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1 Abstract 
We present a method to create in real time computer-generated 
images of cut diamonds of convex polyhedral shape. The method 
is based on beam tracing and models the complete underlying 
physics of Fresnel�s equations and polarization tracing. To 
achieve high computational efficiency, we linearize the non-linear 
refraction and take advantage of the convex shape. 
We analyze the scaling of our method with increasing depth of 
recursive beam tracing. We compare results produced by our 
method with those generated by ray tracing. For typical scenes 
and image resolutions of approximately 800-by-800 pixels, the 
speed-up factor of our method compared to ray tracing is about 
1000 to 5000, depending on recursion depth, with the obtained 
images being almost identical. 
Our method produces photo-realistic images, which we 
demonstrate by comparison of photographs taken under carefully 
controlled lighting conditions to images produced by our method 
when simulating the same conditions. 

2 Introduction and Motivation 
We describe a highly efficient method for real-time and near-
photorealistic rendering of cut diamonds. Figure 1 shows high-
quality images produced by our method. 
Our work was motivated by the desire to develop an interactive 
tool supporting the rapid generation of imagery of cut diamonds. 
The primary objective was to devise a novel approach that is as 
efficient as possible and can support truly interactive rendering of 
diamonds, allowing a user to fully explore the �parameter space� 
given by geometry, lighting and camera. We have achieved this 
objective. The system that we have created allows a user to 
specify and change easily the parameters controlling 
optical/geometrical diamond characteristics and the settings for 
our camera viewing model. Our main objectives in designing our 
system were to devise an algorithm that 

• is in accordance with the physical laws of reflection and 
refraction  (Snell�s law and Fresnel�s equations), and 

• leads to a computationally highly efficient implementation 
producing high-quality renderings. 

We briefly review the essential physical laws underlying our 
approach; describe how these laws are implemented in the design 
of our algorithm; and compare the results produced by our 
prototype with those obtained by ray tracing and with actual 
digital photographs. 
In computer graphics, ray tracing is the proto-typical method used 
for generating digital images of three-dimensional scenes. Effects 
like reflection and refraction can be modelled well with a ray 
tracing approach. Nevertheless, to generate �correct� ray-traced 
images it is crucial to embed the whole physics of reflection and 
refraction coefficients in one�s ray tracing algorithm - and in the 

 

 

 
Fig. 1: Renderings of diamonds obtained with our method 
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definition of all objects constituting a scene. In general, such a 
rigorous, physics-based approach is currently not applicable to 
scenes containing thousands of complicated objects with different 
optical properties. Our work was motivated by the goal to 
demonstrate that it is possible to produce �correct� images of cut 
diamonds, and to document that this goal can be achieved on 
today's commodity PCs using standard graphics cards. With our 
current implementation it is possible for a user to obtain high-
quality renderings of cut diamonds at interactive frame rates, i.e. 
he/she can vary rendering or diamond parameters and obtain a 
rendering instantly. 
Our approach to efficient rendering of cut diamonds is based on 
the principle of beam tracing, see [Heckbert and Hanrahan 1984]. 
Ray tracing, being an image-/screen-space approach requires us to 
shoot rays through every screen pixel; beam tracing can lead to 
substantial accelerations over standard ray tracing by using entire 
"bundles" (beams) of rays instead. We have adapted beam tracing 
for cut diamond rendering. 
There are numerous ray tracing packages that use Snell�s law to 
compute refractions. However, the reflection and refraction 
coefficients, given by Fresnel�s equations, are not always 
implemented, as their computation is expensive. To compare the 
efficiency of the implementation of our method with a typical 
commonly used ray tracing package, we chose to use MegaPOV 
[MegaPOV], an extension of the popular ray tracer �Persistence of 
Vision� [POV-Ray], for comparison, as it makes use of Fresnel�s 
equations. We have compared computational efficiency and 
quality of rendering results. Subject to the chosen image 
resolution, it has turned out that our implementation can produce 
results highly similar to those created with MegaPOV - with 
speed-up factors of several orders of magnitudes. To validate that 
our implementation of the physical laws and our mathematical 
simplifications are also in agreement with physical reality, we 
have performed comparison with digital photographs. Our 
experiments have confirmed that our implementation can produce 
highly realistic renderings. 

