
Computers & Graphics (2017)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Visual Analytics of Time-varying Multivariate Ionospheric Scintillation Data

Aurea Soriano-Vargasa,∗, Bruno C. Vanib, Milton H. Shimabukurob, João F. G. Monicob, Maria Cristina F. Oliveiraa, Bernd
Hamannc
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A B S T R A C T

We present a clustering-based interactive approach to multivariate data analysis, mo-
tivated by the specific needs of scintillation data. Ionospheric scintillation is a rapid
variation in the amplitude and/or phase of radio signals traveling through the iono-
sphere. This spatial and time-varying phenomenon is of great interest since it affects
the reception quality of satellite signals. Specialized receivers at strategic regions can
track multiple variables related to this phenomenon, generating a database of observa-
tions of regional ionospheric scintillation. We introduce a visual analytics solution to
support analysis of such data, keeping in mind the general applicability of our approach
to similar multivariate data analysis situations.

Taking into account typical user questions, we combine visualization and data mining
algorithms that satisfy these goals: (i) derive a representation of the variables monitored
that conveys their behavior in detail, at multiple user-defined aggregation levels; (ii) pro-
vide overviews of multiple variables regarding their behavioral similarity over selected
time periods; (iii) support users when identifying representative variables for character-
izing scintillation behavior. We illustrate the capabilities of our proposed framework by
presenting case studies driven directly by questions formulated by collaborating domain
experts.

c© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Ionospheric scintillation is an atmospheric phenomenon that
affects measurements obtained by Global Navigation Satellite
Systems (GNSS) such as the Global Positioning System (GPS,
U.S.A.), Global Navigation Satellite System (GLONASS, Rus-
sia), Galileo (European Union) and BeiDou Navigation Satel-
lite System (BDS, China). It results from amplitude attenua-
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tion and phase shifts in GNSS radio signals as they propagate
through regions of the ionosphere with irregular electron densi-
ties [1]. When scintillation occurs GNSS receivers may expe-
rience a complete loss of lock on the affected signals, i.e, there
can be a discontinuity in the phase tracking loop [2], as well as
a degradation in the accuracy of the measurements from a given
satellite [3]. Such effects preclude satellite availability for posi-
tioning purposes, degrade the positional accuracy and may lead
to service outages at critical circumstances, losing track of one
or more satellites. In critical circumstances, the positioning ser-
vice can be lost when a minimum number of satellites are not
successfully tracked by the receiver [4].

Latin America, and in particular regions in Brazil located
around the magnetic equator are severely affected by a frequent
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and strong amplitude scintillation [5, 6]. Consequently, applica-
tions that rely on GNSS technology and require full availability
and accuracy for their operation – such as Precise Point Posi-
tioning (PPP), Real Time Kinematic (RTK) applied to land sur-
veying in agriculture and differential GNSS applied to offshore
oil surveying – may face significant and potentially damaging
issues. Analyzing the occurrence patterns of scintillation and
understanding their causes is essential in order to gather ele-
ments for addressing its effects.

A network of Ionospheric Scintillation Monitor Receivers
(ISMRs) has been operating in Brazil since 2011 to monitor the
phenomenon [2], supported by projects CIGALA (Concept for
Ionospheric Scintillation Mitigation for Professional GNSS in
Latin America) and CALIBRA (Countering GNSS high Accu-
racy applications Limitations due to Ionospheric disturbances
in Brazil)1.

The ISMRs include GNSS capabilities specially designed to
provide scintillation metrics. A typical receiver - PolaRxS PRO,
manufactured by Septentrio - monitors 62 variables computed
every minute from data sampled at high rates (50 Hz), plus
eight additional variables are calculated every minute. Thus, 70
variables related to scintillation are continuously measured and
computed every minute for all 187 satellites tracked, which in-
clude 32 GPS satellites. Data collection occurs at 12 monitoring
stations spatially distributed in Brazil. The resulting database
records an expressive volume of historical observations of the
temporal behavior of scintillation indices and related variables,
where each observation consists of measurements of multiple
variables at a particular time.

This data, which we refer to as the ISMRs database, has been
available to experts for some time and visualization tools have
already been developed to support data analysis [4]. Nonethe-
less, domain experts still lack additional support for exploratory
data analysis to study the interplay between the multiple vari-
ables and their role in characterizing scintillation behavior [7].
We introduce a visual analytics approach to support exploration
of historical ionospheric scintillation data. It integrates multi-
ple visualization and data mining techniques into a visual ex-
ploration loop that allows scintillation scientists to gain an un-
derstanding of how the multiple variables tracked are related
over short and extended time periods, and how they relate to
observed behavior of scintillation measures.

The driving requirements guiding the design and develop-
ment of our solution approach were: (i) to define a represen-
tation of the variables monitored that conveys their behavior in
detail, at multiple user-defined aggregation levels; (ii) to pro-
vide overviews of multiple variables regarding their behavioral
similarity over selected time periods; (iii) to support users when
identifying representative variables for characterizing scintilla-
tion behavior. These requirements have been addressed by inte-
grating various visualization techniques and mining algorithms.

A so-called time matrix visualization shows the behavior of
a particular variable over a time period, while still allowing a

1Both projects have been funded by the European Commission under the
framework of the FP7-GALILEO-2009-GSA and FP7-GALILEO-2011-GSA-
1a, respectively.

user to inspect specific individual values. The visualization can
be created directly from the recorded values or from values ag-
gregated for user-defined temporal units, to support observation
of extended time periods. A small multiples time matrix visual-
ization simultaneously depicting a subset of user-selected target
variables is also shown, where the individual matrix views are
spatially grouped to highlight the similar/dissimilar temporal
behaviors of groups of variables. A similarity map visualization
of the variables is provided as well, complementing and sum-
marizing the small multiples view. These multiple views are
coordinated and analysts can explore them jointly to identify
representative subsets of variables to characterize scintillation
behavior, and assess feature subspaces in relation to scintilla-
tion measures by means of classification algorithms.

