
Brain Mapping Using Topology Graphs

Obtained by Surface Segmentation

Fabien Vivodtzev1, Lars Linsen2, Bernd Hamann2, Kenneth I. Joy2, and
Bruno A. Olshausen3

1 Laboratoire GRAVIR (CNRS, INP Grenoble, INRIA, UJF).
fabien.vivodtzev@imag.fr

2 Institute for Data Analysis and Visualization (IDAV), Department of Computer
Science, University of California, Davis. {llinsen}@ucdavis.edu,
{hamann|joy}@cs.ucdavis.edu

3 Center for Neuroscience, Department of Psychology, University of California,
Davis. baolshausen@ucdavis.edu

Summary. Brain mapping is a technique used to alleviate the tedious and time-
consuming process of annotating brains by mapping existing annotations from brain
atlases to individual brains. We introduce an automated surface-based brain map-
ping approach. After reconstructing a volume data set (trivariate scalar field) from
raw imaging data, an isosurface is extracted approximating the brain cortex. The
cortical surface can be segmented into gyral and sulcal regions by exploiting geomet-
rical properties. Our surface segmentation is executed at a coarse level of resolution,
such that discrete curvature estimates can be used to detect cortical regions. The
topological information obtained from the surface segmentation is stored in a topol-
ogy graph. A topology graph contains a high-level representation of the geometrical
regions of a brain cortex. By deriving topology graphs for both atlas brain and in-
dividual brains, a graph node matching defines a mapping of brain cortex regions
and their annotations.

1 Introduction

Annotating brains is a tedious and time-consuming process and can typically
only be performed by an expert. A way to alleviate and accelerate the process
is to take an already existing completely annotated brain and map its annota-
tions onto other brains. The three-dimensional, completely annotated brain is
called neuroanatomical brain atlas. An atlas represents a single brain or uni-
fied information collected from several “healthy” brains of one species. The
digital versions of atlas brains are stored in databases [30]. Neuroscientists
can benefit from this collected information by connecting to the database,
accessing atlas brains, and mapping annotations onto their own data sets.
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We propose an automated brain mapping approach that consists of sev-
eral processing steps leading from three-dimensional imaging data to mapped
cortical surfaces. Data sets are typically obtained in a raw format, which is
the output of some imaging technique, such as functional magnetic resonance
imaging (fMRI), given as a stack of aligned two-dimensional images. Isosurface
extraction is used to obtain a surface representation of the brain cortex.

The shape of the brain cortex is complex, having many winding folds and
creases, but its main characteristic can be described by alternating convex and
concave regions called gyri and sulci. We use a multiresolution surface repre-
sentation, since fine details are not present at a coarse level of resolution, while
more global gyral and sulcal brain structures still are. We detect gyri and sulci
by exploiting discrete curvature estimates, and segment the cortical surface
into distinct regions based on curvature. The curvature-based segmentation
is independent of the size of the segments. Thus, it is capable of extracting
cortical regions of varying size and of detecting corresponding cortical regions
in atlas and user brains, even if a region’s size varies substantially for two
brains being compared.

Curvature-based segmentation leads to a topological characterization of
the surface. A topology graph is used to store the topological surface infor-
mation at a high level. The brain mapping is executed by generating topology
graphs for atlas brain and user brains and finding node correspondences for
the graphs, where each node represents a cortical region.

2 Related Work

First approaches in brain mapping used rigid models and spatial distribu-
tions. In [26], a stereotactic atlas is expressed in an orthogonal grid system,
which is rescaled to a patient brain, assuming one-to-one correspondences of
specific landmarks. Similar approaches are discussed in [2, 5, 11] using elastic
transformations. The variation in brain shape and geometry is of significant
extent between different individuals of one species. Static rigid models are not
sufficient to describe appropriately such inter-subject variabilities.

Deformable models were introduced as a means to deal with the high com-
plexity of brain surfaces by providing atlases that can be elastically deformed
to match a patient brain. Deformable models use snakes [20], B-spline surfaces
[24], or other surface-based deformation algorithms [8, 9]. Feature matching
is performed by minimizing a cost function, which is based on an error mea-
sure defined by a sum measuring deformation and similarity. The definition
of the cost function is crucial. Some approaches rely on segmentation of the
main sulci guided by a user [4, 27, 29], while others automatically generate a
structural description of the surface.