3 Method 
We consider a convex polyhedron, in the remainder of this paper 
referred to as stone, made of a material of isotropic index of 
refraction. This definition comprises almost all relevant cases, as 
with the exception of the �heart� shape, all shapes commonly used 
for jewellery are convex polyhedra. Both diamond and cubic 
zirconia, the best commercial substitute for diamond, are 
materials with an isotropic index of refraction. The stone�s faces 
will be referred to as facets. Due to the polyhedron�s convexity, 
all facets are convex polygons. 
First, we describe the individual components of our method, and 
then we show how they are used in the main algorithm. 

3.1 Beam tracing 
Ray tracing is known to produce very realistic images. With the 
appropriate models for local interaction of light and objects, many 
physical effects can be simulated with high accuracy. 
Unfortunately, ray tracing is also very slow, as every pixel of the 
rendered image has to be computed individually. 
Beam tracing [Heckbert and Hanrahan 1984] builds upon the idea 
of enlarging the sampling area. As in the case of ray tracing, light 
is traced backwards, from the observer�s eye to the objects in the 
scene and finally towards the light sources. Instead of 
infinitesimally thin rays (point sampling), beams with finite 

extension are used (area sampling). In this paper, a beam is 
understood as a cone with convex polygonal cross-section (Fig. 
2). A point v (the location of the observer�s eye) and a convex 
polygon p define a beam. 
For a given beam, there is no unique polygon that defines the 
beam. Any intersection of the beam with a plane can be used. By 
establishing a reference plane (the �screen�) with a coordinate 
system and using the intersection of screen and beam as defining 
polygon, we can define beams in terms of two-dimensional screen 
coordinates. In OpenGL [Shreiner 1999], the mapping OpenGLsc  
that converts three-dimensional object points to two-dimensional 
screen coordinates is  

hgmvpdscOpenGL oo=  

with  
( ) ( )1: zyxzyxhg a  

the transformation to homogeneous coordinates, 
44,: RRMxMx ×∈⋅amv  

the product of the �modelview� and �projection� matrices and 
( ) ( )t

w
t

OpenGL zyxwzyxpd 1: a  

the perspective division. We use the same kind of mapping, but in 
a slightly modified notation and omitting the depth component in 
the perspective division, as we will not need it. Our mapping sc to 
screen coordinates is 

cmpdsc o=  
with 

333 ,,: RbRRAbxAx ∈×∈+⋅acm  
and 

RRw
wx

x ∈∈








+⋅
c

y
x

c
pd t ,,1: 3a . 

For given OpenGL modelview and projection matrices, we can 
compute wbA ,,  and c to yield the same mapping. 
In other words, we use OpenGL-like screen coordinates to define 
beams and compute intersections of polygons with beams. 
However, this is not done by the OpenGL subsystem, but directly 
in the algorithm. 
The concept of beams is well suited for scenes consisting of 
convex polygons, as the intersection of a beam and a convex 
polygon yields a convex polygon, which is used to define a child 
beam with the same origin [Ghazanfarpour and Hasenfratz 1998]. 
In this framework, reflections are easily incorporated, as they are 
linear transformations, transforming polygons into polygons and 
beams into beams. 