We contribute new strategies for visualizing time-varying
multivariate data sets. These strategies allow experts studying
the ionospheric scintillation phenomenon to utilize alternative
approaches for exploring a large database of historical obser-
vations. Our approaches complement existing ones [4] by fo-
cusing on the global temporal relationships between the multi-
ple variables tracked, rather than on their individual behavior in
isolation.

The paper is structured as follows: Section 2 discusses re-
lated work on visual analytics applied to feature selection prob-
lems and in visual analytics of time-varying multivariate data.
We also review previous contributions that addressed analy-
sis of collected scintillation data. In Section 3 we describe in
details the ionospheric scintillation data and the preprocessing
steps. Our visual analytics approach, comprising feature ex-
traction, clustering, individual visualization and global visual-
ization of data variables is described in Section 5. In Section 6
we illustrate possible applications of the proposed visual explo-
ration solution to plausible data analysis scenarios and assess its
capability to inform the relevant variables for explaining iono-
spheric scintillation. Conclusions and a discussion are provided
in Section 7.

2. Related Work

Previous research efforts related to the topics addressed in
this paper are found in the fields of feature selection assisted
by visualization and visualization of multivariate time-varying
data. Also relevant is previous work in mining and visualization
of ionospheric scintillation data.

2.1. Visual Feature Selection

Algorithms for analysis and visualization of multidimen-
sional data typically face the problem known as the curse of
dimensionality [8], which hampers a clear interpretation of the
role of individual variables (data features) and their interaction
in producing the data patterns. High-dimensional data is likely
to be described by redundant variables and feature selection al-
gorithms are widely employed for dimension reduction. The
challenge is to identify a reduced subset of features sufficient
to describe the intrinsic data space and determine data behavior
[9]. The best possible subset would include a minimum number
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of features that contribute mostly to accuracy of a classifier or a
regressor [10].

Razente et al. [11] advocate that integrating dimension re-
duction techniques with visualization strategies offers great po-
tential to support analysts in tasks of identifying representative
data attributes. Several research contributions couple interac-
tive graphical representations with feature selection processes
in favor of improved understanding of data behavior.

Some authors approach visual feature selection relying on
statistical techniques and distances combined with visualiza-
tions [12, 13, 14, 15]. Whereas some contributions are domain
specific, e.g., the VIDEAN system [15] integrates several co-
ordinated visual representations to assist feature selection in a
chemoinformatics problem, others provide general-purpose vi-
sual interfaces for feature subset selection. One example is
SmartStripes [14], developed for diagnostic purposes, provid-
ing interactive refinement of automatic feature subset selection
techniques, considering the interplay between different feature
and entity subsets. Some systems [12, 13] implement ranking-
based visual strategies to identify similarities among variables.

Other contributions [16, 17, 18] concern the problem of an-
alyzing and comparing different variable subspaces, and sub-
space clustering for the analysis of high-dimensional data, as
reviewed by Liu et al. [19]. Approaches such as representa-
tive factor generation [17] and dimension projection matrix/tree
[18] allow interactive exploration of both data variables and
data observations in order to investigate how variables are re-
lated. Typically, time-varying multivariate features are not ex-
plicitly handled.

Our approach is also a contribution in visual feature selec-
tion and analysis of feature subspaces, but it incorporates the
dynamics of temporal variations into the process. As scintilla-
tion is a seasonal phenomenon, the role of different variables in
characterizing its behavior changes along time. We contribute
a solution for visual feature subspace analysis in time-varying
data sets, which also gives analysts the capability of including
their domain knowledge into the investigation.

2.2. Visualization of Time-varying Multivariate Data

Multivariate time-varying data plays an important role in
many application domains and poses multiple challenges to vi-
sualization designers [20]. The continuous collection of mul-
tiple variables typically results in bulky data sets that exhibit
complex behavior, making the design of visual interfaces to
guide specialists in search of relevant data patterns particularly
challenging.

Several classical multivariate visualization techniques have
been employed to convey time-related information, e.g., Par-
allel Coordinates [21] used in connection with an algorithm to
identify important temporal trends in multivariate scientific data
sets [22], or combined with histograms to quantify visual prop-
erties and reduce visual overload in time-varying volume data
[23].

Small multiple visualizations rely on the repetition of
the same design structure to summarize and compare vari-
ables [24]. Correlated multiples [25] is a method that adopts
a spatially coherent placement of the multiples views, where

their relative distances reflect their dissimilarities. It has been
applied to univariate data from three different domains, namely
stock market trends, census demographics and climate model-
ing, in order to assess changes over the years and identify com-
mon trends and similar years. TimeSpiral [26] is a visualization
system combining multiple views to assist users in analyzing
and exploring periodic trends and correlations in multivariate
time-series data. It supports data aggregation at multiple levels,
e.g., changing a time interval, time span or time granularity.
These systems are suitable for simultaneous investigation of a
reduced number of variables.

VIMTEX has been designed to assist geologists observing
temporal relationships in multivariate data describing concen-
trations of chemical compounds [27]. It uses Parallel Coordi-
nates for a multivariate, time-varying view of the data, com-
bined with a density view to show univariate temporal distribu-
tion and a small multiples matrix view which shows bivariate
correlations as time-series. The interactive system Falcon [28]
coordinates time-oriented and statistical views for users to ex-
plore temporal and statistical patterns in multiple time-varying
variables associated with 3D printing processes.

