
REAL-TIME RENDERING OF CUT DIAMONDS

TECHNICAL REPORT

Department of Computer Science
University of California, Davis

Davis, CA 95616-8562
U.S.A.

Moritz Voelker

Max Planck Institute for Biochemistry
Department of Membrane and Neurophysics

Am Klopferspitz 18
D-82152 Martinsried

Germany

and

Bernd Hamann

Institute for Data Analysis and Visualization (IDAV)
Department of Computer Science
University of California, Davis

Davis, CA 95616-8562
U.S.A.

 Online ID 0459 Page 1

REAL-TIME RENDERING OF CUT DIAMONDS

 paper category: process

 (author 1) (author 2)

1 Abstract
We present a method to create in real time computer-generated
images of cut diamonds of convex polyhedral shape. The method
is based on beam tracing and models the complete underlying
physics of Fresnel�s equations and polarization tracing. To
achieve high computational efficiency, we linearize the non-linear
refraction and take advantage of the convex shape.
We analyze the scaling of our method with increasing depth of
recursive beam tracing. We compare results produced by our
method with those generated by ray tracing. For typical scenes
and image resolutions of approximately 800-by-800 pixels, the
speed-up factor of our method compared to ray tracing is about
1000 to 5000, depending on recursion depth, with the obtained
images being almost identical.
Our method produces photo-realistic images, which we
demonstrate by comparison of photographs taken under carefully
controlled lighting conditions to images produced by our method
when simulating the same conditions.

2 Introduction and Motivation
We describe a highly efficient method for real-time and near-
photorealistic rendering of cut diamonds. Figure 1 shows high-
quality images produced by our method.
Our work was motivated by the desire to develop an interactive
tool supporting the rapid generation of imagery of cut diamonds.
The primary objective was to devise a novel approach that is as
efficient as possible and can support truly interactive rendering of
diamonds, allowing a user to fully explore the �parameter space�
given by geometry, lighting and camera. We have achieved this
objective. The system that we have created allows a user to
specify and change easily the parameters controlling
optical/geometrical diamond characteristics and the settings for
our camera viewing model. Our main objectives in designing our
system were to devise an algorithm that

• is in accordance with the physical laws of reflection and
refraction (Snell�s law and Fresnel�s equations), and

• leads to a computationally highly efficient implementation
producing high-quality renderings.

We briefly review the essential physical laws underlying our
approach; describe how these laws are implemented in the design
of our algorithm; and compare the results produced by our
prototype with those obtained by ray tracing and with actual
digital photographs.
In computer graphics, ray tracing is the proto-typical method used
for generating digital images of three-dimensional scenes. Effects
like reflection and refraction can be modelled well with a ray
tracing approach. Nevertheless, to generate �correct� ray-traced
images it is crucial to embed the whole physics of reflection and
refraction coefficients in one�s ray tracing algorithm - and in the

Fig. 1: Renderings of diamonds obtained with our method

Bernd HamannMoritz Völker

 Online ID 0459 Page 2

definition of all objects constituting a scene. In general, such a
rigorous, physics-based approach is currently not applicable to
scenes containing thousands of complicated objects with different
optical properties. Our work was motivated by the goal to
demonstrate that it is possible to produce �correct� images of cut
diamonds, and to document that this goal can be achieved on
today's commodity PCs using standard graphics cards. With our
current implementation it is possible for a user to obtain high-
quality renderings of cut diamonds at interactive frame rates, i.e.
he/she can vary rendering or diamond parameters and obtain a
rendering instantly.
Our approach to efficient rendering of cut diamonds is based on
the principle of beam tracing, see [Heckbert and Hanrahan 1984].
Ray tracing, being an image-/screen-space approach requires us to
shoot rays through every screen pixel; beam tracing can lead to
substantial accelerations over standard ray tracing by using entire
"bundles" (beams) of rays instead. We have adapted beam tracing
for cut diamond rendering.
There are numerous ray tracing packages that use Snell�s law to
compute refractions. However, the reflection and refraction
coefficients, given by Fresnel�s equations, are not always
implemented, as their computation is expensive. To compare the
efficiency of the implementation of our method with a typical
commonly used ray tracing package, we chose to use MegaPOV
[MegaPOV], an extension of the popular ray tracer �Persistence of
Vision� [POV-Ray], for comparison, as it makes use of Fresnel�s
equations. We have compared computational efficiency and
quality of rendering results. Subject to the chosen image
resolution, it has turned out that our implementation can produce
results highly similar to those created with MegaPOV - with
speed-up factors of several orders of magnitudes. To validate that
our implementation of the physical laws and our mathematical
simplifications are also in agreement with physical reality, we
have performed comparison with digital photographs. Our
experiments have confirmed that our implementation can produce
highly realistic renderings.