 
Fig. 2: A beam b is defined by an eye point v and a polygon p.
Instead of using p, we use the screen-projected polygon p� to
define the beam b. 
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3.2 The beam subdivision 
As explained in the preceding section, we define beams in terms 
of two-dimensional screen coordinates. This simplifies the 
calculation of the intersection of a beam with a facet, as it can be 
done in screen coordinates. Figure 3 shows the three-dimensional 
arrangement and the corresponding screen-projected scene. As the 
mapping sc consists of a linear transformation and a perspective 
division, the projection to screen transforms convex polygons (the 
facets) into convex polygons (the �projected polygons� in Fig. 3). 
As the �parent polygon� that defines the beam is convex too, we 
have to compute the intersection of two convex polygons, which 
is easy and can be done rather fast.  
In order to avoid the projection of facets that do not yield an 
intersection with the parent polygon, we start with a facet that is 
known to yield an intersection. We determine a suitable start facet 
by constructing a ray in the center of the beam and determining 
the facet where it leaves the stone. 
While actually computing the intersection, all facets adjacent to 
the facet currently treated are marked for processing, if they must 
have a non-vanishing intersection with the beam. This can easily 
be determined from the mutual position of the polygons� edges. 
When all facets marked for processing have been projected and 
their intersections computed, the subdivision of the beam is 
finished, as (1) there are no further facets with non-vanishing 
intersection, as the stone is known to be convex, and (2) the sum 
of the child beams is equal to the beam itself, as the surface of the 
stone is closed. The second statement can be easily understood by 
realizing that when tracing the beam, we are inside the stone, thus 
there is no way of leaving the stone without crossing its surface. 

3.3 The reflection mapping fr  
The reflection upon a facet f with plane equation 

RRnnx ∈∈=−⋅ ffff
t cc ,,0 3  is given by the mapping 

( ) ff
t
fff cr nxnn1xRR 22,: 33 +⋅⋅−→ a . 

As it depends only on the plane parameters, it can be rewritten in 
the more convenient linear form fffr bxAx +a: , and the 
matrix fA  and the vector fb  stored for every facet at the start of 
the beam trace algorithm. 

3.4 The refraction mapping 
On interfaces of materials with different index of refraction, light 
gets refracted according to Snell�s law, given as 

2211 sinsin αα nn = . 

We consider a plane interface of two materials with indices of 
refraction 21 nn <  (Fig. 4). For a viewer at point v, light 
originating at point x inside material 2 seems to come from the 
virtual image point x~ . For a fixed viewing position v and in the 
limit 0→β , i.e., for small opening angles around the main ray,  
the relation between x and x~  is well defined. We refer to this 
mapping as 

xxRR ~,: 33 a→refrm . 

For non-vanishing opening angles β , there is no single virtual 
image point. In optics, the resulting image faults are called 
�aberrations�. In this paper, we neglect the effects of aberration. 
As refrm is nonlinear and computationally expensive, we linearize 
it by Taylor series expansion. Using the Taylor series of refrm  at 
point 0x  

( ) ( ) ( ) ( ) L+−⋅′+= 000 xxxxx refrrefrrefr mmm  

we define a linear projection t (�transmission�) 

ttt bxAxRR +⋅→ a,: 33  
with 

( ) ( ) ( ) 0000 :,: xxxbxA ⋅′−=′= refrrefrtrefrt mmm  . 

The development point 0x  has to be on the interface in order to 
assert continuity: As points in medium 1 do not get refracted (the 
light does not cross the refracting boundary between medium 1 
and 2), they are mapped onto themselves. In order to yield an 
overall continuous mapping, t must map the points in the interface 
plane onto themselves, just as refrm  does. This is asserted by 
choosing a development point on the interface. The most suitable 
choice for 0x  is the center of the facet. 
At the interface, refrm  is continuous but its derivative is not 
continuous, thus, strictly speaking, the term ( )0xrefrm′  is a single-
sided derivative. 
For the computation of ( )0xrefrm′ , we are free to choose a suitable 
base ( )321 ,, bbb  and construct ( )0xrefrm′  from the directional 
derivatives along the base vectors. For 1b  and 2b , we use the 
plane vectors of the interface plane, as it is very simple to 
compute the directional derivatives for them. 
The choice of 3b  and the computation of the directional 
derivative is explained in Figure 4. From the direction of 
incidence incd , defined by v and 0x , and Snell�s law, we obtain 
the direction refrd  of the refracted ray. We choose a virtual image 
point incdxx ε+= 0

~  with using a small value for ε  and a small 
angle β ′  to define a second ray, compute the refraction of this 
second ray and get the point x as the intersection point of the two 

 
Fig. 4: The refraction of an incident ray on a plane interface
between media with indices of refraction 21 nn < . For a viewer
at position v, light emitted from a point x inside medium 2 seems
to come from a virtual image point x~ . 

