistic well data-assimilation process, and also to understand the reduction of             
uncertainties. The contribution of the proposed method is related to steps 4 and 5, which are related to                  
scenario generation and reduction, of the unified 12-step methodology proposed in Schiozer et al.              
(2015).  
 
In summary, we introduce a visual analytics approach, based on phylogenetic trees, to evaluate the               
variability of numerical reservoir simulation models, that supports visualizing, in a single representation,             
the similarity of reservoir properties and well-matching quality through color encoding. This proposed             
solution is an interdisciplinary result of computer scientists and petroleum engineers. It is intuitive and               
easy-to-use, allowing the user to efficiently assess ensemble variability and match improvement during             
data-assimilation iterations. The described solution can also be used to evaluate the spatial movement of               
fluids. 
 
As modern reservoir management is usually described as a continuous process that optimizes the              
interaction between data and decision making during the life cycle of a field (Saleri, 2005), our visual                 
data analysis approach can be used iteratively, by generating a visualization at each data-assimilation              
iteration, giving an overview of how data is converging, where users may make decisions and/or               
adjustments.  
 

Scope/Objective 
 
We introduce a visual approach to evaluate the variability of numerical reservoir simulation models              
throughout the probabilistic well data assimilation process. The main contribution of our method is the               
definition and generation of a visual representation to convey: (i) similarity of simulation models and               
(2) well-matching quality through color encoding, to assess variability.   
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Methodology 
 
Figure 1 depicts an overview of the workflow. From a model ensemble (a), we define the acceptance                 
range, from which matching quality is calculated to obtain the color mapping (b). We define the metric                 
to be applied between models to calculate the dissimilarity matrix (c). The visualization of a               
phylogenetic tree depicts the similarity and matching quality of the simulation models (d).  

  
Fig. 1 – Flowchart of the proposed methodology to visualize the variability of numerical simulations.  
 

Model Ensembles, Data Assimilation, and Objective Functions 
We validated this procedure against the benchmark UNISIM-I-H (see Figure 1.a), a synthetic reservoir              
based on structural, facies, and petrophysical models using geological and rock/fluid data from a real               
Brazilian pos-salt reservoir field (Avansi and Schiozer, 2015a). This dataset is composed of synthetic 4D               
seismic data and 500 reservoir simulation models, where each model corresponds to a particular              
combination of all reservoir uncertainties. We used the set of models, which have a horizontal grid of                 
58×81. More details about the seismic data generation can be found in Davolio and Schiozer (2019).  
 
We adopt the probabilistic data-assimilation procedure proposed by Almeida, et al. (2019) to reduce the               
number of scenarios from the initial set. This data assimilation procedure is based on the methodology                
introduced in Maschio and Schiozer (2016), but spatial uncertainties are treated through a regionalized              
co-simulation. The metric employed to measure the deviation between the scenarios estimations and             
historical data is the Normalized Quadratic Deviation with Sign quality indicator (NQDS) presented by              
Avansi et al. (2016). NQDS (Equation 1) measures, for a variable and a generated model, the misfit of                  
the variable in the model.  
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where ​i corresponds to a certain time instant, ​Sim​i ​and ​Obs ​i ​are the simulated and the observed data                  
measured at the time ​i​, ​Tol is the percentage of tolerance for variables be considered good with respect                  
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to historical data, and ​C is a constant to prevent division by zero, in case the production rate is zero. The                     
closer to zero NQDS is, the more similar the two (history and simulated) data points are. NQDS                 
equaling zero means that they are coincident. The NQDS strategy supports the definition of              
matching-quality levels, to identify models with equivalent matching quality for one or more variables. 

Acceptance Range and Global Matching Quality 
 
We used the NQDS indicator to evaluate multiple local objective functions, for each output variable               
considered in the data-assimilation process and for each model generated. We considered 78 local              
Objective Functions (OFs): oil rate (Qo), water rate (Qw), gas rate (Qg), and bottom-hole pressure               
(BHP) for 14 producers (4 OFs × 14 producers = 56 OFs) and water injection rate (Qwi), and BHP for                    
11 injectors (2 OFs × 11 injectors = 22 OFs). 
 