Level set methods, as described in [21], are widely used for convex shapes.
These methods, based on local energy minimization, achieve shape recognition
requiring little known information about the surface. Initialization must be
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done close to surface boundaries, and interactive seed placement is required.
Several approaches have been proposed to perform automatically the seeding
process and adapt the external propagation force [1], but small features can
still be missed. Using a multiresolution representation of the cortical models,
patient and atlas meshes are matched progressively by the method described
in [16]. Folds are annotated according to size at a given resolution. The choice
of the resolution is crucial. It is not guaranteed that same features are present
at the same resolution for different brains.

Many other automatic approaches exist, including techniques using active
ribbons [13, 10], graph representations [3, 22], and region growing [18]. A
survey is provided in [28]. Even though some of the approaches provide good
results, the highly non-convex shape of the cortical surface, in combination
with inter-subject variability and feature-size variability, leads to problems
and may prevent a correct feature recognition/segmentation and mapping
without user intervention.

Our approach is an automated approach that can deal with highly non-
convex shapes, since we segment the brain into cortical regions, and with
feature-size as well as inter-subject variability, since it is based on discrete cur-
vature behavior. Moreover, isosurface extraction, surface segmentation, and
topology graphs are embedded in a graphical system supporting visual under-
standing.

3 Brain Mapping

Our brain mapping approach is based on a pipeline of automated steps. Figure
1 illustrates the sequence of individual processing steps.

The input for our processing pipeline is discrete imaging data in some raw
format. Typically, imaging techniques produce stacks of aligned images. If
the images are not aligned, appropriate alignment tools must be applied [25].
Volumetric reconstruction results in a volume data set, a trivariate scalar field.

Depending on the used imaging technique, a scanned data set may con-
tain more or less noise. We mainly operate on fMRI data sets, thus having to
deal with significant noise levels. We use a three-dimensional discrete Gaus-
sian smoothing filter, which eliminates high-frequency noise without affecting
visibly the characteristics of the three-dimensional scalar field. The size of the
Gaussian filter must be small. We use a 3×3×3 mask locally to smooth every
value of a rectilinear, regular hexahedral mesh. Figure 2 shows the effect of
the smoothing filter applied to a three-dimensional scalar field by extracting
isosurfaces from the original and filtered data set.

After this preprocessing step, we extract the geometry of the brain cor-
tex from the volume data. The boundary of the brain cortex is obtained via
an isosurface extraction step, as described in Section 4. If desired, isosurface
extraction can be controlled and supervised in a fashion intuitive to neurosci-
entists.
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Fig. 1. Processing pipeline: from imaging data in raw format to mapped brain
cortex surface.

(a) Without Gaussian filter (b) With Gaussian filter

Fig. 2. Smoothing of volumetric scalar field visualized by extracting isosurfaces
from original and filtered data.

Once the geometry of the brain cortices is available for both atlas brain
and a user brain, the two surfaces can be registered. Since our brain mapping
approach is feature-based, we perform the registration step by a simple and
fast rigid body transformation. For an overview and a comparison of rigid
body transformation methods, we refer to [6].

User-guided surface segmentation of the brain cortices is based on curva-
ture estimates. Since curvature estimates are sensitive to high-frequency de-
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tail, a multiresolution approach is used, as described in Section 5. On a coarse
level of resolution, only the main (low-frequency) features of the brain cortices
are represented while the small (high-frequency) details are not present.

Curvature estimates on surfaces are used to distinguish between regions of
different behavior [12]. We use Gaussian and mean curvatures to distinguish
between elliptic and hyperbolic regions and between convex and concave re-
gions, respectively. The shape of a brain cortex is mainly defined by gyral and
sulcal regions. We segment the surface based on these curvature characteris-
tics, as described in Section 6.

Curvature-based surface segmentation describes the topological behavior
of the surface, which we store in a topology graph, as described in Section 7.
Nodes of the topology graph represent regions of the cortical surface. Neigh-
borhood information of such regions is represented by edges in the graph.