Fig. 3: The intersection of beam with facets. The computation of
the intersection is done in terms of screen coordinates, which
reduces the calculation of the beam-polygon-intersection to the
intersection of two convex polygons. 



 Online ID 0459 Page 4 

refracted rays. Thus, the directional derivative along 03 : xxb −=  
is 03

~~ xxb −= , and we finally get the derivative ( )0xrefrm′  as 
( ) ( ) ( ) 1

3213210
~ −⋅=′ bbbbbbxrefrm . 

Both tA  and tb  are therefore fixed, and the mapping t is 
determined. This computation must be done only once for every 
facet directly visible from the viewer. 

3.5 Fresnel�s equations 
Snell�s law describes the refraction angle, but not the intensities of 
the reflected and the refracted light components. These intensities 
are given by Fresnel�s equations [Jackson 1999]. 
Using the quantities and sign conventions as shown in Figure 5, 
for the light component with an electric field orthogonal to the 
plane of incidence, the reflection and transmission coefficients are 
given by 

2211

11

.0

,2
,12

2211

2211

,0

,1
,12

coscos
cos2:

coscos
coscos:

αα
α

αα
αα

nn
n

E
E

t

nn
nn

E
E

r

orth

orth
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orth

orth
orth

+
==

+
−

==

. 

For the electric field parallel to plane of incidence these 
coefficients are given by 

2112

11

,0

,2
,12

2112

2112

,0

,1
,12

coscos
cos2:

coscos
coscos:

αα
α

αα
αα

nn
n

E
E

t

nn
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E
E

r

par

par
par

par

par
par

+
==

+
−

==
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In the case of total internal reflection, the reflection coefficients 
become complex. Their absolute value is one, as all light gets 
reflected. Thus, these coefficients have the form orthi

orthTIR er δ=,  
and pari

parTIR er δ=, . For our application, we do not need the 
absolute phase, as we consider only incoherent light. Only the 
phase difference parorth δδδ −=  is relevant. The equation for δ  
is given in [Born and Wolf 1999]. 
For the computation of the reflected and transmitted intensities, 
the polarization state has to be known. Algorithms that do not 
track the polarization state usually assume unpolarized light  and 
use the reflection and transmission coefficients 

parorthunpol

parorthunpol

ttt

rrr

,122
1

,122
1

,12

,122
1

,122
1

,12

+=

+=
. 

3.6 Polarization tracking 
As the reflection and refraction coefficients given by Fresnel�s 
equations differ for the parallel and orthogonal component, the 
polarization state of light changes due to the reflections and 
refractions. Completely unpolarized light can get completely 
linearly polarized by a single reflection (the angle of incidence for 
this case is known as Brewester�s angle). As there are many 
reflections and refractions to take into account when tracing light 
through the stone, the polarization state of the light must be 
tracked. There are several ways to represent the polarization state 
of light: The Stokes parameters, the coherence matrix and the 
Jones calculus. Each of these ways has its own distinct advantages 
[Chipman 1995, Wolff and Kurlander 1990]. 
For the application of cut-diamond rendering, the most suitable 
representation is the coherence matrix: It can handle partially 
polarized light and lends itself to easy transformation. For a given 
light ray, an orthogonal coordinate system is established with the 

z-axis corresponding to the direction of the light propagation. The 
coherence matrix J is defined as  

( )













=⋅










=

∗∗

∗∗
∗

yyxy

yxxx
yx

y

x

EEEE

EEEE
EE

E
E

J , 

with xE  and yE  denoting the components of the electric field 
with respect to the coordinate system, and the angular brackets 
denoting time averaging. The coherence matrix does not include 

zE , as there is no electric field in the direction of propagation.  
The light intensity is given by the trace of the coherence matrix 

yyxx JJtr +=J , while the determinant gives the degree of 
polarization. For details on how to interpret the coherence matrix, 
see [Born and Wolf 1999]. 
In order to apply the reflection and transmission coefficients, the 
coordinate system must be rotated such that its x-axis is aligned 
with the directions orthogonal to the plane of incidence and the y-
axis parallel to the plane of incidence. With respect to a 
coordinate system that is rotated around the z-axis by the angle 
ϕ , the electric field is given as 