Several systems have been introduced for climate and climate
modeling data analysis. Vismate is a visual analytics system
for exploring climate changes in P.R. China at different spatio-
temporal scales [29]. It uses land surface observations collected
by meteorological observation stations, and combines three vi-
sualizations: (i) a Global Radial Map using K-means cluster-
ing; (ii) a Time-Series Discs using multiple time-series and tri-
angular HeatMaps around a center point; and (iii) an Anomaly
Detection Scatterplot based on Principal Components Analy-
sis. The Similarity Explorer [30] combines small multiples vi-
sualizations and coordinated views for visual comparison of the
outputs resulting from simulations of multiple climate models.
The tool supports spatio-temporal exploration focusing on the
analysis of correlations between climate models with respect to
any variable.

We also present a domain-specific solution for scintillation
data that includes several strategies available in existing sys-
tems. For example, similarly to known solutions [25, 30] we
adopt a small multiples visualization and a consistent placement
strategy to display groups of related variables; and we consider
arbitrary time periods of different granularity levels by means
of user-defined data aggregations [26]. Our solution, however,
supports the simultaneous investigation of many variables and
satisfies specific requirements of scintillation experts. It pro-
vides the ability to inspect and explore scintillation data aggre-
gated over different temporal scales, to investigate the behavior
of variables individually or in groups, and to explore alternative
feature spaces for characterizing the scintillation phenomenon.
Although the introduced system is domain-specific, it supports
tasks that are also applicable to the analysis of other multivari-
ate time-varying data in other domains, as discussed in Section
7.

2.3. Analysis of Ionospheric Scintillation Data

The so-called S4 index of scintillation amplitude is often
used to measure the intensity of ionospheric scintillation. It is
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computed as the standard deviation of the signal intensity nor-
malized by its mean [31]. Signal intensity must be measured
at high rates for the index to detect rapid fluctuations. Cur-
rently, there is no consistency concerning the categorization of
the severity of scintillation as measured by the S4 index, Table
1 describes one well-accepted categorization.

Table 1. Categorization of S4 index intensity by Tiwari (2011) [32].

S4 values Scintillation Categorization
S 4 ≥ 1.0 high

0.5 < S 4 < 1.0 moderate
S 4 ≤ 0.5 low

Several authors applied data mining techniques to collected
scintillation data, e.g., Rezende et al. [7] devised a method that
combines a bagging method, which uses bootstrap to randomly
generate several samples from an original sample, with deci-
sion trees to predict the S4 index with one or more hours of
antecedence. Lima et al. [33] presented a correlation analy-
sis of occurrences of ionospheric scintillation registered in two
stations at different locations in Brazil. They used a classifi-
cation and regression decision tree (CART) from the S4 in-
dex. Another recently published technique [34] uses neural net-
works to predict two levels of scintillation: strong or not strong
(low/moderate). Analyses are typically supported by simple
univariate time series visualizations.

Ackah et al. [35] investigated records of the S4 and vertical
TEC (VTEC) indices in a West African equatorial region. The
presented method visually represents the time series as grids
where a column represents a daily hour, a row represents a par-
ticular day, and grid cell color maps an index (S4 or VTEC) at
the corresponding day/hour. We have adopted similar grid rep-
resentations as well to convey variable values measured over a
time range.

The ISMR Query Tool [36, 4] is an integrated software plat-
form specifically developed for the ISMRs database. It includes
four visualizations of the S4 index: a scatter-plot view of data
from one or multiple satellites over a time period, a calen-
dar view, a Ionospheric Pierce Point (IPP) representation, ag-
gregated time series visualizations obtained with the SAX ap-
proach; and a horizon chart visualization of one or multiple
variables. However, it does not focus on multivariate analy-
sis or on the interplay of the many variables characterizing the
scintillation phenomenon. Our solution complements that pre-
vious effort by providing strategies to inspect and compare the
historical behavior of multiple variable subspaces in relation to
several ionospheric indices, including, but not limited to, the S4
index.

3. Data description and processing

Scintillation observations recorded in the ISMRs database re-
sult from monitoring 187 GNSS satellites tracked by receivers
placed in 12 monitoring stations distributed in Brazil, indicated
in the map in Figure 1. As mentioned in Section 1, observations

recorded in the data base consist of minute-by-minute mea-
surements (or computations) of 70 variables, for each satellite
tracked. The set of observations can be interpreted as multivari-
ate time series of numerical values describing multiple scintil-
lation indices (46 variables), measures of the S4 index (12 vari-
ables), measures of the SigmaPhi index (three variables), time
stamps (seven variables), and indicators of a satellite’s spatial
orientation (two variables).

Fig. 1. Locations of CIGALA and CALIBRA stations in Brazil. PRU1 and
PRU2 stations are located in the State of São Paulo.

The scintillation indices describe standard deviation of phase
computed over different time intervals; average and standard
deviation of code/carrier divergence; spectral strength and spec-
tral slope of detrended phase; averaged signal-to-noise ratio;
and absolute and differential total electron content. The S4
indices measure amplitude scintillation in different bands, as
the standard deviation of the detrended signal intensity (total
S4), the thermal noise correction of the amplitude scintillation
(S4 correction), and the corrected indices (corrected S4). The
SigmaPhi indices measure phase scintillation in different bands
as the standard deviation of the detrended carrier phase from re-
ceived GPS signals. The time stamps group consists of the lock
time (synchronization time) between satellites and receiver in
different bands and GPS time. The direction indicator group
refers to satellite azimuth and elevation angles relative to the
receiver. When retrieving observations it is convenient to ap-
ply an elevation cut-off to disregard data from lower satellites,
which are more susceptible to noise or multi-path effects [37].