The final brain mapping is performed on the high-level and abstract rep-
resentation of a topology graph, as described in Section 8. We construct a
topology graph for the atlas brain and a user brain and determine matching
node correspondences.

4 Isosurface Extraction

Extracting the geometry of a brain cortex from a discrete trivariate scalar
field can be done by standard isosurfacing techniques. We decided to use
a marching cubes-like approach [19]. For the quality of brain mapping it is
crucial to choose an “appropriate isovalue,” such that the extracted isosurface
follows closely the geometrical shape of the brain cortex.

To validate the proper choice of an isosurface, we designed a tool that
allows a user to supervise the isosurfacing procedure. Traditionally, neuro-
scientists segment data slice-by-slice in a two-dimensional setup. Thus, the
supervision tool should allow them to inspect the original two-dimensional
slices and an extracted segment boundary for that particular slice simultane-
ously.

Figure 3 shows an example of supervised isosurface extraction. The upper
row shows isosurfaces extracted for various isovalues. The two rows below show
two original two-dimensional slices with overlaid cross sections (red contour)
of the extracted isosurface. The left column shows the location of the slice
with respect to the isosurface. In this particular example, the chosen isovalue
is a good one, since the red contours follow closely the gyri and sulci of the
brain cortex.

Due to remaining noise in the data set, the isosurface extraction step
produces one large main component and many small isolated components.
The main component represents the brain cortex, while the small components
should be removed. We use a surface-growing algorithm that generates a wa-
tertight triangular mesh in a half-edge data structure representing the largest
component. The small components are removed.
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Iso-value

Position 26.1 89.1 115.2

Fig. 3. Supervised isosurface extraction: overlaying original two-dimensional slices
with cross sections (red contour) of extracted isosurface.

5 Multiresolution Surface Representation

To obtain a multiresolution surface representation of a brain cortex, we start
with the triangular isosurface mesh. To simplify the high-resolution triangu-
lar mesh we use a simplification algorithm based on progressive meshes [14].
We iteratively apply edge-collapse operations. Although collapsing an edge is
a simple operation, it can modify topology and geometry. To ensure consis-
tency of our mesh, we use consistency checks as described in [15], based on
topological analysis in the neighborhood affected by a collapse operation.

For each edge of the mesh, an error corresponding to the cost of its collapse
is computed and stored. According to this value an ordered heap of edges
is created. During mesh simplification, the method identifies the top edge,
checks for consistency, and, if possible, collapses it. This process is highly
dependent on the error metric used to decide which edge to collapse next.
Many metrics have been proposed for edge collapse algorithms over the past
decade [7, 14, 17, 23]. Most of these metrics attempt to preserve “sharp” edges
and details. Our objective, instead, is to remove detail even in regions of high
curvature. Thus, our error metric is only based on edge length, and our main
goal is to create a near-uniform distribution of vertices on the surface. After
a valid collapse, the affected neighborhood is updated accordingly.

Topology (i. e., adjacency information of triangles) and geometry (i. e.,
positional information of the resulting “collapse” vertex) are modified by an
edge collapse. An edge collapses to its midpoint. (We decided not to optimize
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the position to keep computation costs low.) Using midpoints also reduces the
risk of self-intersections.

Figure 4 shows the result of simplifying a triangular mesh. The main gyral
and sulcal features of the cortical surface are well preserved at the coarse level
of resolution.

(a) 100% of original data (b) 10% of original data

Fig. 4. Multiresolution surface representation.

6 Surface Segmentation

6.1 Curvature-based Surface Characteristics

A surface can be divided into regions of elliptic and hyperbolic behavior. The
regions of elliptic behavior can further be classified into convex and concave
regions. When considering the a brain cortex, the gyri contain convex ellip-
tic regions and the sulci contain concave elliptic regions. The blending areas
between gyri and sulci are hyperbolic regions. This observation led to our
decision to use curvature-based surface characteristics for user-guided surface
segmentation. Discrete curvature estimates and their use for curvature-based
surface segmentation were introduced in [31].