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



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Now it is possible to apply the transmission or reflections 
coefficients. The reflected part is given as 
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or, in the case of total internal reflection, 











=

10
0δi

refl
em  

with δ  the phase difference defined in section �Fresnel�s 
equations�. The transmitted part is  


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Actually, the cos factor does not belong to the transformation of 
the electric field, but to the transformation of the light power 
(energy per time): The light power for the sampling area changes 
proportionally to the ratio 12 cos/cos αα  due to the change of the 

 
Fig. 5: Adopted sign convention for electic field used in Fresnel�s
equations. 
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beam�s cross-section. Instead of storing this factor and applying it 
when computing the light power, we apply its root in the 
transformation of the electric field. As a consequence, when 
computing the coherence matrix from the transformed electric 
field, it has already been taken into account. 

3.7 Depth of field 
The imaging of small objects tends to go hand in hand with a 
considerable depth-of-field: Due to their size, small objects emit 
little light. In order to capture enough light for a photograph the 
entry lens must be large, i.e., must have large numerical aperture. 
A large numerical aperture yields a small depth of field. 
As cut diamonds usually are relatively small, most photographs of 
cut diamonds exhibit a pronounced depth of field. We are used to 
this depth of field in diamond pictures, and it is this phenomenon 
that makes �crisp� pictures look unrealistic to the human 
observer. For added realism, we must simulate depth of field. 
There is a straightforward approach to simulate depth of field: We 
can position the (pin-hole) camera at several locations in the lens 
(with adjusted viewing direction) and calculate the average of the 
images. This approach amounts to rendering the same scene 
several times with a slightly modified camera, and computing the 
average of all pictures. In OpenGL, this calculation is done in the 
accumulation buffer [Shreiner 1999], as its increased color depth 
avoids rounding errors. For a smooth-looking depth of field, many 
camera positions are necessary, typically 30 to 200. 

3.8 Parallel and perspective refraction 
The accumulated projection transformation accm  for every beam 
is of the form bxAx +⋅a , with 333 , RbRRA ∈×∈ . After 
application of this projection, the perspective division pd is 
applied. For every intersection test, this transformation must be 
done for all corners of the facet to be projected. Considering 
overall computational cost, this step requires the execution of a 
relatively large number of floating-point operations. 
We can reduce this computational cost by using �parallel 
refraction� instead of the refraction mapping t defined above. The 
idea is depicted in Figure 6. Instead of using t, we use the 
mapping 

ttparallelt bxAxRR +→ a,: 33 , 

with 

nd
d

b
nd

dn
1A

⋅
=

⋅

⋅
−= t

refr

refr
tt

refr

t
refr

t c:,:  

where n and c are the parameters of the facet�s implicit plane 
equation 0=−⋅ ct nx . This mapping projects all points in the 
direction refrd  onto the facet plane. Instead of using the overall 
projection tcmpd oo , we use the projection 

paralleldreconst tcmredzpd oooo 2 , 

taking advantage of the possible reduction to two-dimensional 
space, 

( ) ( )tt
d yxzyxred a,: 23

2 RR → , 
which is compensated by an ensuing �reconstruction  mapping� 
defined as 

( ) ( )( )t
reconst

t
reconst yxfyxyxz ,,: 32 aRR → , 

which re-computes the z-component that is lost in dred2 . 
Reconstruction with the function reconstf  is possible due to the 
fact that all points mapped by paralleltcm o  lie in a plane defined 
by the facet plane equation, transformed linearly by cm. 