3 Method
We consider a convex polyhedron, in the remainder of this paper
referred to as stone, made of a material of isotropic index of
refraction. This definition comprises almost all relevant cases, as
with the exception of the �heart� shape, all shapes commonly used
for jewellery are convex polyhedra. Both diamond and cubic
zirconia, the best commercial substitute for diamond, are
materials with an isotropic index of refraction. The stone�s faces
will be referred to as facets. Due to the polyhedron�s convexity,
all facets are convex polygons.
First, we describe the individual components of our method, and
then we show how they are used in the main algorithm.

3.1 Beam tracing
Ray tracing is known to produce very realistic images. With the
appropriate models for local interaction of light and objects, many
physical effects can be simulated with high accuracy.
Unfortunately, ray tracing is also very slow, as every pixel of the
rendered image has to be computed individually.
Beam tracing [Heckbert and Hanrahan 1984] builds upon the idea
of enlarging the sampling area. As in the case of ray tracing, light
is traced backwards, from the observer�s eye to the objects in the
scene and finally towards the light sources. Instead of
infinitesimally thin rays (point sampling), beams with finite

extension are used (area sampling). In this paper, a beam is
understood as a cone with convex polygonal cross-section (Fig.
2). A point v (the location of the observer�s eye) and a convex
polygon p define a beam.
For a given beam, there is no unique polygon that defines the
beam. Any intersection of the beam with a plane can be used. By
establishing a reference plane (the �screen�) with a coordinate
system and using the intersection of screen and beam as defining
polygon, we can define beams in terms of two-dimensional screen
coordinates. In OpenGL [Shreiner 1999], the mapping OpenGLsc
that converts three-dimensional object points to two-dimensional
screen coordinates is

hgmvpdscOpenGL oo=

with
() ()1: zyxzyxhg a

the transformation to homogeneous coordinates,
44,: RRMxMx ×∈⋅amv

the product of the �modelview� and �projection� matrices and
() ()t

w
t

OpenGL zyxwzyxpd 1: a

the perspective division. We use the same kind of mapping, but in
a slightly modified notation and omitting the depth component in
the perspective division, as we will not need it. Our mapping sc to
screen coordinates is

cmpdsc o=
with

333 ,,: RbRRAbxAx ∈×∈+⋅acm
and

RRw
wx

x ∈∈








+⋅
c

y
x

c
pd t ,,1: 3a .

For given OpenGL modelview and projection matrices, we can
compute wbA ,, and c to yield the same mapping.
In other words, we use OpenGL-like screen coordinates to define
beams and compute intersections of polygons with beams.
However, this is not done by the OpenGL subsystem, but directly
in the algorithm.
The concept of beams is well suited for scenes consisting of
convex polygons, as the intersection of a beam and a convex
polygon yields a convex polygon, which is used to define a child
beam with the same origin [Ghazanfarpour and Hasenfratz 1998].
In this framework, reflections are easily incorporated, as they are
linear transformations, transforming polygons into polygons and
beams into beams.

Fig. 2: A beam b is defined by an eye point v and a polygon p.
Instead of using p, we use the screen-projected polygon p� to
define the beam b.