We calculated the number of NQDS of the local Objective Functions (#OFs) within a certain cut-off                
value (acceptance ranges), adjustable by the user, to identify different models with similar matching              
quality, considering that there is no unique solution for a data-assimilation problem. Depending on the               
purpose, we could consider all local objective functions to analyze the models considering the entire               
reservoir, or locally considering only the objective functions of producers and injectors in a certain               
region. Different acceptance ranges will create different matching qualities. 
 
Once (#OFs)-values are computed for all simulation models, we can assign a categorical color scale to                
indicate different levels of quality (see Figure 1.b). With this purpose, we selected a color scale as                 
defined in Figure 2 from red to blue in which red represents models with small number of OFs (worst                   
matching quality), cyan, green and yellow represent models with greater sequential number of OFs, and               
blue represents models with a great number of OFs (good well matching). Color is used to convey well                  
data matching quality (fluid rates and pressure) of each simulation model in the phylogenetic tree.  
 
 

 

Fig. 2—Categorical color scale from red to blue.  

The Dissimilarity of Simulation Models 
 
To calculate the dissimilarity of simulation models of an ensemble at a data-assimilation iteration, we               
used a well-known cost function: the Mean Squared Error (MSE), see (Tillier et al., 2013) for details on                  
this cost function. We calculated the MSE-values between pairs of numerical simulation models to              
obtain the differences between them as: 

,SE(M , M )  (M [i] M [i])² M A  B =  n
1 ∑

n

i=1
A −  B  2 

where ​M​i ​is the ​i-th​ reservoir simulation model, ​n ​ is the number of cells in the grid of each simulation 
model, and  is the value of the cell ​i​.[i]M A   
 
The result of comparing all reservoir simulation models is a lower triangular dissimilarity matrix (see               
Figure 1.c), which does not duplicate information. Numerous other dissimilarity functions could be             
selected and would be compatible with our proposed method. The resulting dissimilarity matrix is used               
as an entry to organize the simulation models in the phylogenetic tree. 
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Phylogenetic Trees  
 
To represent the global similarity, we use the concept of phylogeny (see Figure 1.d), which is widely                 
applied by biologists to support the construction of viable evolutionary relationships that exist between              
species (Swofford and Sullivan, 2003). The result of this process is a phylogenetic tree (phylo-tree) used                
to represent evolutionary distances, facilitating the assessment of sequence diversity within and between             
groups of species. Phylo-trees are usually represented by acyclic graphs with leaves representing species              
and topology indicating ancestry relationships. In our case, species are simulation scenarios, where their              
relationships are defined through similarity of saturation maps, using the dissimilarity matrix, as             
described in the previous section. 
 
Of the different phylogeny methods, the most important are those based on distance matrix methods               
(Swofford and Sullivan, 2003). The most popular heuristic approach used to reconstruct phylo-trees             
from distance matrices is Neighbor-Joining (NJ) (Saitou and Nei, 1987), a bottom-up strategy that builds               
a rootless tree. In this work, we rely upon the NJ implementation introduced by Cuadros et al. (2007) to                   
reflect the similarity of multiple scenarios. 
 
The NJ approach begins with a star tree, where all scenarios are connected (simulations in our case).                 
Then, it iteratively identifies pairs of closest scenarios (those with the smallest distance values), defined               
as neighbors, by selecting the smallest value in calculating the sum of the distances between the                
branches, using the equation: 
 

,  (D  D ) D  Sij = 1
2(n−2) ∑

n

k≠i,j
ik +  jk +  2

1
ij + 1

n−2 ∑
n

(k, l≠i,j)∧(k<l)
Dkl  3 

 
 
where ​i​ and ​j​ are the indices of the scenarios to be compared, is the matrix value in the position ​(i, j)​.Dij  
k​ represents all scenarios except ​i​ and ​j​, and ​n​ is the number of scenarios.  
 