We use mean curvature estimates to distinguish between convex and con-
cave regions. A discrete version of the mean curvature operator at a vertex
xi of a triangular mesh can be defined by the length of a vector operator
K(xi). For characterizing surface behavior with respect to mean curvature,
we only need to use the direction of K(xi). Thus, we use a simplified operator
Kdir(xi). The vector Kdir(xi) associated with a vertex xi is computed as a
weighted sum of difference vectors emanating from xi and ending at the ver-
tices being edge-connected with xi. The weight of the vector associated with
edge eij between xi and its neighbor xj depends on the cotangents taken from
the opposite angles of its adjacent faces. This operator is defined as

Kdir(xi) =

Ni
∑

j=1

(cot αj + cot βj)(xj − xi) ,
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where Ni is the number of neighbors constituting the set of edge-connected
neighbor vertices of xi, and αj , βj are the opposite angles of eij with respect
to its adjacent faces, see Figure 5.

Fig. 5. Parameters used by mean curvature operator.

We use the operator Kdir(xi) to define the Boolean operator mean(xi),
which allows us to distinguish between convex and concave regions. It is de-
fined as

mean(xi) =

{

convex if Kdir(xi) · ni ≤ 0
concave if Kdir(xi) · ni > 0

,

where ni is a discrete approximation of the normal vector at xi. In concave
areas, the operator Kdir(xi) and the normal vector ni are directed in roughly
opposite directions, whereas in convex areas they are directed in roughly the
same direction, see Figure 6.

Fig. 6. Using mean curvature to distinguish between convex and concave regions.

To further distinguish between elliptic and hyperbolic regions, i. e., to sep-
arate local extrema from blending regions, we consider Gaussian curvature. A
discrete version of the Gaussian curvature at a vertex xi of a triangular mesh
can be defined by the length of an operator κG(xi). This operator compares
2π with the sum of inner angles θj of all the adjacent faces of a vertex xi,
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see Figure 7. In the planar case, the sum of the angles is 2π. When xi is an
extremum, a plane through xi exists, such that all neighbor vertices of xi lie
on one side of that plane, see Figure 7. Thus, the angles sum to a value smaller
than 2π. When xi is not an extremum and we compute the best fitting plane
in the least-squares sense through xi, the neighbor vertices lie above and be-
low that plane. In this situation, the angles sum up to a value larger than 2π.
Hence, we consider only the sign of the operator κG(xi), defined as

κG(xi) = 2π −

Ni
∑

j=1

θj ,

where θj is the angle between the difference vectors xj − xi and xj+1 − xi,
emanating from vertex xi and ending at neighbors xj and xj+1, respectively,
see Figure 7.

Fig. 7. Using Gaussian curvature to distinguish between elliptic and hyperbolic
regions.

We use κG(xi) to define another Boolean operator Gauss(xi), which is
true if the vertex xi is a local extremum:

Gauss(xi) =

{

elliptic if κG(xi) > 0
hyperbolic if κG(xi) ≤ 0

.

6.2 Curvature-based Segmentation

By combining the operators mean and Gauss, we can generate an initial sur-
face segmentation consisting of regions of the same type of curvature. Figure
8 shows how a cortical surface of a human brain is partitioned into ellipti-
cal convex regions (yellow), elliptical concave regions (red), hyperbolic convex
regions (green), and hyperbolic concave regions (blue).

Figure 9 shows the effect of the multiresolution surface representation by
segmenting the high- and low-resolution surfaces from Figure 4 with respect
to mean curvature. Only for the low-resolution surface, the cortical regions
are detected as desired.
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Fig. 8. Curvature-based segmentation of cortical surface.

(a) High resolution (b) Low resolution

Fig. 9. Surface segmentation at different levels of resolution.

7 Topology Graph

Curvature-based surface segmentation implies a topology for the surface. We
construct a graph that stores the topology information. The nodes in the
graph represent regions of a certain curvature type, and the edges in the
graph represent neighborhood information of the surface regions.