We can formally describe the scintillation data set as
an instance of a time-varying data set with n variables
{x1, x2, x3, ..., xn}, each described by a sequence of time-
stamped numerical values, i.e.,

xi = {xt1
i , x

t2
i , x

t3
i , ..., x

tk
i }. (1)

A data observation o(t) is defined as a vector consisting of the
values of p selected variables, p ≤ n, taken at a time t, i.e.,

o(t) = [xt
1, x

t
2, x

t
3, ..., x

t
p]. (2)

We also define aggregated data observations o(tse) as a vector of
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p values, i.e.,

o(tse) = [xtse
1 , x

tse
2 , ..., x

tse
p ], (3)

but now each xtse
i is a value resulting from an aggregation func-

tion f applied to the values of xi in a time interval [ts, te], i.e.,

xtse
i = f (xts

i , x
ts+1
i , x

ts+2
i , ..., x

te
i ). (4)

Many aggregation functions are possible, e.g., maximum,
minimum, average, median or standard deviation. From the pre-
vious definitions, scintillation observations (aggregated or not)
can be described by distinct variable subspaces, according to
the interests of the analyst.

Since variables have values on different dynamic ranges, with
means and variances on different orders of magnitude, data
ranges are linearly normalized to the interval [0,1] prior to per-
forming any further processing.

The case studies presented in Section 6 consider data
recorded at two stations, PRU1 and PRU2, located at Presidente
Prudente, in the State of S£o Paulo, see Figure 1. For practical
reasons, we downloaded data from the ISMRs database to a lo-
cal relational database. So far we have explored data from the
32 satellites in the GPS constellation, which is currently the
world’s most widely employed satellite navigation system [38].
Nonetheless, the solution we describe is applicable to observa-
tions provided by any satellite or monitoring station.

Missing values are quite common and need special treatment.
In some cases, they characterize satellite behavior, due to satel-
lites having different orbital periods, and sometimes they are
due to reception errors. We consider one of three strategies for
handling the missing-value problem: (i) if a value at a particular
time point is missing, but values are known for its previous and
subsequent time points, its value will be linearly interpolated
from the neighboring values; (ii) if values for a whole day are
missing, but values are known for its previous and subsequent
days, values for the day will be linearly interpolated from the
corresponding neighboring values from the previous and sub-
sequent days, accounting for the time shift; (iii) if the previous
cases do not apply, values will not be estimated and the respec-
tive entries remain unknown.

4. Driving Questions and Goals

In partnership with domain expert collaborators we identified
prototypical data analysis questions that cannot be answered
with existing tools. These questions, listed in Table 2, suggest
that analysis should be able to inspect the temporal behavior of
both individual variables and of groups of related variables, as
well as investigate which variables are most relevant to charac-
terize the behavior of the diverse scintillation indices measured.

The ability to provide answers to these questions defined the
requirements for visualization design. Our collaborators were
interested not only in inspecting a global overview of variables’
behavior, but wanted to be able to identify specific values and
time points along the exploration. Thus, it was important to cap-
ture the multivariate nature and temporal behavior without los-
ing detail, e.g., being able to probe specific values. Keeping this
in mind, each matrix visualization uses enough display space to

convey the details over time, whereas the small multiples view
provides the overview and ability to compare variables in terms
of their behavior. The similarity maps are also a proper choice
to convey a global view of the relationships between variables in
terms of their temporal behavior. Therefore, our design efforts
concentrated on providing complementary views of multivari-
ate relationships and allowing users to explore representative
variable sub-spaces in relation to scintillation behavior. In Sec-
tion 6, we demonstrate the system’s resources by means of three
exploration cases conducted to exemplify how it can be helpful
to finding answers to such questions.

Table 2. High-level analysis questions identified in collaboration with do-
main experts.

Q1 Which variables tracked show similar behavior over
a target time period?

Q2 How do variables relate to each other
and to the scintillation indices?

Q3 Besides the S4, what (minimal) subset of variables
suffices to characterize scintillation?

Q4 Do the same variables tracked by different satellites
show similar behavior?

5. Visual Analytics Solution

We have integrated mining and visualization techniques into
a framework to support experts in the investigation of the tem-
poral behavior of data observations, as defined by Equations 2
or 3 in Section 3. Observations described by alternative vari-
able subspaces can be inspected focusing on the time-varying
behavior of either individual variables or groups of variables.
This flexibility is a key strength in supporting extensive data ex-
ploration tasks considering multiple time periods and temporal
scales, as well as alternative variable subspaces for characteriz-
ing the phenomenon.

The introduced system combines a small multiples visual-
ization component that conveys the temporal behavior of each
variable with clustering and multidimensional projection tech-
niques in a consistent representation of the data observations, in
order to convey temporal patterns and highlight representative
variables for characterizing the observed scintillation behavior,
as measured by the pertinent indices.

The system is provided as a web application developed us-
ing Java and Java Server Pages (JSP) on the server-side, Post-
greSQL 9.3.9 as database, and HTML5, CSS and Javascript on
the client-side. SQL functions with subscripts are employed to
retrieve aggregated data values relative to a specified time pe-
riod.

In the following, we provide an overview of the data ex-
ploration functionalities and describe the visualizations and the
steps involved in creating them.

5.1. Overview of the Visual Analytics System

Figure 2 provides an overview of the steps involved in creat-
ing the visualizations and the interface functions for exploring
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Fig. 2. Overview of the data processing and interface functionalities (listed in the menu, labeled A). Initially, a query panel (B) allows one to retrieve a
subset of observations for a time range, described by a subset of variables (sixteen being selected in the example). The regions labeled C and D describe the
underlying data processing steps: values are normalized and a time matrix representation is derived for each variable (C). Each time matrix is described
as a multidimensional feature vector, and feature vectors are clustered into groups of variables that exhibit similar behavior over the observed time range
(D). Multiple coordinated visualizations can be explored: region E shows a small multiples time matrix view of all variables, whereas region F shows a
similarity map (projection) view, with variables represented as circles. The color mapping in the matrix headers and circles reflect the variables’ assigned
cluster. Region G shows functions to modify the cluster model or select other projection techniques. Standard timeline views of four user-selected variables
are shown that reveal seasonal patterns (H, I), and classification and regression functions are also available (J).

the data. The main interface menu is shown in the region la-
beled A. Initially, the user issues a query against the database
by specifying a target time period for retrieval (initial and final
days) and what subset of variables describe the observations (re-
gion B). (It is possible to select all variables.) The query must
also specify (i) the source satellite(s) from which measurements
must be recovered and an elevation angle cutoff; the time span
for data aggregation, considering that observations are recorded
by minute and may be aggregated over arbitrary time spans (10
minutes, one hour, one day, etc.); and (iii) the aggregation func-
tion to summarize the values for the selected time span (e.g.,
average, median, standard deviation, minimum value, or maxi-
mum value).