Once the pair of neighboring scenarios to be grouped is chosen, a new virtual node X is created to                   
connect them. The selected pair of scenarios is removed from the dissimilarity matrix and replaced by                
the new virtual node. The distance between the new node and the other scenarios is calculated as: 
 

, Di−j,k =  2
D + Dik jk  4 

 
where​ k ≤ n​ excluding the scenarios ​i​ and ​j​. 
 
At each iteration, the number of instances is reduced by one unit and the process is repeated to find                   
another pair of neighboring scenarios. The iterative process is performed up to have three instances. 
 
Pairs of similar scenarios are arranged on branches that link them according to similarity. The resulting                
visual representation is colored using the color scale established for the matching-quality of each              
scenario, conveying well data matching quality (fluid rates and pressure).  
 
To analyze the variability of scenarios, we look at the formed branches. A well-formed branch               
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containing circles with similar colors represents a set of similar numerical reservoir scenarios in terms of                
well matching and spatial fluid similarity.  

Results 
 
We applied our methodology to two different case studies. The first is a synthetic case, which                
exemplifies the properties of the phylogenetic tree for the analysis of simulation models. The second               
case considers two different ensembles of simulation models regarding the UNISIM-I-H benchmark,            
each of which represents a data-assimilation iteration.  
 

Synthetic case 
We created a synthetic case, illustrated in Figure 3. This dataset comprises three different groups of                
similar maps. We assigned a different hypothetical quality matching for these groups, represented by              
red, blue and green. A reasonable visualization should highlight that the first and second rows are                
different despite being a reflection along the cross-diagonal.  
 

  ​11​ ​                              ​12​                               ​13​ ​                              ​14​                              ​15 

               ​21​                               ​22​                               ​23​                              ​24​                              ​25 

               ​31​                               ​32​                               ​33​                              ​34​                               ​35 
Fig. 3—Simplified scenario exemplifying properties of the phylogenetic tree.  
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Figure 4 depicts the phylo-tree for the synthetic scenario. Because of the MSE nature (the average of                 
the sum of squared differences), the first group and the second are more similar to the third than among                   
them. Therefore, the elements of the first row are placed at the bottom, clearly separated from the                 
elements of the second row (upper part). The elements of the different groups are placed together. Note                 
that the positions of the elements are affected by the selection of the dissimilarity metric. 
 
 
 
 
 
 

 
 

Fig. 4—Phylogenetic tree resulting from the synthetic case.  

 

 

Model ensembles at different data-assimilation iterations 

We now explore data from the benchmark UNISIM-I-H, previously described, for two different time              
instants. Figure 6 shows phylo-trees at those two-time assimilation instants. Each model is             
represented by a colored circle. The closer the circles are to each other, the more similar the water                  
saturation maps. The global quality matching is defined as the number of OFs that present errors                
inside the cutoff value [-5,5]. The colors represent the global quality matching of the well based on 78                  
local objective functions (OFs): Qo, Qw, Qg, and BHP for 14 producers, and Qwi and BHP for 11                  
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injectors. Models shown in blue represent good well matching (#OFs≥65), while models with the              
worst matching quality (#OFs<50) are shown in red. The resulting color scale is defined in Figure 5. 

 

 
 
 
 
 
 
 
 
 

Fig. 5— Color scale to represent the well matching based on the number of OFs. Models shown in blue represent a good well                       
matching, while models with the worst matching quality are shown in red.  

 

 

 

 

Figure 6 shows 500 simulation models from two data-assimilation iterations, initial and final, with              
detailed views. If we select sub-branches of equivalent quality (similar color) but in different places of                
the phylo-trees, as shown in Figure 6, we can see that models with similar matching quality color and                  
in the same branch present very similar spatial distributions.  