 Online ID 0459 Page 3

3.2 The beam subdivision
As explained in the preceding section, we define beams in terms
of two-dimensional screen coordinates. This simplifies the
calculation of the intersection of a beam with a facet, as it can be
done in screen coordinates. Figure 3 shows the three-dimensional
arrangement and the corresponding screen-projected scene. As the
mapping sc consists of a linear transformation and a perspective
division, the projection to screen transforms convex polygons (the
facets) into convex polygons (the �projected polygons� in Fig. 3).
As the �parent polygon� that defines the beam is convex too, we
have to compute the intersection of two convex polygons, which
is easy and can be done rather fast.
In order to avoid the projection of facets that do not yield an
intersection with the parent polygon, we start with a facet that is
known to yield an intersection. We determine a suitable start facet
by constructing a ray in the center of the beam and determining
the facet where it leaves the stone.
While actually computing the intersection, all facets adjacent to
the facet currently treated are marked for processing, if they must
have a non-vanishing intersection with the beam. This can easily
be determined from the mutual position of the polygons� edges.
When all facets marked for processing have been projected and
their intersections computed, the subdivision of the beam is
finished, as (1) there are no further facets with non-vanishing
intersection, as the stone is known to be convex, and (2) the sum
of the child beams is equal to the beam itself, as the surface of the
stone is closed. The second statement can be easily understood by
realizing that when tracing the beam, we are inside the stone, thus
there is no way of leaving the stone without crossing its surface.

3.3 The reflection mapping fr
The reflection upon a facet f with plane equation

RRnnx ∈∈=−⋅ ffff
t cc ,,0 3 is given by the mapping

() ff
t
fff cr nxnn1xRR 22,: 33 +⋅⋅−→ a .

As it depends only on the plane parameters, it can be rewritten in
the more convenient linear form fffr bxAx +a: , and the
matrix fA and the vector fb stored for every facet at the start of
the beam trace algorithm.

3.4 The refraction mapping
On interfaces of materials with different index of refraction, light
gets refracted according to Snell�s law, given as

2211 sinsin αα nn = .

We consider a plane interface of two materials with indices of
refraction 21 nn < (Fig. 4). For a viewer at point v, light
originating at point x inside material 2 seems to come from the
virtual image point x~ . For a fixed viewing position v and in the
limit 0→β , i.e., for small opening angles around the main ray,
the relation between x and x~ is well defined. We refer to this
mapping as

xxRR ~,: 33 a→refrm .

For non-vanishing opening angles β , there is no single virtual
image point. In optics, the resulting image faults are called
�aberrations�. In this paper, we neglect the effects of aberration.
As refrm is nonlinear and computationally expensive, we linearize
it by Taylor series expansion. Using the Taylor series of refrm at
point 0x

() () () () L+−⋅′+= 000 xxxxx refrrefrrefr mmm

we define a linear projection t (�transmission�)

ttt bxAxRR +⋅→ a,: 33
with

() () () 0000 :,: xxxbxA ⋅′−=′= refrrefrtrefrt mmm .

The development point 0x has to be on the interface in order to
assert continuity: As points in medium 1 do not get refracted (the
light does not cross the refracting boundary between medium 1
and 2), they are mapped onto themselves. In order to yield an
overall continuous mapping, t must map the points in the interface
plane onto themselves, just as refrm does. This is asserted by
choosing a development point on the interface. The most suitable
choice for 0x is the center of the facet.
At the interface, refrm is continuous but its derivative is not
continuous, thus, strictly speaking, the term ()0xrefrm′ is a single-
sided derivative.
For the computation of ()0xrefrm′ , we are free to choose a suitable
base ()321 ,, bbb and construct ()0xrefrm′ from the directional
derivatives along the base vectors. For 1b and 2b , we use the
plane vectors of the interface plane, as it is very simple to
compute the directional derivatives for them.
The choice of 3b and the computation of the directional
derivative is explained in Figure 4. From the direction of
incidence incd , defined by v and 0x , and Snell�s law, we obtain
the direction refrd of the refracted ray. We choose a virtual image
point incdxx ε+= 0

~ with using a small value for ε and a small
angle β ′ to define a second ray, compute the refraction of this
second ray and get the point x as the intersection point of the two

Fig. 4: The refraction of an incident ray on a plane interface
between media with indices of refraction 21 nn < . For a viewer
at position v, light emitted from a point x inside medium 2 seems
to come from a virtual image point x~ .

Fig. 3: The intersection of beam with facets. The computation of
the intersection is done in terms of screen coordinates, which
reduces the calculation of the beam-polygon-intersection to the
intersection of two convex polygons.

 Online ID 0459 Page 4

refracted rays. Thus, the directional derivative along 03 : xxb −=
is 03

~~ xxb −= , and we finally get the derivative ()0xrefrm′ as
() () () 1

3213210
~ −⋅=′ bbbbbbxrefrm .