The regions labeled C and D in the figure refer to the un-
derlying data processing steps. The time matrices are created
as temporal representations of each variable, where each entry
stores a single (possibly aggregated) normalized value (region
C) relative to the defined time span, providing the basis for a
detailed view of each individual variable over time and a small
multiples visualization of subsets of variables.

The time matrices are represented by multidimensional fea-
ture vectors, which are input to a clustering algorithm (region
D) to identify groups of variables that show similar behavior
over the observed time period. From these representations mul-
tiple visualizations are created for data exploration: region E
shows a small multiples visualization of the time matrices rel-
ative to each variable observed (with header colors indicating
their corresponding cluster), whereas region F shows a similar-
ity map view of all variables, created from their multidimen-
sional feature vectors. Each circle represents a variable, col-
ored to indicate its cluster. Both views can be inspected and
manipulated to refine the current cluster model to reflect user
knowledge and beliefs. Region G shows information regard-
ing the quality of the clustering and functions to modify the

cluster model or select other projection techniques for the simi-
larity map. Region H shows that four variables have been user-
selected, for which timeline views are displayed (region I) re-
vealing seasonal patterns. It is possible to apply classifiers and
regressions to the scintillation indices (J). Iterative data analysis
with these multiple coordinated visualizations, combined with
results of clustering, classification and regression algorithms,
allow experts to assess the role of different variable sub-spaces
as representative descriptors of the behavior of the ionospheric
scintillation indices.

5.2. Time Matrix Visualizations
A time matrix representation summarizes the temporal be-

havior of a particular variable for a user-defined observed pe-
riod. As the user may choose to aggregate a range of observed
values, a time matrix maps the values of a variable along a
certain period and at a given time granularity, from minutes
to hours or even days. Each matrix entry represents a single
numerical value, either as recorded in the database or derived
according to Equation 4, applying an aggregation function over
a range of values.

Each time matrix has a corresponding visualization (Figures
3 and 4) which is split into two areas. The header area shows
the variable’s name, its assigned cluster (also indicated by the
header and border color), the satellite from which observations
have been retrieved, the observation period, the minimum and
maximum values recorded over that period and the rate (per-
centage over total) of missing data before and after interpola-
tion.

The main area is split into cells depicting corresponding ma-
trix entries. Values are color-mapped using the heated-object
colormap [39], where brighter colors map to lower values and
darker colors map to higher ones (Figure 5).

Cells that show interpolated data are highlighted by a red
border, and cells depicting unknown entries (missing data) are
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shown in gray without a border. The border of a time matrix
may be highlighted in cyan to indicate it has a missing data rate
above a user-defined threshold (say, above 50%). Our choice
of colors is based on red and cyan being recommended colors
to catch viewer attention [40]. They are also complementary
hues [39]. Of course, these choices may not be ideal in all situ-
ations.

Fig. 3. Time matrix visualization of variable (phi01l1). Daily data (00:00h-
23:00h) from GPS satellite 1 at station PRU2, from June 1 to 30, 2014. In
this example, cells depict the maximum value observed over a 30-minute
interval (user choice of aggregation function and time span). Each row
depicts values for a day and each column shows values for the same thirty-
minute period, on different days. Areas in gray depict matrix cells with
missing values, and cells enclosed by a red border show interpolated data.
The matrix border in cyan indicates a high rate of missing data.

In the examples, cells show the maximum value observed
within a 30-minute interval (Figure 3) and the median value ob-
served over a day (Figure 4). Hovering over a cell causes a
label to show up with detailed information about the cell’s cor-
responding entry: date, recorded value and aggregation func-
tion and time span. This is illustrated for the two extreme cells
of the time matrix depicted in Figure 4.

We compute a feature vector from each time matrix, formed
by the five standard statistical moments computed from the ma-
trix, i.e., mean, standard deviation, skewness, kurtosis, and uni-
formity. The statistical moments capture the properties of the
probability distributions that characterize the variables’ behav-
ior over the observed time period. Matrix entries with missing
values are ignored in the computation of statistical moments.
However, there is an option for including the percentage of
missing data as an extra feature in the matrix feature vector, as
in some situations such a variable should be clearly identified
as an outlier.

We cluster feature vectors in order to group variables based
on global similarity of their observed behavior. We offer a
choice between K-means, Bisecting K-means, or X-means clus-
tering algorithms and use the Euclidean distance between fea-

Fig. 4. Another time matrix visualization of the same variable (phi01l1),
now depicting monthly data from January 1 to December 31, 2014. In this
example, each cell depicts the median value observed over a day. Each row
shows daily values observed along a specific month and each column shows
values relative to the same sequential day along the 12 months. Regions
marked A and B show the detail labels overlaid when the mouse is placed
over the indicated cells (shown separately for clarity).

Fig. 5. Heated-Object colormap [39].

ture vectors as a measure of their dissimilarity. The advantage
of X-means clustering [41] is the fact that it does not require
specifying a desired number of clusters a priori, as it learns this
number as the one that yields the best Bayesian information
criterion. Users may re-assign variables to clusters or create
new clusters based on their expert perception of joint similarity,
e.g., after inspection of time matrix views and similarity maps
of variables, as described in the next Subsection. The alterna-
tive cluster models can convey insight to analysts attempting
to identify relevant variables and variable subspaces for further
investigation with classification or regression algorithms.