 

 

 

Also, the phylo-tree visualization allows seeing an improved well matching (fewer red models) and              
less variability (close model clusters) on the final iteration. We observe that, after data-assimilation,              
the best models are grouped in a few branches, which is a good indication that the procedure kept                  
some spatial variability, represented here by the similarity of saturation maps. 
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Initial  Final 

Fig. 6— Visual variability analysis of 500 simulation models from two data-assimilation iterations (initial on the left, final on the                    
right). The global quality matching is defined as the number of OFs that present errors inside the cutoff value [-5,5]. Detailed                     
views of some branches of two data-assimilation iterations. Each model is represented by a colored circle.  

 
By selecting a branch, we can see its simulation models. In Figure 7, we selected three groups of                  
elements belonging to different sub-branches from the final iteration: A-models with good matching             
quality (blue circles), B-models with regular quality matching (green circles), and C-models with bad              
quality matching (red circles). 
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Fig. 7— Three selected groups: A-models with good matching quality, B-models with regular quality matching, and C-models                 
with bad quality matching.  

 
We also explore the similarity of these simulation models related to cumulative graphics for producer 08                
in the dataset. The selected scenarios, which are in the same branch, present similar forecast production.                
We see that good models match the forecast very well. Also, we observe that group B (regular) seems to                   
give a worse fit than group C (bad). This fact could be due to maybe some of those OFs are more                     
important than others. Other strategies to represent the matching quality can be used, in which some OFs                 
could have more relevance than others.  
 

 Group A(good) Group B (regular) Group C (bad) 

Fig. 8— Cumulative graphics of three groups of elements belonging to different sub-branches from the final iteration. 
 
 
The analysis using phylo-trees can be also performed locally from subregions of interest, considering              
just the OFs belonging to the wells considered in those subregions. That analysis could support               
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engineers worried about a few wells that do not history-match, even if they can get the overall match. 
 
Conclusions 
 
In this work, we presented a visual analysis approach to evaluate the variability and matching quality of                 
numerical simulations at different data-assimilation iterations. Our visualization allows the validation of            
spatial fluid similarity. The novelty of this work is the adaptation of phylogenetic-tree analysis and               
visualization for reservoir simulation model assessment.  
 
Our method takes advantage of human perception through the visualization of well-formed branches of              
models representing coherent relationships of similarity. All visual representations can be generated in             
an acceptable amount of time. 
 
As a validation of the methodology, we applied it to a synthetic scenario to exemplify properties of the                  
phylogenetic tree and a realistic case considering different ensembles of simulation models, each             
representing a data-assimilation iteration. The phylogenetic-tree design effectively represents the          
variability and quality of scenarios. It allows one to (i) analyze the similarity of maps (proximity of                 
circles in the tree) and the matching quality (circle colors); and (ii) compare iterations to evaluate the                 
matching quality improvement (fewer reds) and the model variability (several branches). 
 
The methodology is flexible and can be applied to reservoirs at different stages of their lifetime,                
facilitating the inclusion of variability analysis into the decision-making process. It can also help to               
identify more representative models in a given task. Future work will include the integration of the                
approach into the process of uncertainty reduction to check and ensure that a certain degree of variability                 
is kept.  

 
 

Nomenclature 
 

BHP = Bottom Hole Pressure 

C = Constant to prevent division by zero 

DA = Data-assimilation process 

M​j = Reservoir Simulation Model number j at a certain 
data-assimilation iteration 

MSE = Mean Squared Error 

NJ = Neighbor-joining  

NQDS = Normalized Quadratic Deviation with Sign 

Obs​i = Observed data measured at the time i 

OF = Objective Function 
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#OF = Number of Local Objective Functions inside a cutoff value 

Phylo-tree = Phylogenetic tree 

Qg = Gas rate 

Qo = Oil rate 

Qw = Water rate 

Qwi = Water injection rate 

Sim​i  = Simulated data measured at the time i 

Tol = Percentage of tolerance 
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