Both tA and tb are therefore fixed, and the mapping t is
determined. This computation must be done only once for every
facet directly visible from the viewer.

3.5 Fresnel�s equations
Snell�s law describes the refraction angle, but not the intensities of
the reflected and the refracted light components. These intensities
are given by Fresnel�s equations [Jackson 1999].
Using the quantities and sign conventions as shown in Figure 5,
for the light component with an electric field orthogonal to the
plane of incidence, the reflection and transmission coefficients are
given by

2211

11

.0

,2
,12

2211

2211

,0

,1
,12

coscos
cos2:

coscos
coscos:

αα
α

αα
αα

nn
n

E
E

t

nn
nn

E
E

r

orth

orth
orth

orth

orth
orth

+
==

+
−

==

.

For the electric field parallel to plane of incidence these
coefficients are given by

2112

11

,0

,2
,12

2112

2112

,0

,1
,12

coscos
cos2:

coscos
coscos:

αα
α

αα
αα

nn
n

E
E

t

nn
nn

E
E

r

par

par
par

par

par
par

+
==

+
−

==

.

In the case of total internal reflection, the reflection coefficients
become complex. Their absolute value is one, as all light gets
reflected. Thus, these coefficients have the form orthi

orthTIR er δ=,
and pari

parTIR er δ=, . For our application, we do not need the
absolute phase, as we consider only incoherent light. Only the
phase difference parorth δδδ −= is relevant. The equation for δ
is given in [Born and Wolf 1999].
For the computation of the reflected and transmitted intensities,
the polarization state has to be known. Algorithms that do not
track the polarization state usually assume unpolarized light and
use the reflection and transmission coefficients

parorthunpol

parorthunpol

ttt

rrr

,122
1

,122
1

,12

,122
1

,122
1

,12

+=

+=
.

3.6 Polarization tracking
As the reflection and refraction coefficients given by Fresnel�s
equations differ for the parallel and orthogonal component, the
polarization state of light changes due to the reflections and
refractions. Completely unpolarized light can get completely
linearly polarized by a single reflection (the angle of incidence for
this case is known as Brewester�s angle). As there are many
reflections and refractions to take into account when tracing light
through the stone, the polarization state of the light must be
tracked. There are several ways to represent the polarization state
of light: The Stokes parameters, the coherence matrix and the
Jones calculus. Each of these ways has its own distinct advantages
[Chipman 1995, Wolff and Kurlander 1990].
For the application of cut-diamond rendering, the most suitable
representation is the coherence matrix: It can handle partially
polarized light and lends itself to easy transformation. For a given
light ray, an orthogonal coordinate system is established with the

z-axis corresponding to the direction of the light propagation. The
coherence matrix J is defined as

()













=⋅










=

∗∗

∗∗
∗

yyxy

yxxx
yx

y

x

EEEE

EEEE
EE

E
E

J ,

with xE and yE denoting the components of the electric field
with respect to the coordinate system, and the angular brackets
denoting time averaging. The coherence matrix does not include

zE , as there is no electric field in the direction of propagation.
The light intensity is given by the trace of the coherence matrix

yyxx JJtr +=J , while the determinant gives the degree of
polarization. For details on how to interpret the coherence matrix,
see [Born and Wolf 1999].
In order to apply the reflection and transmission coefficients, the
coordinate system must be rotated such that its x-axis is aligned
with the directions orthogonal to the plane of incidence and the y-
axis parallel to the plane of incidence. With respect to a
coordinate system that is rotated around the z-axis by the angle
ϕ , the electric field is given as











⋅







 −
=










′
′

=

y

x

y

x

E
E

E
E

rot

44 344 21
:

cossin
sincos

m

ϕϕ
ϕϕ

.

Now it is possible to apply the transmission or reflections
coefficients. The reflected part is given as











⋅⋅=










′
′

⋅







=











=

y

x
rotrefl

y

x

p

o

refly

x

E
E

E
E

r
r

E
E

refl

mm

m
43421
:

0
0

or, in the case of total internal reflection,











=

10
0δi

refl
em

with δ the phase difference defined in section �Fresnel�s
equations�. The transmitted part is











⋅⋅=










′
′

⋅







=











=

y

x
rottrans

y

x

p

o

transy

x

E
E

E
E

t
t

E
E

trans

mm

m
444 3444 21

:

1

2
0

0
cos
cos

α
α .