Time matrix visualizations shown in Figures 3 and 4 can be
viewed individually or as a small multiples visualization of all
queried variables, as shown in Figure 7.B, where views are spa-
tially arranged according to their assigned clusters. A combo
box, shown in the header area of each matrix view, allows ana-
lysts to change the corresponding variable’s cluster assignment,
in case they disagree with the automatic assignment. A measure
of cluster quality, the silhouette coefficient [42], is informed.
Silhouette values are in the range [−1,+1], where higher values
indicate a cluster model with higher cohesion and separability.
Values are updated whenever the current cluster model changes.
Silhouette coefficients provide analysts with an objective mea-
sure of cluster quality, which may be helpful when investigat-
ing and comparing alternative cluster models and being unsure
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about a model’s suitability. Indeed, the analyst’s perception of
relevance and similarity of a variable’s behavior may be differ-
ent from the one inferred by automatic clustering. Our approach
encourages investigating alternatives, where users’ knowledge
is more important for defining the assignment of variables to
clusters than silhouette measure values.

At this stage, we have generated, possibly with user inter-
vention, clusters of variables that behave similarly for an ob-
servation period. For subspace analysis purposes, the variables
corresponding to the medoids of clusters are initially assumed
to be the ideal set of representatives for describing the corre-
sponding observations. Nonetheless, analysts can modify the
default choice of representative variables by designating a dif-
ferent variable as a cluster’s representative, done by ticking a
checkbox shown in the corresponding time matrix view. For
example, the ticked checkbox of variable phi01l1 in Figures 3
and 4 indicates that it is the cluster representative. This can be
achieved either by default, because this variable is the medoid
of a cluster, or it is a user’s choice. Flexibility in defining the
cluster model and picking representative variables is important
in situations where analysts want to compare alternative fea-
ture subspaces to characterize scintillation behavior well. Our
system supports a similarity map visualization of variables, de-
scribed next.

5.3. Similarity Map of Variables

Similarity map visualizations of the variables can help spe-
cialists assessing, and possibly modifying, the clustering results
according to their appreciation of similarity in variable behav-
ior. A similarity map depicts a two-dimensional (2D) space
embedding of the m-dimensional (m = 5 or m = 6) feature vec-
tors describing the variables’ time matrices, in which 2D point
distances are used as proxies to the point distances in the orig-
inal 6-dimensional space [43, 44]. Therefore, “more similar”
variables (as described by their corresponding time matrix) are
placed closer in the 2D map, whereas more “dissimilar” ones
are placed farther apart.

The 2D embedding is computed with the IDMAP multidi-
mensional projection [44] (we used an implementation by the
authors). IDMAP combines two techniques: (i) it generates an
initial mapping with Fastmap [45], and (ii) iteratively improves
point placements using the Force Scheme strategy [43], recov-
ering information lost in the initial projection. Pairwise Eu-
clidean distances are used to define the dissimilarities between
feature vectors. Similarly to time matrix visualization, circles
can be highlighted with a cyan border to indicate missing data
above a threshold.

One such similarity map is illustrated in Figure 7.A. Each
colored circle depicts a variable and its associated cluster, pre-
serving the same color coding of the clusters adopted in the
small multiples matrix view. Circle borders in cyan map vari-
ables with over 50% missing data prior to interpolation.

The map conveys the overall similarity between variables and
their implicit groupings, regardless of their explicit cluster as-
signments. Therefore, it helps analysts in identifying the “nat-
ural” group neighborhoods. This is the reason for showing the
map view in connection with the small multiples matrix view:

inspecting both in combination provides the analyst with in-
sights needed to decide whether the explicit cluster assignments
should be modified and alternative cluster models should be in-
vestigated.

Several projection techniques can be employed to obtain the
similarity maps. Our choice of IDMAP was based on perform-
ing a comparative analysis of maps obtained with different mul-
tidimensional projection techniques. We employed Neighbor-
hood Preservation (NP) [46] curves to compare techniques re-
garding their precision in preserving multidimensional neigh-
borhoods. One such comparison is illustrated in Figure 6. For
varying neighborhood sizes k, the NP curve is computed as fol-
lows: The k-nearest neighbor sets of each data point in multidi-
mensional and projected space are obtained, and their overlap-
ping rate is computed, yielding values in the interval [0, 1]. The
average precision values for all data points for the considered
range of k are plotted. The resulting curves will approach max-
imum precision as k increases, but some techniques can achieve
high precision even for smaller values of k.

Fig. 6. Neighborhood Preservation curves depicting precision of similarity
maps of the 70 variables obtained with four distinct techniques.

Figure 6 shows the NP curves of similarity maps com-
puted with IDMAP and three alternative projection techniques,
namely Fastmap [45], Least Squares Projection [47] and Prin-
cipal Component Analysis [48], for the data investigated in the
first case study discussed in Section 6. Clearly, IDMAP yields
precision rates superior to LSP and comparable to those ob-
tained by classic approaches such as Fastmap and PCA. Our ex-
periments have indicated that IDMAP usually preserves neigh-
borhood well for this data.

6. Use Cases and Results

Experts can use the proposed framework to interactively ex-
plore recorded scintillation data over different temporal ranges
and scales, from multiple perspectives. We limit our discus-
sion to the selected motivating examples raised by the questions
listed in Table 2.