We split the overall projection sc into two parts, given by 

444 3444 21
ooo

43421
o

redreconst m

paralleld

pd

reconst tcmredzpdsc
:

2

: ==

= , 

using a modified perspective division 22: RR →reconstpd  and a 
linear mapping redredredm bxAxRR +⋅→ a,: 23  with 

232 , RbRRA ∈×∈ redred . 
The crucial idea for the reduction of computational cost is to use 
the mapping redm  instead of sc for the intersection test. This 
approach reduces the number of floating-point calculations for the 
linear part by one third and leaves out the perspective division 
completely. Only during the last stage of our algorithm, when we 
draw to the screen, do we compute the actual screen coordinates 
by reconstpd . As many more coordinates are projected for the 
intersection test than coordinates drawn on the screen, the delayed 
perspective division reduces the number of floating-point 
operations as well. 
To summarize: Instead of using screen coordinates, we use pre-
perspective-division coordinates resulting from redm  for the 
computation of the intersections. This approach reduces the 
number of floating-point operations by more than one third. 
In principle, a problem can occur during the reconstruction 
function reconstf , as it can lead to a division by zero. In practice, 
the probability of this situation to occur is so small that it can be 
neglected. Of course, due to the missing perspective division, 
polygons that are benign in screen coordinates can be almost 
degenerate in pre-perspective-division coordinates. However, the 
intersection test for the subdivison of beams must be able cope 
with almost degenerate polygons, and as the opposite situation is 
just as likely to occur (polygons benign in pre-perspective-
division coordinates, but almost degenerate in screen coordinates), 
parallel refraction is numerically not more sensitive than 
perspective refraction. 
The only real issue that remains is this one: Due to the missing 
perspective division, sometimes the orientation of projected 
polygons is wrong (i.e., the polygon�s corners are ordered in 
mathematical negative instead of positive sense). As the 
intersection algorithm relies on a fixed orientation, for polygons 
oriented wrongly, we use dred2  with the y-component reversed, 
perform all computations with this projection, and finally reverse 
the y-component when drawing, i.e., just before the perspective 
division reconstpd . 
 
 
 
 
 
 

Fig. 6: (a) Perspective refraction and (b) parallel refraction. 
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3.9 The main algorithm 
for (every facet f directly visible) { 

• create beam of depth 1 by projecting facet f according to 
cmpd o , the projection to screen coordinates; 

• create local coordinate system and compute change 
camerarot ,m  from local to camera coordinate system; 

• compute direction and coefficients of reflection; 
• compute polarization transformation for outbound (reflected) 

beam: sourcelightrotreflcamerarotoutaccp ,,, mmm oo=  
• apply outaccp ,  to light emanating from light source, compute 

and store coherence matrix; 
• for the computation of the child beams, add refraction 

mapping ft  to projection and store accumulated projection 
facc tcmm o= ; 

• set polarization transformation to reflect change of coordinate 
system and refraction coefficients: transcamerarotaccp mm o,= ;  

} 
for (d=2 to maximal recursion depth) { 
  for (parent = every beam of depth d-1) { 

• project facets according to parent�s accumulated projection 
mapping parentaccm , , followed by pd; 

• use projected facets to split parent beam into child beams; 
• for (every child beam) { 

• compute direction of refraction; 
• create local coordinate system and compute change rotm  

from local to parent coordinate system; 
• compute polarization transformation for outbound 

(refracted) beam 
    sourcelightrottransrotparentaccoutacc pp ,,, mmm ooo=  
• apply outaccp ,  to light emanating from light source, 

compute and store coherence matrix; 
• for the computation of child beams, add reflection mapping 

fr  to projection and store accumulated projection 
fparentaccacc rmm o,= ; 

• add change of coordinate system and reflection coefficients 
to polarization transformation reflrotparentaccacc pp mm oo,=  

} } } 
for (every beam computed) { 

• use lighting model to determine light intensity for outbound 
direction; 

• multiply intensity with coherence matrix of outbound 
direction; 

• use resulting intensity to render polygon on screen; 
} 

4 Results 
To evaluate the performance of our method, we have tested it on a 
PC running at 2GHz, having 512MByte of main memory and an 
NVidia Ti 4200 graphics card. We have used the graphics card's 
hardware anti-aliasing (two-by-two super-sampling) to reduce 
aliasing effects. 