Actually, the cos factor does not belong to the transformation of
the electric field, but to the transformation of the light power
(energy per time): The light power for the sampling area changes
proportionally to the ratio 12 cos/cos αα due to the change of the

Fig. 5: Adopted sign convention for electic field used in Fresnel�s
equations.

 Online ID 0459 Page 5

beam�s cross-section. Instead of storing this factor and applying it
when computing the light power, we apply its root in the
transformation of the electric field. As a consequence, when
computing the coherence matrix from the transformed electric
field, it has already been taken into account.

3.7 Depth of field
The imaging of small objects tends to go hand in hand with a
considerable depth-of-field: Due to their size, small objects emit
little light. In order to capture enough light for a photograph the
entry lens must be large, i.e., must have large numerical aperture.
A large numerical aperture yields a small depth of field.
As cut diamonds usually are relatively small, most photographs of
cut diamonds exhibit a pronounced depth of field. We are used to
this depth of field in diamond pictures, and it is this phenomenon
that makes �crisp� pictures look unrealistic to the human
observer. For added realism, we must simulate depth of field.
There is a straightforward approach to simulate depth of field: We
can position the (pin-hole) camera at several locations in the lens
(with adjusted viewing direction) and calculate the average of the
images. This approach amounts to rendering the same scene
several times with a slightly modified camera, and computing the
average of all pictures. In OpenGL, this calculation is done in the
accumulation buffer [Shreiner 1999], as its increased color depth
avoids rounding errors. For a smooth-looking depth of field, many
camera positions are necessary, typically 30 to 200.

3.8 Parallel and perspective refraction
The accumulated projection transformation accm for every beam
is of the form bxAx +⋅a , with 333 , RbRRA ∈×∈ . After
application of this projection, the perspective division pd is
applied. For every intersection test, this transformation must be
done for all corners of the facet to be projected. Considering
overall computational cost, this step requires the execution of a
relatively large number of floating-point operations.
We can reduce this computational cost by using �parallel
refraction� instead of the refraction mapping t defined above. The
idea is depicted in Figure 6. Instead of using t, we use the
mapping

ttparallelt bxAxRR +→ a,: 33 ,

with

nd
d

b
nd

dn
1A

⋅
=

⋅

⋅
−= t

refr

refr
tt

refr

t
refr

t c:,:

where n and c are the parameters of the facet�s implicit plane
equation 0=−⋅ ct nx . This mapping projects all points in the
direction refrd onto the facet plane. Instead of using the overall
projection tcmpd oo , we use the projection

paralleldreconst tcmredzpd oooo 2 ,

taking advantage of the possible reduction to two-dimensional
space,

() ()tt
d yxzyxred a,: 23

2 RR → ,
which is compensated by an ensuing �reconstruction mapping�
defined as

() ()()t
reconst

t
reconst yxfyxyxz ,,: 32 aRR → ,

which re-computes the z-component that is lost in dred2 .
Reconstruction with the function reconstf is possible due to the
fact that all points mapped by paralleltcm o lie in a plane defined
by the facet plane equation, transformed linearly by cm.

We split the overall projection sc into two parts, given by

444 3444 21
ooo

43421
o

redreconst m

paralleld

pd

reconst tcmredzpdsc
:

2

: ==

= ,

using a modified perspective division 22: RR →reconstpd and a
linear mapping redredredm bxAxRR +⋅→ a,: 23 with