6.1. Identifying variables with similar temporal behavior (Q1)
Data for this study was obtained by sampling the maximum

values recorded at the station (PRU1), over one-hour periods
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Fig. 7. Variables describing ionospheric scintillation observations (satellite GPS 1, January 1-31 2014, PRU1 station): (A) IDMAP similarity map view,
with each circle depicting one of the 70 variables; and (B) small multiple time matrices view of the same variables, with each cell showing the maximum
value recorded over a one-hour interval along each day (00:00h-11:00h). Each row of a time matrix depicts values along one day.
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each day in January 2014 (00:00h-11:00h), with an elevation
cutoff of 30 degrees, yielding 354,727 observations described
by 70 variables. We considered data from satellite GPS 1. The
X-means clustering of all 70 variables generated six clusters,
with a silhouette coefficient of 0.478, which indicates a high-
quality clustering result. The composition of the clusters may
be observed inspecting both the similarity map of variables and
the small multiples time matrices views, shown in Figure 7, in
which the cluster assignment is indicated by the color of circles
or time matrices, respectively.

While the map provides an overview of the variables’ global
similarities, the small multiples view details their temporal be-
havior, making it possible to verify the actual behavior of clus-
ter members and assess their (dis)similarities. Cluster C1 (light
blue) contains 12 variables, and it is possible to observe two
sub-groups in the map: a cohesive group of nine variables and
another sub-group of three variables t l1, t l2c e5a and t e5b
not very close to each other, but their time matrices show-
ing quite similar behavior. In the pink cluster (C2, with 7
variables), variables sigmaccd l1, sigmaccd l2c e5a and sig-
maccd l5 e5b show similar behavior, slightly different from
other cluster members. The time matrices of the 16 variables
in the red cluster (C3) show remarkably similar behavior. In
cluster C4 (orange), which groups 19 variables, we notice that
p l1, p l2c e5a and p l5 e5b behave differently from the oth-
ers. This can be also observed in the similarity map, where
the circles representing these three variables are slightly apart
from the main group of orange circles. Cluster C5 (dark green)
groups two variables related to time (day of week and week
number), whereas the variables azim and elevation, which indi-
cate spatial orientation of satellites, are grouped together into
cluster C6 (light rose). The neon green cluster (C7, with
nine variables), observed in the map, is also split into two
subgroups: one formed by variables avg cn0 l1, avg cn0 l2,
avg cn0 l5 e5b and f2nd tec cn0; another formed by variables
l1 locktime, l2 e5a locktime and l5 e5b locktime. When ob-
serving their corresponding time matrices one notices that these
latter variables show a distinct behavior from the others in this
cluster. Also distinctive in this group is the time variable tow,
placed in the map somewhere in between this subgroup and the
dark blue cluster C8. The time matrices of variables in cluster
C8 show that they behave similarly, and they are indeed placed
close in the map.

These two visualizations when viewed in combination pro-
vide useful information for the analyst to adjust the cluster
model obtained with X-means. The variables’ cluster assign-
ment can be modified using the combo box provided in its time
matrix view. The ability to identify clusters of variables with
similar behavior is important when investigating answers to the
questions discussed next.

Considering the remarks above, the cluster model was mod-
ified as follows: cluster C1 (light blue) was split into two
subgroups formed by the cohesive group of nine variables
and by the three disperse variables, respectively; cluster C2
(pink) was also split into two groups (formed by variables sig-
maccd l1, sigmaccd l2c e5a and sigmaccd l5 e5b in a group;
and the remaining variables in the other); cluster C4 (orange)

was split into two groups (one sub-group with variables p l1,
p l2c e5a and p l5 e5b and another sub-group with the remain-
ing variables); cluster C7 was split into two subgroups (one
formed by variables avg cn0 l1, avg cn0 l2, avg cn0 l5 e5b
and f2nd tec cn0 and the other by the remaining variables); and
variable tow was re-assigned to cluster C8 (blue). The adjusted
cluster model, shown in Figure 8, is formed by 12 clusters and
has an improved silhouette coefficient of 0.597. This modified
clustering more appropriately represents a user’s “vision” of the
scenario, and can yield better classification results, as discussed
next.

Fig. 8. IDMAP similarity map view of the same 70 variables depicted
in Figure 7.A, in which circle colors reflect an alternative (user-adjusted)
cluster model (12 clusters).

6.2. Identifying the relationships between S4 indices and other
variables (Q2) and relevant variables to scintillation (Q3)

Proceeding from the previous study and in order to investi-
gate how the multiple tracked variables relate with the S4 in-
dices, we compared the results of classifiers on the set of obser-
vations described by three alternative subspaces of variables,
taking S4 corrected as target variable and the Tiwari catego-
rization as ground truth. The three sub-spaces considered for
describing the observations are formed by (a) all 58 monitored
variables that are not directly derived or theoretically associ-
ated with measures of the S4 index (obtained discarding the 12
variables included in Cluster C4, depicted in Figure 7); (b) the
representative variables defined by the cluster medoids result-
ing from X-means (eight variables) clustering, also depicted in
Figure 7; and (c) the representative variables (medoids) defined
by the user-adjusted cluster model, shown in Figure 8, obtained
after observing and interacting with the visualizations.

The X-means clustering of all 70 variables (Figure 7) gen-
erated eight clusters, and their corresponding medoids are
the variables: si l5 e5b, dtec 6045, phi03l1, wn, azim, tow,
avgccd l2c e5a and numerator si l2c e5a. The user-adjusted
clustering (Figure 8) has twelve clusters, with medoids:
si l5 e5b, dtec 6045, phi03l1, wn, azim, avgccd l2c e5a,
numerator si l2c e5a, sigmaccd l5 e5b, f2nd tec locktime,
avg cn0 l2, p l5 e5b and t l2c e5a.

Classifier accuracy is summarized in Table 3, confirming that
both subspaces of variables derived with X-Means and user-
adjusted are indeed appropriate to characterize scintillation be-
havior. According to the scintillation experts, this is a relevant
result, as e.g., the eight variables from subset (b) could be moni-
tored using conventional geodesic receivers available, for exam-
ple, from the Brazilian Network for Continuous Monitoring of
the GNSS Systems (RBMC), rather than the highly specialized
and more costly ISMRs. In other words, it would be possible
to track scintillation with good precision monitoring a reduced
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number of variables that may be tracked with cheaper receivers.