4.1 Performance and image quality 
Figure 7 shows a typical image obtained with fixed recursion 
depth, but for different quality levels. The fastest version is 
parallel refraction, which yields images that are qualitatively 
correct, but not quantitatively correct (see also Fig. 9f). 
To satisfy average rendering demands, in terms of image quality, 
the best choice is perspective refraction. It is �nearly� correct and 
has good performance. A further simplification of the refraction 
leads to visible deviation from the correct image (Fig. 9f), while 
reducing rendering times by just 5% for small and 25% for large 
recursion depths (Fig. 8). 
Using spectral sampling, i.e., rendering the same scene for 
different wave lengths, the color effects due to diamond�s 
dispersion [Edwards and Philipp 1985] appear. The rendering 
times increase linearly with the number of wavelengths used. 
The simulation of depth of field increases computational cost 
linearly with the number of sampling points. As a smooth depth of 
field usually requires 30 to 200 sampling points, this option is 
very expensive. 

Fig. 7: Different levels of image quality. Recursion depth: eight (all four examples), image size 800*800 pixel, using anti-aliasing. From
left to right: (a) Rendered with parallel refraction (65.5 ms); (b) rendered with perspective refraction (80.9 ms); (c) same as (b), with
addition of spectral sampling (three wavelengths) (236 ms); (d) same as (c), with addition of depth of field (91 camera positions, 65.2 s). 

 
Fig. 8: Scaling of rendering times per frame with recursion depth
for the scene shown in Fig. 7, with parallel refraction (dotted line),
perspective refraction (solid line) and perspective refraction with
three-wavelength spectral rendering (dashed line) 
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4.2 Beam and ray tracing  
The de facto standard for rendering techniques is usually ray 
tracing. In this section, we compare ray-traced images with 
images rendered by our method. For this purpose, the ray tracer 
used for comparison must be capable of handling Fresnel�s 
equations correctly. Polarization handling is desirable, but not 
necessary, as we can disable polarization tracking in our method. 
We chose to use the ray tracer POV-Ray 3.1 as it is powerful, 
readily available and an extension called MegaPOV 0.7 is 
available that includes Fresnel�s equations. As it is open-source, 
we could verify the correct handling of Fresnel�s equations in the 
code. Unfortunately, it does not track polarization, so we had to 
disable polarization tracking in our method in order to assert 
comparability. This was done by using the coefficients for 
unpolarized light given at the end of section �Fresnel�s equations� 
for both the parallel and orthogonal component. 
In order to compare ray tracing with our method, we must use a 
scene that can be set up both by the ray tracers�s scene language 
and our method. While the cut could be converted easily for the 

ray tracer, the lighting had to be simplified in order to guarantee 
that both MegaPOV and our method performed the same 
calculations. 
The lighting used for Figure 9 consists of three planes and two 
spheres. All five objects have homogeneous color and are lit by 
pure ambient light, thus every point on an objects emits light with 
the same intensity. The intensities of the five objects are all 
different. Rendering is done for a single wavelength, i.e., a single 
index of refraction. Therefore, no colors are visible, as they 
emerge from dispersion, i.e., a wave length dependent index of 
refraction. 
Beam tracing has the advantage of reducing aliasing 
[Ghanzanfarpour and Hasenfratz 1998], as it is an area-sampling 
method in contrast to ray tracing, which is a point-sampling 
method. In ray tracing, the sampling for the image pixels is done 
in software. An improvement of image quality by anti-aliasing 
increases the computational cost (Fig. 9d), whereas for beam 
tracing, the anti-aliasing can be done in hardware, resulting in a 
negligible performance reduction. 

  
(a) Ray tracing (b) Beam tracing with perspective refraction (c) Beam tracing with parallel refraction 
 

  
(d) Rendering times for different techniques (e) Image (b) minus (a) plus 50% grey (f) Image (c) minus (a) plus 50% grey 
 