For cortical surfaces, gyral regions cover larger parts of the brain. Their
segmentation into smaller functional regions cannot be done automatically,
since it is not based on geometrical properties. Sulcal regions instead remain
local. Thus, we decided to use sulci only for the construction of topology
graphs.
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Each node in the topology graph represents one sulcus. The node repre-
senting a certain sulcus is generated by collapsing all vertices of the triangu-
lated surface that are characterized by the surface segmentation procedure as
belonging to that sulcus. The position of the node is determined by averaging
the positions of the collapsed vertices.

To determine neighborhood information for sulci on the cortical surface,
we use a contour-growing algorithm. Starting from a polygonal contour that
describes the boundary of a sulcus on the triangulated surface, we grow the
contour iteratively by one triangle in all directions, i. e., after one iteration
step, the new contour encloses all vertices of the old contour plus all its neigh-
bors. If the contour of a sulcus, when growing, intersects another sulcus, then
these sulci are considered neighbors, and the nodes representing these sulci in
the topology graph are connected by an edge. The number of iteration steps
depends on the resolution of the triangulated surface.

Figure 10 shows the generation of a topology graph for a cortical surface of
a human brain. Figure 10(a) shows the segmented surface, where the detected
sulci are rendered using random colors. Figure 10(b) shows the topology graph
generated from the segmented surface, where nodes are shown in red and edges
in blue. We applied surface segmentation at a resolution of 50%, and used four
iteration steps for generating the edges in the graph.

(a) Segmented surface (b) Topology graph associated

Fig. 10. Topology graph from surface segmentation.

8 Graph Mapping

We prepare the brain mapping step by generating a topology graph repre-
sentation for both atlas brain and a user brain. The mapping is performed
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by matching graph nodes. In addition to node position and edge connectivity
information, the graphs also store, for each node, the size of the associated sul-
cus. Since edges in the triangular mesh have nearly the same length, the size
of a sulcus can be estimated well by the number of vertices of the triangular
mesh that are classified to belong to the sulcus.

For each node nu of the topology graph representing a user brain, we
identify a node na in the topology graph representing the atlas brain that
provides a best match in terms of location and size. To find a best match for
nu, we search for a node na, representing the sulcus, whose size is closest to
the size of the sulcus represented by nu. The search is restricted by limiting
the Euclidean distance from nu and the topological distance in the graph to
not being beyond a certain threshold.

Figure 11 shows the result of a graph-based brain mapping. Figure 11(a)
shows the atlas brain, and Figure 11(b) shows the user brain. Colors of the
sulci indicate which sulci of the atlas brain are associated with which sulci of
the user brain. Regions consisting of less than a certain number of vertices
are not considered as being useful and are not mapped (indicated by red in
Figure 11(b)).

(a) Atlas brain (b) Patient brain

Fig. 11. Brain mapping based on topology graphs.

9 Conclusions and Future Work

We have presented an automated approach for brain mapping to map anno-
tations of the cortical surface from a brain atlas to individual brains. After
reconstructing trivariate scalar fields from raw imaging data, isosurfaces are
extracted approximating brain cortices. A cortical surface is segmented into
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gyral and sulcal regions by exploiting geometrical properties. Our surface seg-
mentation step is performed at a coarse level of resolution, such that discrete
curvature estimates can be used to detect cortical regions. The topological in-
formation obtained from the surface segmentation step is stored in a topology
graph. A topology graph contains a high-level representation of the geometri-
cally distinct regions of a brain cortex. By deriving topology graphs for both
atlas brain and user brain, a high-quality brain mapping is obtained by map-
ping graph nodes.

We plan to extend the node matching process in a way that further ex-
ploits region neighborhood information. Moreover, we would like to develop
a more sophisticated registration method, which we should lead to further
improvement of node matching results.
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Iso-value

Position 26.1 89.1 115.2

(a) (b)

Fig. 12. (a) Supervised isosurface extraction: overlaying original two-dimensional
slices with cross sections (red contour) of extracted isosurface. (b) Curvature-based
segmentation of cortical surface.

(a) (b) (c)

Fig. 13. (a) Surface segmentation at high resolution (top) and low resolution
(bottom). (b) Segmented surface (top) and topology graph associated (bottom). (c)
Brain mapping based on topology graphs in between an atlas brain (top) and a
patient brain (bottom).