Table 3. Classification accuracy of observations described by three distinct
variable subspaces.

Technique 58 var. (a) 8 var. (b) 12 var. (c)
J48 96.43% 97.50% 97.69%

Mult. Percep. 96.42% 97.52% 97.85%

The behavior of such variables in relation to the S4 indices
can be further investigated by studying the normalized line
graphs of the aggregated data represented in the time matrices.
For instance, Figure 9 shows a sample of the normalized time
series describing two representative variables sigmaccd l5 e5b
and phi03l1, and the target variable s4 corrected during five
days in January 2014, where daily patterns are clearly observ-
able. Patterns are also noticeable when observing graphs de-
picting other representative variables, considering other choices
of aggregation function, time spans and time intervals (not
shown).

Fig. 9. A five-day sample (from January 7 to 11, 2014, 00:00h-11:00h) of
the normalized time series of aggregated values (maximum over 1h inter-
vals) for two representative variables sigmaccd l5 e5b and phi03l1, and the
variable target s4 corrected, where a daily pattern is clearly observed.

6.3. Comparing the behavior of observations from multiple
satellites (Q4)

Identifying groups of satellites more susceptible to scintil-
lation over a region is particularly relevant to derive specific
strategies for dealing with this effect on GNSS positioning.
A typical task would be concerned with inspecting scintilla-
tion values recorded from multiple GPS satellites, and observe
their consistency. This analysis may consider, for example,
the S4 corrected index, which measures amplitude scintillation
computed without ambient noise effects.

We considered observations of the S4 corrected index
recorded at the PRU2 station from January to December 2015,
which were aggregated by taking the average value recorded
over daily intervals. This query resulted in 1,775,039 obser-
vations from the 32 GPS satellites, which were K-Means clus-
tered picking k = 8 (which yielded the best silhouette coeffi-
cient, equal to 0.498, from all cluster models obtained with k in
[2,15]). The resulting clustering (C1 to C8 identified by colors)
is shown in the small multiples time matrix view in Figure 10.

These clusters reveal distinct patterns of amplitude scintilla-
tion, which is typically more severe from November to March.
This is confirmed by the time matrices, where the initial and/or
final rows (corresponding to the first and last months of the

year) show higher averages (darker colors). The three satel-
lites in the white cluster were seemingly less affected by scin-
tillation over this period. The affected satellites at a particular
GPS station will change according to the spatial dynamics of
both their fixed orbital periods and the ionospheric irregular-
ities. Time matrix views of four satellites (4, 8, 10, 26) de-
picting over 28% missing data are highlighted (cyan borders).
Occurrence of missing data may be related to scintillation sus-
ceptibility of a certain satellite because strong scintillation may
cause loss of lock and, as a consequence, inability to track some
variables. If this is the case, data is missed over short periods
(typically a few minutes). One notices that these four satellites
display extensive periods of missing data, more likely a con-
sequence of satellite unavailability, e.g., due to maintenance or
replacement operations in the GPS constellation.

7. Conclusions and Future Work

We have introduced and described an interactive visualiza-
tion system for exploratory data analysis of ionospheric scin-
tillation data, which are multidimensional and time-varying.
Our integrative system approach supports the characterization
of temporal relationships between variables associated with the
scintillation phenomenon. Scintillation scientists can use our
system to pose queries for a target time period and assisted by
multiple visualizations integrated with analytical algorithms for
clustering and classification can interact with the data and visu-
alizations to find answers to their questions and formulate new
scientific hypotheses. Our system is an additional and comple-
mentary system to currently available systems [36].

We have presented detailed case studies, conducted in part-
nership with our collaborating domain experts (co-authors of
this paper) to provide supporting scenarios where the system
can be employed effectively to discover relevant information
about the scintillation phenomenon. Our integrated visual an-
alytics approach allows a user to identify different clusters of
variables with quite similar temporal behavior over a target pe-
riod. We have shown that the subspace defined by the set of
medoids, being representatives of each group, suffice to charac-
terize the behavior of the phenomenon. These representative
variables show periodic patterns that can be assessed at dif-
ferent time scales. We also explored the variable S4 corrected
tracked by the 32 GPS satellites, identifying groups of satellites
in which this particular variable exhibits similar behavior and
also outliers that could be of interest to the domain specialists.
The case studies are illustrative of how the system can assist
experts in gaining further insight into the historical behavior of
scintillation. Additional experiments and studies of observa-
tions collected at other stations over longer time periods will
be conducted to validate and further refine the described frame-
work.

We plan to provide similarity maps of observations linked
with variable visualizations, making it possible to perform in-
teractions to identify and interpret relevant patterns. As a sim-
ple approach linear interpolation can be used, but it would be
interesting to investigate possibly other, higher-order interpo-
lation schemes and analyze how they impact the data analysis
[49].



12 / Computers & Graphics (2017)

Fig. 10. (A) IDMAP similarity map and (B) Small Multiple Time Matrices view of values of index S4 corrected recorded at the 32 GPS satellites (January
1 - December 31, 2015). Matrix cells show average values over daily periods along each month. Numeric labels in the similarity map identify the satellites.

We will address scalability of our approaches and their im-
plementation to ensure real-time interactive performance for
very large data sets and complex queries. Finally, the proposed
analytics strategies are applicable to other domains where large
time-varying multivariate data arise and must be understood.
Specifically, any multivariate observational data set recorded
periodically can be explored with the described visualizations
when there is a need to understand and correlate variable sub-
spaces and temporal variation. We are currently generalizing
the system and will apply it to stock market and air quality data
sets.
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