Fig. 9: Comparison of rendering techniques. All images have a size of 800 x 800 pixel and make use of anti-aliasing. (a) through (c) show
the same scene, rendered with ray tracing, beam tracing with perspective refraction and beam tracing with parallel refraction. In order to
emphasize the non-linear effects of the refraction, the camera location was chosen close the stone (the distance between camera and stone
being less than six times the stone�s diameter). As all 3 images closely resemble each other, (e) and (f) show the differences between the
beam- and the ray-traced images. Fig 9(e) demonstrates that the linearization used for perspective refraction is a very good approximation
to the correct non-linear refraction. 
Fig 9(d) shows the rendering times per frame for beam tracing with perspective refraction (solid line), ray tracing without anti-aliasing
(dotted line) and ray tracing with anti-aliasing (dashed line). For beam tracing, disabling anti-aliasing changes frame rates so little that, in
this graph, it would yield the same line as anti-aliased beam tracing. The performance advantage of beam tracing against ray tracing ranges
from 1100 to 9300 for high image quality (with anti-aliasing) and from 600 to 6200 for reduced image quality (without anti-aliasing)
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4.3 Beam tracing and photography 
While the comparison with ray tracing is convincing from a 
computer graphics point of view, the ultimate test is the 
comparison with real photographs. 
The simulation of a real scene with our method is only feasible if 
the scene is well defined. The most critical part is the lighting. We 
built a dedicated box with a well-defined window for lighting. 
The stone was placed at a fixed position in the box and viewed 
with a microscope. A digital reflex camera was used, as it yields a 
linear connection between light intensity and the RGB values of 
the image pixels. The pictures taken with the camera were not 
altered in any way, they were only cropped to the relevant size. 
As no real diamond of appropriate size was available, we used a 
stone made of cubic zirconia, the best commercial substitute for 
diamond. Using the index of refraction of cubic zirconia [Wood 
and Nassau 1982], the data of the microscopes objective, the 
dimensions of the lighting window and the position of the stone 
under the microscope�s objective, we rendered the same scene 
with our method.  
Figure 10 shows the photograph and the result obtained by our 
method. Almost all of the reflexes seen in the photograph can be 
clearly identified in the digitally produced duplicate; many of the 
colored reflexes have the same color. The differences can be 
attributed for the most part to the fact that the stone�s cut is not 
perfect, as the location and size of the individual reflexes depend 
very delicately on the angles between the individual facets. 
Though the rendering was done with just three wavelengths (620, 
540 and 445 nm for the red, green and blue component, 
respectively), the colors are qualitatively correct. Apparently, this 
rather coarse approximation of the full spectral distribution 
already yields a good approximation to the real image. 

5 Conclusions and possible extensions 
We have described a method for the rendering of cut diamonds. It 
is possible to generate near-photorealistic images of cut diamonds, 
at high resolution and high recursion depth, with our 
implementation of this method. Today's commodity PCs equipped 
with contemporary graphics cards are sufficient to generate these 
images. Concerning the rigorous evaluation of our method we 
have compared our resulting images with those obtained with a 
popular ray tracing package and with actual photographs of a cut 
stone. In summary, our evaluation procedures have demonstrated 
that our implementation compares very favorably with 

experiments. The key contributions and specific strengths of our 
novel approach are: 

• Our method is extremely efficient, much more efficient in 
general than existing competitive techniques we are aware of 

• our method does not require any pre-computation steps 
• our method is physically correct, as it takes into account 

Snell�s law, Fresnel�s equations and polarization 
• our method can be used to produce highly realistic renderings 

of cut diamonds. 
Possible extensions are the handling of colored stones by 
incorporation of depth tracking and the stones� extinction 
coefficients and the simulation of photographic artefacts like 
�bleeding� due very strong reflexes. A potentially very interesting 
application for our method is the mathematical optimization of 
diamond cuts, as it can be used to construct optimization 
functions, e.g. for �brilliance� and �fire�, which, due to our 
method being an area sampling method, are continuous and thus 
lend themselves to numerous optimization algorithms. 
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(a) photograph (b) rendered with our method 

Fig. 10: Comparison of photograph 
with result produced by our method. (a) 
Photograph of a cubic zirconia stone of 
�round brilliant� shape, taken with a 
microscope under well-controlled 
lighting conditions. (b) Image rendered 
by our method with the scene 
parameters matching the physical 
microscope setup. Depth of field is 
enabled with superposition of 217 
individual frames. Rendering time: 
200.3 s 


	VoelkerHamann2012TechnicalReportCover12202012
	VoelkerHamann2012TechnicalReport12202012.pdf