232 , RbRRA ∈×∈ redred .
The crucial idea for the reduction of computational cost is to use
the mapping redm instead of sc for the intersection test. This
approach reduces the number of floating-point calculations for the
linear part by one third and leaves out the perspective division
completely. Only during the last stage of our algorithm, when we
draw to the screen, do we compute the actual screen coordinates
by reconstpd . As many more coordinates are projected for the
intersection test than coordinates drawn on the screen, the delayed
perspective division reduces the number of floating-point
operations as well.
To summarize: Instead of using screen coordinates, we use pre-
perspective-division coordinates resulting from redm for the
computation of the intersections. This approach reduces the
number of floating-point operations by more than one third.
In principle, a problem can occur during the reconstruction
function reconstf , as it can lead to a division by zero. In practice,
the probability of this situation to occur is so small that it can be
neglected. Of course, due to the missing perspective division,
polygons that are benign in screen coordinates can be almost
degenerate in pre-perspective-division coordinates. However, the
intersection test for the subdivison of beams must be able cope
with almost degenerate polygons, and as the opposite situation is
just as likely to occur (polygons benign in pre-perspective-
division coordinates, but almost degenerate in screen coordinates),
parallel refraction is numerically not more sensitive than
perspective refraction.
The only real issue that remains is this one: Due to the missing
perspective division, sometimes the orientation of projected
polygons is wrong (i.e., the polygon�s corners are ordered in
mathematical negative instead of positive sense). As the
intersection algorithm relies on a fixed orientation, for polygons
oriented wrongly, we use dred2 with the y-component reversed,
perform all computations with this projection, and finally reverse
the y-component when drawing, i.e., just before the perspective
division reconstpd .

Fig. 6: (a) Perspective refraction and (b) parallel refraction.

 Online ID 0459 Page 6

3.9 The main algorithm
for (every facet f directly visible) {

• create beam of depth 1 by projecting facet f according to
cmpd o , the projection to screen coordinates;

• create local coordinate system and compute change
camerarot ,m from local to camera coordinate system;

• compute direction and coefficients of reflection;
• compute polarization transformation for outbound (reflected)

beam: sourcelightrotreflcamerarotoutaccp ,,, mmm oo=
• apply outaccp , to light emanating from light source, compute

and store coherence matrix;
• for the computation of the child beams, add refraction

mapping ft to projection and store accumulated projection
facc tcmm o= ;

• set polarization transformation to reflect change of coordinate
system and refraction coefficients: transcamerarotaccp mm o,= ;

}
for (d=2 to maximal recursion depth) {
 for (parent = every beam of depth d-1) {

• project facets according to parent�s accumulated projection
mapping parentaccm , , followed by pd;

• use projected facets to split parent beam into child beams;
• for (every child beam) {

• compute direction of refraction;
• create local coordinate system and compute change rotm

from local to parent coordinate system;
• compute polarization transformation for outbound

(refracted) beam
 sourcelightrottransrotparentaccoutacc pp ,,, mmm ooo=
• apply outaccp , to light emanating from light source,

compute and store coherence matrix;
• for the computation of child beams, add reflection mapping

fr to projection and store accumulated projection
fparentaccacc rmm o,= ;

• add change of coordinate system and reflection coefficients
to polarization transformation reflrotparentaccacc pp mm oo,=

} } }
for (every beam computed) {

• use lighting model to determine light intensity for outbound
direction;

• multiply intensity with coherence matrix of outbound
direction;

• use resulting intensity to render polygon on screen;
}

4 Results
To evaluate the performance of our method, we have tested it on a
PC running at 2GHz, having 512MByte of main memory and an
NVidia Ti 4200 graphics card. We have used the graphics card's
hardware anti-aliasing (two-by-two super-sampling) to reduce
aliasing effects.

4.1 Performance and image quality
Figure 7 shows a typical image obtained with fixed recursion
depth, but for different quality levels. The fastest version is
parallel refraction, which yields images that are qualitatively
correct, but not quantitatively correct (see also Fig. 9f).
To satisfy average rendering demands, in terms of image quality,
the best choice is perspective refraction. It is �nearly� correct and
has good performance. A further simplification of the refraction
leads to visible deviation from the correct image (Fig. 9f), while
reducing rendering times by just 5% for small and 25% for large
recursion depths (Fig. 8).
Using spectral sampling, i.e., rendering the same scene for
different wave lengths, the color effects due to diamond�s
dispersion [Edwards and Philipp 1985] appear. The rendering
times increase linearly with the number of wavelengths used.
The simulation of depth of field increases computational cost
linearly with the number of sampling points. As a smooth depth of
field usually requires 30 to 200 sampling points, this option is
very expensive.

Fig. 7: Different levels of image quality. Recursion depth: eight (all four examples), image size 800*800 pixel, using anti-aliasing. From
left to right: (a) Rendered with parallel refraction (65.5 ms); (b) rendered with perspective refraction (80.9 ms); (c) same as (b), with
addition of spectral sampling (three wavelengths) (236 ms); (d) same as (c), with addition of depth of field (91 camera positions, 65.2 s).

Fig. 8: Scaling of rendering times per frame with recursion depth
for the scene shown in Fig. 7, with parallel refraction (dotted line),
perspective refraction (solid line) and perspective refraction with
three-wavelength spectral rendering (dashed line)

 Online ID 0459 Page 7

4.2 Beam and ray tracing
The de facto standard for rendering techniques is usually ray
tracing. In this section, we compare ray-traced images with
images rendered by our method. For this purpose, the ray tracer
used for comparison must be capable of handling Fresnel�s
equations correctly. Polarization handling is desirable, but not
necessary, as we can disable polarization tracking in our method.
We chose to use the ray tracer POV-Ray 3.1 as it is powerful,
readily available and an extension called MegaPOV 0.7 is
available that includes Fresnel�s equations. As it is open-source,
we could verify the correct handling of Fresnel�s equations in the
code. Unfortunately, it does not track polarization, so we had to
disable polarization tracking in our method in order to assert
comparability. This was done by using the coefficients for
unpolarized light given at the end of section �Fresnel�s equations�
for both the parallel and orthogonal component.
In order to compare ray tracing with our method, we must use a
scene that can be set up both by the ray tracers�s scene language
and our method. While the cut could be converted easily for the

ray tracer, the lighting had to be simplified in order to guarantee
that both MegaPOV and our method performed the same
calculations.
The lighting used for Figure 9 consists of three planes and two
spheres. All five objects have homogeneous color and are lit by
pure ambient light, thus every point on an objects emits light with
the same intensity. The intensities of the five objects are all
different. Rendering is done for a single wavelength, i.e., a single
index of refraction. Therefore, no colors are visible, as they
emerge from dispersion, i.e., a wave length dependent index of
refraction.
Beam tracing has the advantage of reducing aliasing
[Ghanzanfarpour and Hasenfratz 1998], as it is an area-sampling
method in contrast to ray tracing, which is a point-sampling
method. In ray tracing, the sampling for the image pixels is done
in software. An improvement of image quality by anti-aliasing
increases the computational cost (Fig. 9d), whereas for beam
tracing, the anti-aliasing can be done in hardware, resulting in a
negligible performance reduction.

(a) Ray tracing (b) Beam tracing with perspective refraction (c) Beam tracing with parallel refraction

(d) Rendering times for different techniques (e) Image (b) minus (a) plus 50% grey (f) Image (c) minus (a) plus 50% grey

Fig. 9: Comparison of rendering techniques. All images have a size of 800 x 800 pixel and make use of anti-aliasing. (a) through (c) show
the same scene, rendered with ray tracing, beam tracing with perspective refraction and beam tracing with parallel refraction. In order to
emphasize the non-linear effects of the refraction, the camera location was chosen close the stone (the distance between camera and stone
being less than six times the stone�s diameter). As all 3 images closely resemble each other, (e) and (f) show the differences between the
beam- and the ray-traced images. Fig 9(e) demonstrates that the linearization used for perspective refraction is a very good approximation
to the correct non-linear refraction.
Fig 9(d) shows the rendering times per frame for beam tracing with perspective refraction (solid line), ray tracing without anti-aliasing
(dotted line) and ray tracing with anti-aliasing (dashed line). For beam tracing, disabling anti-aliasing changes frame rates so little that, in
this graph, it would yield the same line as anti-aliased beam tracing. The performance advantage of beam tracing against ray tracing ranges
from 1100 to 9300 for high image quality (with anti-aliasing) and from 600 to 6200 for reduced image quality (without anti-aliasing)

 Online ID 0459 Page 8

4.3 Beam tracing and photography
While the comparison with ray tracing is convincing from a
computer graphics point of view, the ultimate test is the
comparison with real photographs.
The simulation of a real scene with our method is only feasible if
the scene is well defined. The most critical part is the lighting. We
built a dedicated box with a well-defined window for lighting.
The stone was placed at a fixed position in the box and viewed
with a microscope. A digital reflex camera was used, as it yields a
linear connection between light intensity and the RGB values of
the image pixels. The pictures taken with the camera were not
altered in any way, they were only cropped to the relevant size.
As no real diamond of appropriate size was available, we used a
stone made of cubic zirconia, the best commercial substitute for
diamond. Using the index of refraction of cubic zirconia [Wood
and Nassau 1982], the data of the microscopes objective, the
dimensions of the lighting window and the position of the stone
under the microscope�s objective, we rendered the same scene
with our method.
Figure 10 shows the photograph and the result obtained by our
method. Almost all of the reflexes seen in the photograph can be
clearly identified in the digitally produced duplicate; many of the
colored reflexes have the same color. The differences can be
attributed for the most part to the fact that the stone�s cut is not
perfect, as the location and size of the individual reflexes depend
very delicately on the angles between the individual facets.
Though the rendering was done with just three wavelengths (620,
540 and 445 nm for the red, green and blue component,
respectively), the colors are qualitatively correct. Apparently, this
rather coarse approximation of the full spectral distribution
already yields a good approximation to the real image.

5 Conclusions and possible extensions
We have described a method for the rendering of cut diamonds. It
is possible to generate near-photorealistic images of cut diamonds,
at high resolution and high recursion depth, with our
implementation of this method. Today's commodity PCs equipped
with contemporary graphics cards are sufficient to generate these
images. Concerning the rigorous evaluation of our method we
have compared our resulting images with those obtained with a
popular ray tracing package and with actual photographs of a cut
stone. In summary, our evaluation procedures have demonstrated
that our implementation compares very favorably with

experiments. The key contributions and specific strengths of our
novel approach are:

• Our method is extremely efficient, much more efficient in
general than existing competitive techniques we are aware of

• our method does not require any pre-computation steps
• our method is physically correct, as it takes into account

Snell�s law, Fresnel�s equations and polarization
• our method can be used to produce highly realistic renderings

of cut diamonds.
Possible extensions are the handling of colored stones by
incorporation of depth tracking and the stones� extinction
coefficients and the simulation of photographic artefacts like
�bleeding� due very strong reflexes. A potentially very interesting
application for our method is the mathematical optimization of
diamond cuts, as it can be used to construct optimization
functions, e.g. for �brilliance� and �fire�, which, due to our
method being an area sampling method, are continuous and thus
lend themselves to numerous optimization algorithms.

6 References
BORN, M. AND WOLF, E. 1999. Principles of Optics, 7th ed.
Cambridge University Press, Cambridge, U.K.
CHIPMAN, R. A. 1995. Mechanics of polarization ray tracing.
Optical Engineering 34, 6, 1636-1645
EDWARDS, D. F. AND PHILIPP H. R. 1985. Cubic Carbon
(Diamond). In Handbook of Optical Constants of Solids.
Academic Press, Orlando, Florida. Palik E. D., Ed., 665-673
GHAZANFARPOUR, D. AND HASENFRATZ, J.-M. 1998. A beam
tracing method with precise antialiasing for polyhedral scenes.
Computers & Graphics 22, 1, 103-115.
HECKBERT, P. S. AND HANRAHAN, P. 1984. Beam tracing
polygonal objects. In Computer Graphics (Proceedings of ACM
SIGGRAPH 84), 18, 3, ACM, 119-127.
JACKSON, J. D. 1999. Classical Electrodynamics, third edition.
John Wiley & Sons, New York.
MEGAPOV. Version 0.7. http://megapov.inetart.net/
POV-RAY. http://www.povray.org/
SHREINER D. 1999. OpenGL Reference Manual, third edition.
Addison Wesley Longman, Reading, Massachusetts
WOLFF, L. B. AND KURLANDER, D. J. 1990. Ray Tracing with
Polarization Parameters. IEEE Computer Graphics &
Applications 10, 6, 44-55.
WOOD, D. L. AND NASSAU, K. 1982. Refractive Index of cubic
zirconia stabilized with yttria. Applied Optics 21, 16, 2978-2981.

(a) photograph (b) rendered with our method

Fig. 10: Comparison of photograph
with result produced by our method. (a)
Photograph of a cubic zirconia stone of
�round brilliant� shape, taken with a
microscope under well-controlled
lighting conditions. (b) Image rendered
by our method with the scene
parameters matching the physical
microscope setup. Depth of field is
enabled with superposition of 217
individual frames. Rendering time:
200.3 s

	VoelkerHamann2012TechnicalReportCover12202012
	VoelkerHamann2012TechnicalReport12202012.pdf

